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Abstract
Background: The theory of complexity in aging indicates that the complexity of sensor-derived physiological and behavioral
signals reflects an older adult’s adaptive capacity and, in turn, their frailty. Smart homes with ambient sensors offer a unique
opportunity to longitudinally explore the complexity of older adults’ indoor movement in a real-world setting. Here, we
introduce a computational method to estimate behavior complexity from sensor data. We further conduct a multiple-methods
case series to explore the relationship between entropy-measured smart home data complexity and older adult frailty.
Objective: This study aims to explore the relationship between entropy-measured ambient sensor data complexity and frailty
in independent community-dwelling older adults.
Methods: The nature of older adults’ indoor movement complexity is measured by quantifying the entropy of smart home
data. Overall, 11 cases with persons aged 65 years and older were drawn from an ongoing smart home study to illustrate
the method. We assessed weekly frailty for these cases using the Clinical Frailty Scale. For corresponding time ranges, we
measured the complexity of smart home data using a fixed-width sliding window and an entropy-based complexity index
(Rényi Complexity Index) built on a Universal Sequence Map (USM-Rényi). Descriptive statistics and graphical analysis were
used to describe intraindividual frailty and sensor complexity change.
Results: The complexity of sensor-observed indoor movement does change over time in older adults as quantified by the
computational method. In some individuals, these changes track with health transitions and frailty progression. The trends
and monotonicity of complexity trajectories varied between cases. Overall, 3 of the cases demonstrated a negative association
between frailty and complexity, while the association was not as clear for the other cases.
Conclusions: The complexity of older adults’ smart home data is highly diverse. Changes in health and frailty influence
indoor movement complexity. Although the findings suggest a relationship between frailty and complexity, confounding
factors, such as home layout, visitors, external events, and technology disruptions, may influence sensor signals.
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Introduction
Background
Frailty is a critical public health challenge among older
adults globally. It is characterized as a clinically identifia-
ble state of diminished physiologic reserve and heightened
vulnerability to stressors and affects. An estimated 10%‐15%
of community-dwelling individuals aged 65 years and older
experience frailty, with the prevalence escalating to 51%
among those aged 90 years and older [1]. This multifacto-
rial syndrome, encompassing multiple impairments such as
physical weakness, exhaustion, slow gait, low activity levels,
and unintentional weight loss, elevates risks for adverse
outcomes like falls, hospitalizations, functional decline, and
mortality [1,2]. When unaddressed, frailty imposes substantial
economic burdens, with frail older adult women incurring as
much as 184% the health care cost of nonfrail older adult
women [3,4]. Poor outcomes related to frailty strain health
care systems and diminish quality of life [3-5].

Most older adults prefer to remain in their own homes
and communities as they age. Despite this desire, age-rela-
ted frailty and its sequelae remain a threat to their independ-
ence and quality of life. Older adults who are frail are more
likely to present with atypical, nonspecific symptoms of acute
illness, which include immobility, instability, incontinence,
weakness, and delirium [6]. This can put them at risk for
poorer outcomes if such atypical signs are treated as the
primary problem rather than merely the manifestation of
underlying, seemingly unrelated illnesses. Thus, while frailty
is a significant issue, it also functions as a gateway to a wide
array of other salient health issues for older adults [7].

Two urgent challenges face older adults who wish to age
in place: (1) needing validated methods to detect incipient
frailty at home and (2) determining the best way to analyze
these data for predicting frailty that focuses on the efforts
of early intervention strategies [8]. This study addresses both
challenges by exploring complexity as a feature of frailty in
smart home sensor data. In the context of aging, the term
“complexity” is often used to describe difficult problems that
must be mitigated, making care more daunting [9]. While
complex behavior is often seen as a challenge in caregiving,
from a systems theory perspective, too little complexity may
indicate diminished physiological adaptability. The theory
of complexity in aging asserts that complexity is a direct
indicator of the health of physiologic systems and aging
reduces this complexity, resulting in frailty [10].

Sensors are ubiquitous in our world, and this reality
is accompanied by an increasing interest in discovering
indicators of human health using these sensors. These
indicators serve a similar function as conventional biological
and imaging biomarkers with less reliance on expensive lab
equipment, visits to remote sites for time-consuming tests,
or physically invasive procedures [11]. Digital biomarkers
are valuable components of geriatric telehealth and preci-
sion medicine since these technologies support continuous,
longitudinal, remotely delivered measurement of intraindivid-
ual changes in older adults’ health [12]. Among this class

of markers are behavior markers created from continuously
collected sensor data, which open substantial opportunities to
explore the complex dynamics of aging in an ecologically
valid, real-world setting.

