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Abstract

Background: Falls are one of the leading causes of injury or death among older adults. Falls occurring in individuals during
hospitalization, as an adverse event, are a key concern for health care institutions. Identifying older adults at high risk of falls
in clinical settings enables early interventions, thereby reducing the incidence of falls.

Objective: This study aims to develop and validate machine learning models to predict the risk of falls among hospitalized
older adults.

Methods: This study retrospectively analyzed data from a tertiary general hospital in China, including 342 older adults
who experienced falls and 684 randomly matched nonfallers, between January 2018 and December 2024, encompassing
demographic information, comorbidities, laboratory parameters, and medication use, among other variables. The dataset was
randomly split into training and testing sets in a 7:3 ratio. Predictors were selected from the training set using stepwise
regression, least absolute shrinkage and selection operator, and random forest-recursive feature elimination. Seven machine
learning algorithms were employed to develop predictive models in the training set, and their performance was compared in the
testing set. The optimal model was interpreted using Shapley Additive Explanations (SHAP).

Results: The gradient boosting machine model demonstrated the best predictive performance (C-index 0.744, 95% CI
0.688-0.799). The 8 most important variables associated with fall risk were dizziness, epilepsy, fall history within the past
3 months, use of walking assistance, emergency admission, Morse Fall Scale scores, modified Barthel Index scores, and the
number of indwelling catheters. The model was interpreted using SHAP to enhance the clinical utility of the predictive model.

Conclusions: The gradient boosting machine model was identified as the optimal predictive model. The SHAP method
enhanced its integration into clinical workflows.
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Introduction defined as “an event that leads to a person inadvertently
coming to rest on the ground, floor, or other lower surface
than their original position [1].” Age is one of the main risk
factors for falls [2], and statistics indicate that the incidence

Falls, the second leading cause of global unintentional injury
deaths, are a significant public health concern. They are
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of falls among older adults is approximately 26.5% [3].
Among individuals aged >60 years globally, falls are one of
the most common causes of injury or death, with one out of
every 5 falls resulting in a fracture or head injury [2,4]. In
addition, falls generate substantial medical costs, imposing a
heavy economic burden worldwide [5].

Notably, falls are adverse events in hospitals, and the
prevention of falls is also a priority for improving the quality
of nursing care [6]. The incidence of falls in hospitals is
typically in the range of 2 to 16 per 1000 bed days [7,8].
Despite a declining incidence of falls among hospitalized
older adults, the increasing number of older adults admitted to
hospitals, driven by an expanding aging population, suggests
that falls prevention will remain a critical concern in hospitals
[8.9]. Falls are preventable adverse events in hospitals, and
implementing fall prevention programs can avoid costs of
US $14,600 per 1000 patient-days [6]. Therefore, identifying
individuals at high risk of falls in hospitals to take preventive
measures is particularly important, especially among older
adults.

The MFS (Morse Fall Scale) and STRATIFY (St.
Thomas’s Risk Assessment Tool in Falling Elderly Inpa-
tients), widely used in hospitals to identify individuals at
high risk of falls, have drawbacks such as low specificity
[10,11]. Several studies have developed predictive models for
fall risk in older inpatients [12-17]. While some employed
traditional regression methods [12-15,17], these conventional
approaches often struggle with complex, multidimensional
data [18]. Other models exhibit limited applicability, being
restricted to specific clinical settings or units [12,13,17].
Additionally, certain models rely solely on clinical texts
for prediction, a methodology constrained by single-variable
limitations that compromise performance [14].

In recent years, machine learning (ML) algorithms have
attracted considerable interest in health care predictive
modeling due to their capacity to develop highly accu-
rate prediction models at low cost [19]. The capacity of
ML algorithms to process high-dimensional data not only
enhances the accuracy and efficiency of predictive mod-
els but also enables personalized risk prediction [4,20].
Although existing studies have employed ML algorithms
to develop fall prediction models for hospitalized older
adults, these models exhibit limitations, including subopti-
mal performance, applicability restricted to specific geriat-
ric subpopulations, and reliance on environmental detection
systems that hinder their widespread clinical adoption [16,21-
23]. Critically, limited studies have offered comprehensive
explanations or analyses of model predictions, restricting
clinical applicability and diminishing the practical value of
these models.

