%0 Journal Article %@ 2561-7605 %I JMIR Publications %V 2 %N 1 %P e12153 %T Fall Risk Classification in Community-Dwelling Older Adults Using a Smart Wrist-Worn Device and the Resident Assessment Instrument-Home Care: Prospective Observational Study %A Yang,Yang %A Hirdes,John P %A Dubin,Joel A %A Lee,Joon %+ Faculty of Applied Health Sciences, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada, 1 (226) 317 3726, y24yang@uwaterloo.ca %K falls %K elderly %K wearable devices %K machine learning %K interRAI %D 2019 %7 07.06.2019 %9 Original Paper %J JMIR Aging %G English %X Background:  Little is known about whether off-the-shelf wearable sensor data can contribute to fall risk classification or complement clinical assessment tools such as the Resident Assessment Instrument-Home Care (RAI-HC). Objective:  This study aimed to (1) investigate the similarities and differences in physical activity (PA), heart rate, and night sleep in a sample of community-dwelling older adults with varying fall histories using a smart wrist-worn device and (2) create and evaluate fall risk classification models based on (i) wearable data, (ii) the RAI-HC, and (iii) the combination of wearable and RAI-HC data. Methods:  A prospective, observational study was conducted among 3 faller groups (G0, G1, G2+) based on the number of previous falls (0, 1, ≥2 falls) in a sample of older community-dwelling adults. Each participant was requested to wear a smart wristband for 7 consecutive days while carrying out day-to-day activities in their normal lives. The wearable and RAI-HC assessment data were analyzed and utilized to create fall risk classification models, with 3 supervised machine learning algorithms: logistic regression, decision tree, and random forest (RF). Results:  Of 40 participants aged 65 to 93 years, 16 (40%) had no previous falls, whereas 8 (20%) and 16 (40%) had experienced 1 and multiple (≥2) falls, respectively. Level of PA as measured by average daily steps was significantly different between groups (P=.04). In the 3 faller group classification, RF achieved the best accuracy of 83.8% using both wearable and RAI-HC data, which is 13.5% higher than that of using the RAI-HC data only and 18.9% higher than that of using wearable data exclusively. In discriminating between {G0+G1} and G2+, RF achieved the best area under the receiver operating characteristic curve of 0.894 (overall accuracy of 89.2%) based on wearable and RAI-HC data. Discrimination between G0 and {G1+G2+} did not result in better classification performance than that between {G0+G1} and G2+. Conclusions:  Both wearable data and the RAI-HC assessment can contribute to fall risk classification. All the classification models revealed that RAI-HC outperforms wearable data, and the best performance was achieved with the combination of 2 datasets. Future studies in fall risk assessment should consider using wearable technologies to supplement resident assessment instruments. %M 31518278 %R 10.2196/12153 %U http://aging.jmir.org/2019/1/e12153/ %U https://doi.org/10.2196/12153 %U http://www.ncbi.nlm.nih.gov/pubmed/31518278