In this study, we enlist digital biomarkers to explore the
relationships between behavior and frailty. This is increas-
ingly important because the number of persons aged 80
years and older is expected to triple between 2020 and 2050
[13]. With the rise in age-related frailty and incidence of
chronic conditions, meeting the health needs of older adults
is increasingly burdensome. A review of unobtrusive frailty
digital biomarkers concluded that passive infrared motion
sensors, especially as part of a smart home, are the most
promising type of embedded ambient sensor for detecting
frailty [14]. Smart homes were promoted for their potential to
uniquely inform individual responses to disease or treatment.

Older adults prefer digital biomarker technologies that
minimally impose on their lifestyles [15]. From this
perspective, digital behavior markers derived from com-
pletely passive monitoring (eg, ambient sensors embedded
in residential environments) offer advantages over those
measured via semipassive or active monitoring (eg, wearable
sensors that must be routinely charged and positioned) [14].
Smart homes represent a passive biomarker technology that
consists of ambient sensors to monitor movement and door
interactions, combined with a computing infrastructure to
collect, organize, and store the data [16]. The resulting time
series data can be analyzed to understand the smart home
resident’s health status.
Prior Work
The theory of complexity in aging hypothesizes that
measuring the complexity of a person’s sensor-derived
signals can indicate the underlying state of an older adult’s
adaptive capacity [17,18]. We analyze a person’s behav-
ioral signal complexity as an indicator of their adaptive
capacity or functional reserve, referring to the capacity of
their physiological and behavioral systems to maintain or
regain function when perturbed. In a complex-systems view
of aging, this reserve depends on the multiscale dynamics
that are present between the system components [19]. These
dynamics support homeostasis, the process that maintains
internal stability while adapting to change.

In earlier work, researchers have investigated the use
of multiscale entropy (MSE) to quantify complexity across
time scales for physiological data. Bizovska et al [20] used
MSE and Shannon entropy to analyze gait complexity as
a mechanism for predicting fall risk in older adults. Casti-
glia et al [21] investigated the selection of MSE parameters
that yield the best predictive probability in differentiating
subjects with Parkinson disease from healthy subjects based
on trunk acceleration patterns. Gao et al [22] use distribution
entropy, which calculates the complexity of signal pattern
distribution within a phase space representation, to determine
whether pulse rate complexity is associated with correspond-
ing cognitive decline in older adults.
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Frailty is hypothesized to be an emergent state that arises
from a critically dysregulated complex system [9]. In other
words, the system dynamics may erode with aging and
disease, causing complexity to decline and frailty vulnerabil-
ity to increase. Evidence from cross-sectional studies suggests
this process can be observed as a change in complexity in
a diverse range of physiological and behavioral signals. For
example, lower blood pressure interbeat interval complexity,
when the beat-to-beat pattern becomes simpler and more
uniform, is associated with greater frailty and dementia risk
[23]. Similarly, lower moment-to-moment center-of-pressure
complexity, such as simpler, more regular sway, during
balance tasks is associated with increased future incidence of
falls [24]. Reduced complexity of spontaneous brain activity,
measured via the blood oxygenation signal, is associated with
slower gait speed [25], and lower physical activity complexity
and variance are associated with greater self-reported frailty
[26] and mortality risk [27]. These examples suggest that
reduced signal complexity may be a generalizable marker of
physiologic decline.

Prior studies have measured the complexity of smart home
data [28,29]. These earlier studies included complexity as
one of a set of variables input to machine-learning models
that were trained for specific tasks such as detecting visitors
or predicting in-home movement [30,31]. Little is known
regarding how within-person complexity, in isolation from
other variables, evolves in relation to health outcomes over
the long term. In a study by Schutz et al [28], Shannon
entropy of refrigerator use was one of the strongest predictors
of frailty (r=−0.25). However, this analysis did not explore
the evolution of complexity over time. A study by Takaha-
shi et al [32] examined activities over a 2-year period and
found that increased activity diversity manifested an inverse
relationship with frailty. The findings support our hypothesis,
but they are based on survey data rather than analysis of
passively observed activity patterns.