Therefore, the objective of our study is to develop and
validate multiple ML models utilizing clinically accessible
data to predict fall risk of hospitalized older adults. We seek
to identify the optimal model while interpreting its predictions
through the Shapley Additive Explanations (SHAP) method.
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Methods

Data Source and Participants

Using an adverse event reporting system integrated into
electronic nursing workstations of a tertiary general hospital,
researchers retrieved fall incident records for hospitalized
older adults (aged =60 y) occurring between January 2018
and December 2024, extracting hospitalization identifiers and
fall timestamps. An electronic health record (EHR) system
was used to record admission and discharge dates along with
hospitalization identifiers for older adults without a history
of falls hospitalized between January 2018 and December
2024. The fall timestamp of each case patient was used to
anchor the index time for the matched controls. For each case,
2 controls were matched. Specifically, we first preprocessed
the data by removing duplicate records from individuals with
multiple hospitalizations (retaining only the first admission).
From this refined pool of potential controls, we then used
a Visual Basic algorithm in Microsoft Excel (version 16.0)
to identify patients whose entire hospitalization period (from
admission to discharge) encompassed the fall timestamp. This
approach ensures that both cases and controls were exposed
to similar time-dependent clinical factors at the same specific
time point, thereby minimizing potential time-dependent bias.
The case and control groups were not matched on demo-
graphics such as age or gender in order to maintain the natural
distribution found in real-world clinical settings. With the aim
of capturing all relevant information, variables with clinical
or predictive relevance were included as model features
for the ML algorithm to parse their associations with the
outcome.

Matched controls identified as day cases were excluded
and replaced until a 1:2 case-control ratio was maintained.
This ratio was selected based on considerations of stat-
istical power, cost-effectiveness, and practical constraints,
as increasing the control-to-case ratio beyond 2:1 yields
diminishing returns in power while substantially increasing
costs and workload [24,25]. Cases were initially identified
from the adverse event reporting system as any patient with a
documented fall event occurring within the hospital prem-
ises and were excluded if they were aged <60 years old
at admission, experienced subsequent falls occurring during
the same hospitalization, or were nonhospitalized patients
or day cases. Controls were selected from the EHR system
as hospitalized patients aged =60 years with no record of
an in-hospital fall and were excluded for having duplicate
admission records (only the first was retained), day-case
status, or if they could not be matched to a case. We
excluded day case patients because more than 20% of the data
were missing in EHR. The sample size was estimated using
the “pmsampsize” package in R software (version 4.5.0).
According to other researchers, the c-statistic is 0.73, the
number of predictor parameters chosen for our study is 17,
and the prevalence is 0.33 (1/3), with a required sample size
of 992 for the calculation.
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Ethical Considerations

The study was approved by the Ethics Committee Board of
the Second Affiliated Hospital of Anhui Medical University
(approval number: YX2025-162). This study adheres strictly
to privacy protection principles. Nonessential identifying
information is omitted during data processing, and informed
consent is obtained when necessary. Informed consent was
waived for patients who died or were disconnected. No
financial compensation is provided to participants. This study
conforms to the principles outlined in the TRIPOD (Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis) statement.

Data Collection and Processing

All records containing timestamps and hospitalization
identifiers were randomly split into 2 datasets. Two uniformly
trained data collectors independently extracted variables
through the EHR system using these identifiers, followed
by cross-verification upon completion. Five categories
of variables were collected: demographic characteristics,
comorbidities, medications, laboratory indicators, and other
variables. Table S1 in Multimedia Appendix 1 provides the
list of 64 extracted variables. Demographic characteristics and
sleep duration data were extracted from hospital admission
records. The absence of BMI values was directly attributa-
ble to practical barriers in anthropometric data collection
for patients with mobility limitations (bedridden or wheel-
chair-dependent status). Comorbidities were identified by
integrating inpatient diagnoses from admission summaries
with discharge diagnoses in corresponding discharge records.
Medication administration records were retrieved from both
permanent and temporary medical orders to capture all
medications administered within the 24-hour period preced-
ing the timestamp. Polypharmacy was defined as taking
5 or more medications daily. Laboratory indicators were
collected from laboratory test reports. For indicators with
repeated measurements, data within the 7 days before and
after the timestamp were selected for analysis. The remain-
ing variables were extracted from nursing records within 1
week before and after the timestamp. Given that at least 2
nursing records are documented weekly, there is no missing
data for these variables. A total of 64 variables were initially
extracted. With 27.49% missing values, BMI was removed
from analysis. For the remaining variables, only albumin
and hemoglobin contained missing values (0.03% and 0.04%,
respectively). The missing values for albumin and hemoglo-
bin were imputed using the random forest (RF) imputation
method, implemented via the “missForest” package in R
software (version 4.5.0). This approach offers the advantage
of handling mixed data types (continuous and categorical) and
effectively capturing nonlinear relationships among variables
[26].

Feature Selection

The dataset was randomly split into a training set (70%)
and a testing set (30%). A three-step selection strategy was
implemented in the training set to identify optimal predictors.
First, univariate (LR) was applied for preliminary screening
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(P<.05) to retain statistically significant variables. Second, 5
feature selection methods were integrated: stepwise regres-
sion (SR) comprises 3 variants—forward selection, back-
ward selection, and bidirectional elimination; least absolute
shrinkage and selection operator (LASSO); and random
forest-recursive feature elimination (RF-RFE). Predictors
were determined by the overlap among the results of these
methods. This approach aimed to mitigate high correlation
among predictors while capturing their complex relation-
ships with the outcome variable [27]. SR iteratively adjusts
variables based on statistical significance, LASSO addresses
high dimensionality and multicollinearity while preventing
overfitting, and RF-RFE captures nonlinear patterns and
variable interactions. Both LASSO and RF-RFE incorporated
10-fold cross-validation. Finally, clinical experts validated the
selected predictors to ensure clinical applicability.

Models Development and Validation

To comprehensively evaluate predictive performance and
ensure robust results, we employed multiple algorithms
to construct predictive models in the training set, includ-
ing seven ML models: LR, support vector machines, RF,
gradient boosting machine (GBM), extreme gradient boosting
(XGBoost), k-nearest neighbor (KNN), and neural network
(NN). Grounded in distinct modeling philosophies, each
algorithm offers unique advantages. LR establishes an
optimal linear decision boundary, valued for its conceptual
simplicity and high interpretability, serving as a reliable
performance benchmark [20]. Support vector machines aim
to determine a separating hyperplane that maximizes the
geometric margin for robust classification. They address
nonlinear problems by employing kernel functions to project
data into a higher-dimensional feature space where the
maximum-margin principle is applied [20]. As a represen-
tative bagging ensemble, RF enhances predictive stability
and captures complex feature interactions by aggregating
numerous decorrelated decision trees, also providing inherent
resistance to overfitting and enabling feature importance
evaluation [20,28]. GBM employs a sequential modeling
strategy that iteratively corrects errors from preceding
models, often achieving high predictive accuracy [20].
XGBoost, an optimized implementation of gradient boost-
ing, incorporates regularization and advanced algorithmic
techniques to further improve computational efficiency and
performance [20]. KNN is an instance-based learning method
operating on the principle of local similarity. Predictions
are derived from the majority label or average value of
a sample’s KNNs in the feature space, offering an intui-
tive perspective on the local data structure [29]. NN, or
deep learning models, function as universal approximators
by leveraging multiple layers of tunable nonlinear transfor-
mations. This architecture enables them to automatically
learn hierarchical data representations and extract complex,
high-level features through training [30]. This systematic
selection of algorithms, encompassing linear models, kernel
methods, bagging and boosting ensembles, instance-based
learning, and NNs, ensures our evaluation is comprehensive
and avoids bias toward any single modeling strategy.
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To mitigate class imbalance, we applied random upsam-
pling to the training dataset, which involves duplicating
instances from the minority class at random to balance the
class distribution. Subsequently, to rigorously tune hyperpara-
meters and guard against overfitting, we performed a grid
search with 10-fold cross-validation on this processed training
set to identify the optimal parameters. The test set was used
to evaluate model performance. The area under the receiver
operating characteristic curve (AUROC) in the testing set
served as the primary metric for assessing discriminative
ability. Model discrimination was primarily assessed using
the AUROC. This metric is considered a standard method
for evaluating ranking ability, as it provides a threshold-
independent assessment of a model’s inherent discrimina-
tive power [31]. Additionally, model performance was
comprehensively evaluated using the area under the preci-
sion-recall curve (AUPRC), which is particularly informative
for imbalanced datasets, along with sensitivity, specificity,
accuracy, recall, Fp-score, positive predictive value, and
negative predictive value. Calibration curves were plotted to
assess prediction accuracy. Decision curve analysis (DCA)
was performed to quantify clinical utility. SHAP is a model
interpretation tool that calculates feature contribution values
to provide both global (model-level) and local (individual
prediction) explanations, making models more interpretable
and applicable [20,32].

Therefore, we employed the SHAP method to elucidate
how individual features influence fall risk predictions in
hospitalized older adults within the optimal model.