Two prior studies applied complexity measures to data
collected by the Center for Advanced Studies in Adaptive
Systems (CASAS), the same data collection infrastructure
used in this study. Specifically, Wang et al [30] estimated
complexity using compression-based estimators to establish
a theoretical limit on the predictability of indoor human
mobility. In an earlier study by Gopalratnam and Cook
[33], CASAS smart home data were analyzed with a Lempel-
Ziv compression-based incremental parser to predict the
resident’s next interaction with the home. Although the smart
home sites and analysis goals differed from this study, the
prior work established the use of such behavior analyses from
smart home data.

The common approach to predicting frailty leverages
sources such as electronic health records and manually
collected clinical data [34]. However, wearable sensors are
increasingly accessible and offer a mechanism for passively
sensing and detecting frailty [8]. Many frailty studies that
analyze wearable data focus on predicting physical frailty
components such as slowness and inactivity. These studies
extract gait parameters such as cadence and indicators of
time spent walking and standing [35,36]. One study instead

analyzed Fitbit data that were collected while individuals
performed an upper extremity function test [37]. While
the primary component of these analyses is accelerometry,
Merchant et al [38] combine these parameters with heart rate
to analyze scripted movements such as sit-to-stand, walk, and
climb stairs.

Wearable sensors have demonstrated the ability to sense
and quantify changes in movement parameters that are
associated with frailty. We focus here on monitoring activity
and detecting frailty using ambient sensors in smart homes.
Ambient sensors impose no user burden. Sensors collect data
for multiple years on a charge, which results in continuous,
uninterrupted monitoring of in-home behavior as a person’s
health status changes. Using wearable sensors, consistent
multiday wear is challenging, and adherence varies with
demographics and cognition [39]. While wearable sensors
provide direct access to heart rate and gait parameters,
the smart home sensors contribute context-rich information
about location traces, sleep and wake routines, and activity
patterns that are not easily modeled from wearable data
[40]. Because we want to monitor uninterrupted longitudinal
behavior patterns, we focus this analysis on data collected in
smart home settings.

To address this knowledge gap, we present an exploratory
case series investigating how the complexity of older adults’
indoor movement patterns, as captured by the CASAS smart
home, changes over time in relation to changes in their health
status. Considering that this relationship between complex-
ity and frailty has been observed across a diverse range of
seemingly unrelated physiologic and behavioral signals, we
hypothesize that changes in the complexity of time series
obtained from smart home sensors are similarly associated
with changes in health status and frailty of the older adult
smart home occupant.

The case series design prioritizes investigation of
intraindividual interpretation and allows us to integrate each
participant’s clinical narrative into the analysis. To promote
replication of methods and application to new data, we make
the analysis and visualization tools publicly available for
the community to use in the calculation of sensor-derived
behavior complexity.

Methods
Overview
We performed a multiple-methods exploratory case series,
combining participant narrative and qualitative nursing data
with complexity analysis of smart home sensor time series
data to contextualize intraindividual changes in complexity of
indoor movement. A case series analysis was chosen because
the method is useful for exploring intricate, real-world issues
in novel ways, especially when triangulating data from
different sources to discover differences and similarities
across similar cases. The method fosters a more nuanced,
valid, and actionable understanding of the cases under study.
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Participants
We used secondary data from sensors installed in the homes
of community-dwelling older adults between October 2016
and December 2022 as part of the ongoing clinician-in-the-
loop smart home research study [41]. To be included in the
clinician-in-the-loop study, participants had to be aged 60
years and older, have at least 1 chronic condition, and had to
be proficient in English. For this case study series, we applied
the additional criteria of living alone without pets for the
entire duration of the data collection and collected a minimum
of 9 months of smart home data. Cases were further exclu-
ded if a majority of the days and sensors were missing. The
resulting sample consisted of 11 cases, representing a balance

between stable participants and those who exhibited frailty
transitions. For this case series, each participant is considered
as 1 case. Among these participants, cases 8 through 10
exhibited constant frailty scores, while the others experienced
frailty that fluctuated throughout the data collection.

Participant cases included in the present analysis lived in
independent living apartments in continuing care retirement
communities. Most cases’ ages were in the range of 80 to
89 years, although 2 were aged 70‐79 years and 1 was aged
90‐99 years. All included cases identified as non-Hispanic
White, and 7 of the cases identified as women. Information
summarizing participants, their chronic health conditions, and
their home characteristics is provided in Table 1.