Statistical Analysis

All statistical analyses were performed using R software
(version 4.5.0), with categories merged when necessary
to address sparse data. Use of walking assistance (UWA)
was classified into 4 groups: no assistance, wheelchair
or bedridden, support by others or furniture, and walker/
crutches/cane. Continuous variables were categorized as
follows: age into 60 to 69, 70 to 79, and =80 years; serum
albumin into =34 and <34 g/L [33]; MFS scores into <45
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points and =45 points [34]; modified Barthel Index (mBI)
[35] scores into O to 20 points, 21 to 60 points, 61 to
90 points, 91 to 99 points, and 100 points; Nutritional
Risk Screening 2002 (NRS 2002) scores into <3 points (no
nutritional risk) and =3 points (at risk) [36]; and Numeric
Pain Rating Scale scores into O points (no pain) and =1 point
(pain) [37]. Continuous variables, none of which followed
a normal distribution, were expressed as medians and IQR
M, Q1-Q3). Categorical variables were reported as numbers
and percentages (n, %). Differences between groups were
analyzed using the Mann-Whitney U test for nonnormally
distributed continuous variables and the Chi-square test (or
Fisher exact test for sparse data) for categorical variables. A
2-sided P<.05 was considered statistically significant.

Results

Baseline Characteristics

Ultimately, 1026 older adults were included in the study.
Figure 1 illustrates the process of patient screening. The
comparison between fallers and nonfallers in the overall
dataset is presented in Table S2 in Multimedia Appendix
1. Among the 1026 patients, 40.84% (419/1026) were aged
60 to 69 years and 55.65% (571/1026) were male. Among
the 342 fallers, 40.06% (137/342) were aged 70 to 79 years
and 52.05% (178/342) were male. Significant differences
were observed between fallers and nonfallers in the follow-
ing variables: age, blood pressure, diabetes, chronic kidney
disease, heart failure, hypothyroidism, cancer, Parkinson’s
disease, dizziness, stroke, gait abnormality, epilepsy, visual
impairment, hearing impairment, polypharmacy, antiplatelet
drugs, statins, a-blockers, vasodilators, antidiabetic drugs,
anti-Parkinson’s disease drugs, antiepileptic drugs, benzodia-
zepines, Z-drugs, albumin levels, fall history in the past
3 months, UWA, emergency admission (EA), MFS scores,
NRS 2002 scores, mBI scores, number of indwelling catheters
(Indw Cath), and departments.
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Figure 1. Flowchart of the patient screening. GBM: gradient boosting machine; KNN: k-nearest neighbor; LR: logistic regression; NNET: neural
network; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting.

Adverse event reporting
system integrated into Electronic health record
electronic nursing system
workstations

Exclusion:

1. Aged <60 y;

2. Subsequent falls occurring
during the same hospitalization;
3. Nonhospitalized patients;

4. Day-case patients

Time-matched case-control
sampling (1:2) of older
inpatients with falls

Training set Testing set
(n=719) (n=307)
| J

Y

LR, SVM, GBM, NNET, RF, XGB, KNN

Selection of Predictor Variables

Univariate LR identified 27 potential predictors (P<.05) in the
training set, as detailed in Table S3 of Multimedia Appendix
1. Table 1 displays the predictors identified by the 5 methods
(SR-forward selection, SR-backward selection, SR-bidirec-
tional elimination, LASSO, and RF-RFE). Table S4, Figure
S1, and Figure S2 in Multimedia Appendix 1 provide detailed

Table 1. The predictors obtained through 5 selection methods.

information. Figure 2 visualizes the overlap of predictors
selected across 5 methods. The intersecting predictors from
these methods formed the final predictor set, comprising
dizziness, epilepsy, fall history in the past 3 months, UWA,
EA, MFS scores, mBI scores, and Indw Cath. After expert
consultation, no predictors were added or removed. The final
development model included these 8 predictor variables.

Methods Number of predictors (categories)

Predictor variables

SR-FS 15 (21)
SR-BS 15 (21)
SR-BE 15 (21
LASSO 19 (22)
RF-RFE 9 (10)

Hypothyroidism, OP?, dizziness, stroke, epilepsy, polypharmacy, ACP,
BZDs¢, AlbY, FH-3M¢, UWA.1f, UWA 2, UWA 3", EA!, MFS! scores,
mBL1X, mBI.2!, mBI.3™, mBIL.4", Indw Cath.1°, Indw Cath.2P

Hypothyroidism, OP, dizziness, stroke, epilepsy, AC, BZDs, Zdrugs, Alb,
FH-3M, UWA.1,UWA .2, UWA .3, EA, MFS scores, mBI.1, mBI.2, mBI.3,
mBI.4, Indw Cath.1, Indw Cath.2

Hypothyroidism, OP, dizziness, stroke, epilepsy, AC, BZDs, Zdrugs, Alb,
FH-3M, UWA.1,UWA.2, UWA 3, EA, MFS scores, mBI.1, mBI.2, mBI.3,
mBI.4, Indw Cath.1, Indw Cath.2

Gender, hypothyroidism, OP, dizziness, stroke, epilepsy, polypharmacy, AC,
antidiabetics, BZDs, Zdrugs, Alb, FH-3M, UWA.1, UWA.2, UWA 3, EA,
MEFS scores, mB1.09, mB1.4, Indw Cath.2, Department.2"

CAS, dizziness, epilepsy, FH-3M, UWA 2, UWA 3, EA, MFS scores, mB1.4,
Indw Cath.2

30P: osteoporosis.

bAC: anticoagulants.