Table 1. Demographics and data characteristics for each participant case.
Case Agea (years) Sex Home type Sensors Days Window sizeb Chronic conditions
1 80‐89 Female 1-bedroom apartment 15 310 25,159 CVc, NMd, Paine

2 70‐79 Female 1-bedroom apartment 13 416 63,419 CV, Pulmf, Pain
3 80‐89 Female 3-bedroom duplex 20 366 19,714 CV, Pulm, NM
4 80‐89 Female 1-bedroom apartment 13 349 33,358 CV, Pulm, NM
5 80‐89 Male 1-bedroom apartment 15 629 60,800 NM, Pain
6 80‐89 Female 1-bedroom apartment 12 571 28,951 CV, Pulm, NM, Pain
7 80‐89 Female 1-bedroom apartment 14 385 28,182 Pain, CIg

8 70‐79 Male 2-bedroom duplex 22 330 49,303 CV, NM, Pain
9 80‐89 Female Studio apartment 11 354 35,310 CV, Pain, CI
10 90‐99 Male 1-bedroom apartment 12 264 18,951 CV, NM, Pain
11 80‐89 Male 1-bedroom apartment 13 286 34,903 CV, Pain

aTo preserve privacy, age is given as a range.
bSliding window size was determined by the maximum biweekly count of sensor messages (excluding OFF and CLOSE) observed in the participant’s
data.
cCV: cardiovascular.
d NM: neuromuscular.
e Pain: chronic pain.
fPulm: pulmonary.
gCI: cognitive impairment.

CASAS Smart Home
The CASAS smart home contains passive infrared motion
detectors, light, magnetic door use, and temperature sensors.
These sensors were installed strategically throughout each
house to capture activity in critical locations (Figure 1). At
least 1 motion detector with a 360o view was installed in
each room. Additional motion detectors with a narrower field
of view (approximately 1 m in diameter) were positioned in
areas of high use, such as the bed, sinks, toilet, and frequen-
ted furniture (eg, preferred living room chair). Because floor
plans, furniture layouts, and daily routines differed across

each home, the number of sensors installed for included cases
ranged from 11 to 22.

CASAS sensors send messages containing their read-
ings to a middleware layer resident on a Raspberry Pi
[16]. Architecture components communicate using a Zigbee
wireless mesh. The middleware publish and subscribe
manager allows hardware components to publish and receive
messages. And annotates sensor readings with the corre-
sponding sensor identifier and timestamp. All collected data
are encrypted and securely transmitted to a password-protec-
ted server for storage and analysis.
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Figure 1. Location of sensors in a Center for Advanced Studies in Adaptive Systems smart home.

We examined data collected from the passive infrared and
door-use sensors. Each sensor samples the environment at
1.25 Hz. Rather than report the state at a constant fre-
quency, the sensors record data when a change in state is
sensed (eg, a door is opened, motion is detected). Once
triggered, the sensor sends a message reflecting the new
state to a central relay, which labels each message with
the sensor identifier and timestamp, then transmits the data
to a secured database. The resulting dataset is a timestam-
ped series of binary messages (“ON” or “OFF” for motion
sensors, “OPEN” or “CLOSE” for door sensors) indicating
the time and location of the sensor reading in the home.
Because an ON message from a motion sensor is followed
by an OFF message (marking the end of movement within
the sensor’s field of view or lack of activity for 1.25 s), both
ON and OFF messages artificially inflated the regularity of
the data sequence. Following previous literature measuring
the entropy of smart home data [30,42], we excluded all
OFF messages from motion sensors and all CLOSE messages
from door sensors. Example deidentified CASAS datasets are
available online [43].
Clinical Data
For each participant, nurse researchers conducted an initial
comprehensive geriatric assessment, including functional
status in activities of daily living (ADL) and instrumental
activities of daily living (IADL), current health diagnoses,
health history, medications, fall history, psychosocial

supports and family presence, assistive device use, review of
body systems, and personal demographic history. Participants
then received weekly follow-up telehealth calls from a nurse
researcher to assess for any changes in health or function
from baseline. Weekly nursing data included, but was not
limited to, vital signs, pain, sleep quality, psychosocial
well-being (including the presence of visitors), changes in
ADL and IADL status, and a brief review of physiologic
systems and daily routines [41].