“BZDs: benzodiazepines.

dAlb: albumin.

°FH-3M: fall history in the past 3 months.

fUWA 1: use of walking assistance category 1 (wheelchair or bedridden).
E8UWA .2: use of walking assistance category 2 (support by others or furniture).

‘hUWA.3: use of walking assistance category 3 (walker/crutches/cane).
'EA: emergency admission.

IMFS: Morse fall scale.

kmBI.1: modified Barthel Index scores category 1 (21-60 points).
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'mBI.2: modified Barthel Index scores category 2 (61-90 points).
MmBI.3: modified Barthel Index scores category 3 (91-99 points).
"mBI.4: modified Barthel Index scores category 4 (100 points).
%Indw Cath.1: number of indwelling catheters 1 (1).

PIndw Cath.2: number of indwelling catheters 2 (=2).

9mBI.0: modified Barthel Index scores category 0 (0-20 points).

"Department.2: department category 2 (department of rehabilitation medicine).

SCA: cancer.

Figure 2. Upset plot of the overlap of predictors selected across 5 methods. BE: bidirectional elimination; BS: backward selection; FS: forward
selection, LASSO: least absolute shrinkage and selection operator; RF-RFE: random forest-recursive feature elimination; SR: stepwise regression.

1
SR-BS ¢ LASSO
4 0 0 O
0 0 &~ 0 0
0 1 0 0

SR-FS

Models Development and Validation

Table S5 in Multimedia Appendix 1 compares the characteris-
tics of the training and testing sets. The training set comprised
719 (70%) older adults, while the testing set included 307
(30%). All final model predictors and fall status (yes/no) were
balanced between the training and testing sets, as shown in
Table 2. The AUROC for the 7 models in the testing set is
shown in Figure 3B. Among these, the GBM model demon-
strated the highest discrimination with an AUROC of 0.744
(95% CI 0.688-0.799) compared to the other 6 models. The
LR model followed closely with an AUC of 0.742 (95%
CI 0.685-0.798). The NN and RF models had the lowest
AUROG s, at 0.705 (95% CI 0.646-0.765) and 0.715 (95%
CI 0.657-0.772), respectively. Table 3 displays the detailed
predictive performance of the 7 ML models. In the testing set,

Table 2. Characteristics of the predictors in the training and testing sets.

the LR model achieved the highest AUPRC of 0.570 (0.475-
0.663), while the RF model showed the lowest AUPRC of
0477 (0.386-0.580). Regarding other performance metrics,
the NN models had the best sensitivity (0.931), the XGBoost
model had the best specificity (0.644), and the LR model
showed the highest accuracy (0.687). The calibration curves
for the predictive models in the testing set are shown in
Figure 3D. The LR model demonstrated the best calibration
ability in the testing set. The DCA curves for the predictive
models in the testing set are shown in Figure 3F. The DCA
curves suggest that the 7 models have certain clinical utility,
generating net benefits within the threshold range of 0 to 0.5.
Considering AUROC, sensitivity, and specificity, the GBM
was determined to be the best-performing model.

Predictors Training set (n=719) Testing set (n=307) P value
Fall, n (%) >99
No 479 (66.62) 205 (66.78)
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Predictors Training set (n=719) Testing set (n=307) P value
Yes 240 (33.38) 102 (33.22)
Dizziness, n (%) 93
No 705 (98.05) 302 (98.37)
Yes 14 (1.95) 5(1.63)
Epilepsy, n (%) >.99
No 706 (98.19) 302 (98.37)
Yes 13 (1.81) 5(1.63)
FH-3M?, n (%) 99
No 660 (91.79) 281 (91.53)
Yes 59 (8.21) 26 (8.47)
UWAP®, n (%) 08
No assistance 475 (66.06) 179 (58.31)
Wheelchair or bedridden 192 (26.7) 100 (32.57)
Support by others or furniture 10 (1.39) 3(0.98)
Walker/crutches/cane 42 (5.84) 25 (8.14)
EAS, n (%) 64
No 701 (97.50) 297 (96.74)
Yes 18 (2.50) 10 (3.26)
MFS4 (points), n (%) 42
<45 196 (27.26) 92 (29.97)
=45 523 (72.74) 215 (70.03)
mBI€ (points), n (%) 24
0-20 36 (5.01) 13 (4.23)
21-60 172 (23.92) 93 (30.29)
61-90 322 (44.78) 121 (39.41)
91-99 79 (10.99) 30 (9.77)
100 110 (15.3) 50 (16.29)
Indw Cathf, n (%) 81
0 566 (78.72) 247 (80.46)
1 95 (13.21) 38 (12.38)
=2 58 (8.07) 22 (7.17)

4FH-3M: fall history in the past 3 months.
PUWA: use of walking assistance.

CEA: emergency admission.

dMFS: Morse fall scale.

°mBI: modified Barthel Index.

fIndw Cath: number of indwelling catheters.

https://aging.jmir.org/2026/1/e80602

JMIR Aging 2026 | vol. 9 | 80602 | p. 7
(page number not for citation purposes)


https://aging.jmir.org/2026/1/e80602

JMIR AGING Yang et al

Figure 3. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) curves of different machine learning
(ML) models in the training and testing sets. (A) ROC curves and area under the ROC curve (AUC) values of different ML prediction models in the
training set. (B) ROC curves and AUC values of different ML prediction models in the testing set.(C) Calibration curves of different ML prediction
models in the training set. (D) Calibration curves of different ML prediction models in the testing set. (E) DCA curves of different ML prediction
models in the training dataset. (F) DCA curves of different ML prediction models in the testing dataset. GBM: gradient boosting machine; KNN:
k-nearest neighbor; LR: logistic regression; NNET: neural network; RF: random forest; SVMs: support vector machines; XGBoost: extreme gradient
boosting.
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Table 3. The performance of 7 machine learning models for predicting falls in hospitalized older adults.
Model AUPRC? (95% CI) Sensitivity Specificity F1-score Accuracy PPVP NPV® Recall
Training set
LR 0.614 (0.555-0.672) 0.708 0.656 0.591 0.673 0.508 0.818 0.708
SVMs® 0.599 (0.534-0.661) 0.767 0.585 0.591 0.645 0.480 0.833 0.767
GBMf 0.620 (0.559-0.681) 0.654 0.714 0.588 0.694 0.534 0.805 0.654
NNE 0.646 (0.590-0.705) 0.629 0.741 0.586 0.704 0.549 0.800 0.629
RE 0.580 (0.517-0.643) 0.771 0.608 0.604 0.662 0.496 0.841 0.771
XGBoost'  0.637 (0.579-0.696) 0.654 0.718 0.590 0.697 0.538 0.806 0.654
KNNJ 0.626 (0.567-0.685) 0.783 0.553 0.586 0.630 0.468 0.836 0.783
Testing set
LR 0.570 (0.475-0.663) 0.794 0.634 0.628 0.687 0.519 0.861 0.794
SVMs 0.537 (0.437-0.640) 0.873 0.561 0.634 0.665 0.497 0.898 0.873
GBM 0.560 (0.464-0.654) 0.873 0.561 0.634 0.665 0.497 0.898 0.873
NN 0.509 (0.409-0.610) 0.931 0424 0.603 0.593 0.446 0.926 0.931
RF 0.477 (0.386-0.580) 0.863 0.576 0.635 0.671 0.503 0.894 0.863
XGBoost  0.535 (0.435-0.635) 0.745 0.644 0.606 0.678 0.510 0.835 0.745
KNN 0.547 (0.446-0.643) 0.794 0.590 0.607 0.658 0491 0.852 0.794

4AUPRC: area under the precision recall curve.
PPPV: positive predictive value.

°NPV: negative predictive value.

dLR: logistic regression.

®SVM: support vector machine.

fGBM: gradient boosting machine.

&NN: neural network.

"RF: random forest.

IXGBoost: extreme gradient boosting.

JKNN: k-nearest neighbor.

Interpretability Analysis

SHAP was utilized to illustrate how the features predict the
occurrence of falls in old adults during hospitalization within
the GBM model. Figure 4A displays the 17 features sorted
by their average absolute SHAP values, and higher absolute
SHAP indicates greater contribution to fall risk. Figure 4B
shows the impact values and explanations of these features,
and yellow dots represent high risk, while purple dots indicate
low risk. An MFES score of =45, an mBI score that is not 100
points, an mBI score not between 0 and 20 points, having
fewer than 2 indwelling tubes, a history of falls in the past 3
months, EA, epilepsy, dizziness, use of a walker/cane/crutch,