Although frailty was not measured as part of the pri-
mary data collection, the clinical data collected during the
study provided information to retrospectively estimate weekly
frailty using the Clinical Frailty Scale (CFS) [44]. The
CFS is a 9-point scale (1=very fit to 9=terminal illness)
designed to guide a clinician in assessing a holistic pic-
ture of a person’s frailty status using elements of a com-
prehensive geriatric assessment, including overall activity
level, functional dependence, and management and control
of chronic condition symptoms [45]. Two CFS-trained nurse
scientists reviewed the clinical data for each participant and
assigned a frailty score for each week of data collection
(Table 2). Changes in ADL and IADL independence, use of
a new assistive device, and descriptions of increasing fatigue
or “slowing down” were the most common health changes
associated with an upward shift in the participant’s CFS
score.
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Table 2. Example Clinical Frailty Scale codebook with scores for case 4.
Weeka Date (2017) CFSb score Rationale
45 July 24 5 No change
46 July 31 5 No change
47 August 7 5 Decreased activity, increased weeping lower legs
48 August 14 6 “I have to be careful not to fall”
49 August 21 6 Considering assisted living but hiring in-home help
50 August 28 6 No change
51 September 4 6 Losing weight, legs improving
52 September 11 6 Legs continue weeping due to heart failure
53 September 18 6 Began using pursed-lip breathing, moving less
54 September 25 6 Doctor’s visit, medication change
55 October 2 6 Legs improving, taking diuretic

aWeeks 1‐44 (CFS score: mean 4.9, SD 0.33; range 4‐5); weeks 56‐60 (CFS score: mean 6.4, SD 0.89; range 6‐8).
bCFS: Clinical Frailty Scale.

Data Preprocessing
Because smart home data were collected in real-world
settings over extended periods, we needed to address missing
and noisy data. We screened each participant’s sensor data for
evidence of sensor malfunctioning, extended absences, and
other issues. Periods associated with participant absence for
more than one night (eg, vacation or hospitalization) were
excluded from the analysis. Additionally, any periods where
all sensors did not report readings, regardless of explanation,
were excluded. Periods with no messages from a given sensor
were cross-referenced with battery data from that sensor
to confirm whether the absence was due to a change in
behavior or a sensor malfunction. Sensors missing >50% of
the observation time over one or more consecutive days were
excluded. Sensors missing more than 50% of the observation
period were either excluded or they were included, and the
time associated with that sensor’s absence was excluded.

The varying size of the homes and the corresponding
number and density of sensors impact the scale of Rényi
Complexity Index (RényiCI) values we observe in each
home. A cross-sectional study would require that sensors be
grouped into larger, consistently sized sets or that the values
be normalized. For this study, we are interested in within-
home RényiCI changes, so no adjustments are made to the
per-home RényiCI scales. Because the sensors report binary
state (motion ON or OFF, door OPEN or CLOSED), the raw
sensor values are not normalized.

Some of the participants included in this study were
enrolled during the onset of the COVID-19 pandemic, which
had a dramatic global impact on daily activities. For those
participants, if the majority of a participant’s data were
collected after the pandemic onset, data from before March
16, 2020, were excluded. Similarly, for participants with most
data collected before the pandemic, we excluded data from
March 16, 2020, onward.

Data cleaning included the removal of sensor data from
analysis for sensors sending “error” signals, which can occur
when low battery health or technical issues occur during
installation. Only 2 homes were affected by this: case 1

(dining room area sensor, hallway, bathroom sink, and door
for the primary bedroom) and case 5 (entry door, refrigerator,
and bathroom area sensor). After data cleaning procedures
were applied, the series of timestamped sensor messages was
coded based on the sensor identifiers, resulting in a time
series of discrete (categorical) sensor states. These discrete-
valued series were then used to compute the complexity of
sensor state transitions over time.
Complexity Measurement
Understanding patterns in human behavior, especially those
that signal changes in health or frailty, requires tools that
quantify how predictable or irregular those behaviors are
over time. One such method is based on entropy, a way of
measuring complexity or unpredictability in a sequence of
events. Almeida and Vinga [46] introduced a technique to
calculate this complexity using a Universal Sequence Map
(USM). This approach turns a sequence of events (eg, daily
activities recorded in a smart home) into a set of coordinates
in a multidimensional space. These coordinates reflect how
often and in what sequence specific symbols (eg, messages
from home sensors) occur relative to one another. Once the
sequence has been mapped to this space, the method estimates
how densely packed these points are in space using the kernel
density estimation statistical technique. The resulting density
provides insight into whether the behavior is highly repetitive
(low complexity) or highly varied (high complexity). Highly
repetitive behavior may, for example, reflect a person moving
primarily between the living room and bathroom each day.
A more complex behavior will vary the daily sequence and
perhaps more frequently introduce additional areas, including
the guest room, the garage, and the front door to leave the
home.