https://aging.jmir.org/2026/1/e80602

requiring assistance from others/furniture for walking, and
not using a wheelchair or not being bedridden are associated
with a higher risk of falls in old adults during hospitaliza-
tion. Beyond global SHAP interpretations, local interpretabil-
ity was demonstrated. Figure 5A and B visualizes how the
GBA model makes predictions about falls in older adults
during hospitalization; yellow arrows indicate risk-increasing
features and purple arrows risk-decreasing features. The f{x)
values inside arrows quantify each feature’s contribution.
Summing these yields the model’s final prediction, which is
represented by the f{x) value outside arrows.
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Figure 4. Interpretation of the gradient boosting machine model by the Shapley Additive Explanations (SHAP) method. (A) A bar summary of the
most important features according to the SHAP values. (B) Summary and explanation of the most influential features. Yellow dots indicate high-risk
values, and purple dots indicate low-risk values. EA: emergency admission; FH-3M: fall history in the past 3 months; Indw Cath.0: number of
indwelling catheters O (0); Indw Cath.1: number of indwelling catheters 1 (1); Indw Cath.2: number of indwelling catheters 2 (=2); mBI.0: modified
Barthel Index scores category 0 (0-20 points); mBI.1: modified Barthel Index scores category 1 (21-60 points); mBI.2: modified Barthel Index
scores category 2 (61-90 points); mBI.3: modified Barthel Index scores category 3 (91-99 points); mBI.4: modified Barthel Index scores category 4
(100 points); MFS: Morse Fall Scale; UWA.O: use of walking assistance category O (no assistance); UWA.I: use of walking assistance category 1
(wheelchair or bedridden); UWA.2: use of walking assistance category 2 (support by others or furniture); UWA 3: use of walking assistance category
3 (walker/crutches/cane).
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Figure 5. Compositional risk of feature contributions for predicting the occurrence of falls in 2 older adults during hospitalization. Purple arrows
denote factors that decrease the risk of falls for old adults during hospitalization, while yellow arrows indicate features that increase the risk. (A) An
older adult with fewer than 2 indwelling catheters, a modified Barthel Index (mBI) score not equal to 100 and not within the range of 21-60 points,
not using a wheelchair or bedridden, and a Morse Fall Scale (MFS) score =45 points experienced a fall during hospitalization. (B) An older adult with
an mBI score not equal to 100 or within the range of 21-60 points, not using a wheelchair or bedridden, with the presence of indwelling catheters, and
an MFS score <45 points did not experience a fall during hospitalization. Indw Cath.0: number of indwelling catheters 0 (0); Indw cath.2: number of
indwelling catheters 2 (=2); mBI.1: modified Barthel Index scores category 1 (21-60 points); mBI.4: modified Barthel Index scores category 4 (100
points); UWA.1: use of walking assistance category 1 (wheelchair or bedridden).
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Discussion

Principal Results

In this study, we used 7 ML algorithms to predict in-
hospital falls among hospitalized older adults based on
clinically accessible data, including demographic characteris-
tics, comorbidities, laboratory parameters, and medications.
The GBM algorithm demonstrated the optimal predictive
performance. Model interpretability was achieved at both
global and individualized patient levels using SHAP [38].
The SHAP approach bridges the gap between ML models
and realistic clinical decision-making, enabling health care
providers to understand the model’s predictive process and
trust its predictive power [39].

In our study, multiple ML algorithms based on distinct
principles were employed to develop predictive models.
However, the predictive performance across these methods
showed limited variation, consistent with prior research
[20], which suggests that advanced ML algorithms gen-
erally perform well on relatively small and low-dimen-
sional datasets. Through a comprehensive evaluation of the
AUROC, AUPRC, sensitivity, and specificity, the GBM
model was ultimately selected as the optimal model. Notably,
LR also demonstrated competitive performance, and DCA
curves indicated that the LR model could provide favorable
clinical net benefit. Nevertheless, compared to LR, GBM
offers distinct advantages in handling nonlinear relationships
and complex data patterns [27].

Fall risk factors among hospitalized older adults encom-
pass multiple domains, including demographic characteris-
tics, comorbidities, laboratory parameters, and medications
[40-42]. Previous studies have relied on subjective nursing
documentation texts, comprehensive geriatric assessments, or
environmental detection systems to develop fall prediction
models for hospitalized individuals [16,21], which limits their
clinical utility. Identifying predictors is a critical step in
building predictive models. It is notable that the predictors
identified in our study are aligned with routinely collected
clinical data, ensuring practical accessibility in health care
settings. Conventional approaches often select predictors
using a single method, such as regression models, whereas
combining multiple feature selection techniques may yield
simplified models with higher generalizability [43]. Different
from previous studies, we used multiple methods such as SR,
RF-RFE, and LASSO to identify predictors, which is one of
the advantages of our study.

Eight variables were ultimately identified: dizziness,
epilepsy, fall history within the past 3 months, UWA, EA,
MEFES scores, mBI scores, and the number of Indw Cath.
They are also key predictors in other predictive models [11,
15,16,44]. Our study identified MFS scores =45, nonbedrid-
den and not using a wheelchair, and scores of mBI not 100
as the 3 strongest predictors of falls in hospitalized older
adults. These findings align with previous studies [11,15,
16]. MFS is widely used for fall risk assessment in hospi-
tals. Previous research has shown that MFS exhibits lower
sensitivity than ML models [11,44]. Nevertheless, including
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it as a predictor in ML models permits the evaluation of
its predictive contribution relative to other variables. MFS
remains a valid predictor of falls among hospitalized patients
[11]. Similarly, in our study, MFS emerged as a strong feature
in the ML model.

Moreover, since patients’ clinical data often include MFS
scores, an integrated model that incorporates MFS can
better simulate real-world decision-making, providing a more
practical foundation for clinical decision. One of the key
strengths of our study lies in integrating a simple, widely
used assessment tool with a high-performance ML method,
leveraging the advantages of both methodologies to develop
and validate a simple, easily generalizable predictive model.
This study found that older adults who are not bedridden
or not using a wheelchair had a higher fall risk during
hospitalization. This may occur as over half of falls happen
during daily activities [45], whereas bedridden or wheelchair-
bound patients have very low activities of daily living (ADL)
ability, limiting activity engagement and thereby reducing
fall risk. Similarly, patients with mBI scores >0 had higher
fall risk, where higher scores indicate better ADL ability
[35]. Notably, those with mBI scores <100 or 21 to 60
also showed increased risk, implying a nonlinear relationship
between mBI scores and fall risk. This contradicts findings by
Dormosh et al [15] and Chu et al [16] that low ADL ability
predicts falls but aligns with Nagarkar et al’s [45] longitudi-
nal study linking difficulty with >4 ADL to higher fall odds.
Functional decline impairs musculoskeletal integrity and body
composition, reducing mobility and increasing fall risk [45-
47]. However, the relationship between functional ability and
fall risk in elderly patients requires further investigation.
Identifying functional states associated with the highest fall
risk and implementing dynamic interventions are crucial for
preventing falls in this population.

Despite the growing number of ML-based clinical
prediction models being developed, most studies lack
interpretability of these models, limiting their clinical
understanding and practical adoption. The interpretability of
ML predictions requires attention from researchers so that
physicians can understand, trust, and ultimately apply these
predictive models to guide their clinical practice [28,38,39].
SHAP is a model-agnostic interpretation framework grounded
in cooperative game theory. Its core lies in computing
Shapley values to quantify the marginal contribution of
each input feature to individual predictions. This approach
provides consistent and locally accurate explanations for
every prediction made by the model [38]. In this study, we
addressed the “black-box” nature of ML models by imple-
menting SHAP to interpret the GBM model at both global and
individualized levels. This means that in a clinical setting,
the model can calculate a patient’s fall risk in real time
and simultaneously provide the primary clinically interpreta-
ble factors contributing to that risk, thereby enabling rapid
screening and informed decision-making. SHAP improves
the clinical utility of prediction models, providing fall risk
prediction and interpretable descriptions for older adults
during hospitalization, thereby demonstrating its potential to
address the “black-box” problem [28,39].
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Limitations

This study has several limitations. First, the predictive
model was developed using single-center retrospective data,
which may introduce potential biases and limit its gen-
eralizability to other health care settings. External valida-
tion in multicenter cohorts is required to confirm broader
applicability. Second, incorporating environmental variables
(eg, ward layout, lighting conditions) was challenging due
to constraints in single center data collection. Lastly, the
exclusion of additional laboratory parameters may have
overlooked potential predictors. Future research should
prioritize integrating environmental variables, expanding
laboratory indicators, and leveraging multicenter datasets for
model development and validation.

Conclusions

In this study, multiple ML models were developed and
validated using multifaceted clinical data to identify the risk

Yang et al

of falls among hospitalized older adults. The GBM model
demonstrated the optimal predictive performance. By SHAP,
the clinical utility of the predictive model was significantly
enhanced. In the future, this GBM fall prediction model
could be integrated into the hospital EHR system as an
embedded decision support module to dynamically assess
fall risk among inpatients and generate real-time alerts.
Simultaneously, based on the SHAP values provided by the
model, the system could offer evidence to support health care
providers in developing personalized intervention measures,
thereby translating risk prediction into clinical actions aimed
at reducing the incidence of falls in hospitalized older adults.
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