Figure 2 illustrates the process of creating a USM. Unique
sensor readings are converted to symbols (A-D). USM
coordinates are calculated by assigning each unit symbol in
the sequence to a position in a multidimensional space. The
positions are defined so that each symbol is equally distant
from the others, ensuring that no symbol is biased in how
the space is structured. The number of dimensions of the
space is chosen so that each distinct symbol can be uniquely
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represented using binary digits. The sequence is pro-
cessed forward (considering prior context) and backward

(considering subsequent context), and the 2 resulting maps
are merged to capture bidirectional structure in the behavior.

Figure 2. Plot of 2 sequences in a Universal Sequence Map. The last 4 symbols of sequence x are ACCA, and the last 4 of sequence y are CCCA. The
highlighted subquadrant contains the coordinate of the sequences’ last symbol, A.

The resulting space creates a unified framework to measure
the complexity of sequences from the resulting coordinates.
To quantify the complexity of these mapped sequences,
Vinga and Almeida [47] introduced a method that computes
Rényi entropy, a generalization of Shannon entropy, from the
density of the USM coordinate distribution. This approach is
particularly effective for relatively short sequences, such as
those representing daily behavior in smart homes.

Since the idea of entropy was introduced in information
theory, many variations have been introduced to measure
complexity in different contexts. These measures vary by
the type and quantity of data they process, their sensitivity
to noise, and their assumptions about the underlying state
space distribution. An ideal measure of sensor-based time
series complexity is one that tends toward a minimum value
for both deterministic and random sequences while handling
varying alphabet sizes and being sensitive to changes in
complexity over short sample lengths. Rényi entropy of
USMs was selected for our analysis as a method that meets
these constraints.

A key strength of this method is its flexibility: it can
emphasize either common or rare patterns, depending on how
the parameters are configured. Importantly, the frequency of

any subsequence of any length can be estimated by analyzing
how dense different regions of the USM space are. The kernel
size (ie, the size of the region considered) controls the length
of the subsequences being emphasized. We use this principle
to estimate Rényi entropy at multiple scales, where each scale
corresponds to a different behavioral timespan or sequence
length. This flexibility enables a multiscale view of behavio-
ral complexity, which we refer to as the RényiCI. An in-depth
tutorial and code are provided online [48].
Statistical Analysis
Because this case series investigates how the complexity
of motion sensor transitions, representing indoor movement
trajectories, evolves over time, we computed RényiCI for
each participant using a sliding window approach with a fixed
window size, n. The actual RényiCI values will shift with the
number of sensors in the space and the window size; thus,
the values should be examined for change within a single
home across multiple time points. Higher RényiCI values
indicate more complex behavior, while lower values suggest
simpler, more predictable patterns. The sliding window
method evaluates the time series in overlapping segments:
starting with the first n data points, it computes summary
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statistics, shifts the window forward by a set number of steps,
and repeats the process.

To ensure each window captured both routine cyclic
behaviors (eg, weekly housekeeping) and short-term

variations, we defined each participant’s window size as the
maximum number of sensor messages observed within any
2-week period (Table 3). The window was advanced using a
step size equal to one-quarter of the window size.

Table 3. Sliding window statistics for each case. Runs test results were omitted as all resulted in P values <.001.
Sliding window RényiCI statistics ρa P value
Case Count Days, median (IQR; max) Mean (SD) CoVb, c Median (IQR) KSd P value
1 70 16.6 (15.5 to 17.2; 18.9) −45.95 (0.26) .006 −45.89 (−46.07 to −45.79) 0.10 .41 0.11 .48
2 66 24.7 (21.7 to 26.1; 30.8) −38.85 (0.57) .015 −38.65 (−39.09 to −38.47) 0.21 <.001 0.29 .06
3 80 16.3 (15.4 to 16.9; 18) −61.97 (0.23) .004 −61.94 (−62.18 to −61.78) 0.11 .29 0.12 .36
4 73 18.1 (16.8 to 19.2; 21) −38.91 (0.27) .007 −38.93 (−39.13 to −38.74) 0.09 .60 0.01 .96
5 121 18.1 (17.4 to 18.8; 30.7) −44.66 (0.19) .004 −44.68 (−44.81 to −44.51) 0.09 .23 −0.68 <.001
6 121 16 (15.5 to 16.6; 18.4) −36.32 (0.10) .003 −36.3 (−36.4 to −36.25) 0.09 .34 0.26 <.001
7 82 16.8 (15.6 to 17.7; 20.5) −42.74 (0.14) .003 −42.76 (−42.84 to −42.66) 0.07 .77 0.42 <.001
8 52 17.1 (16.1 to 18.1; 20.1) −70.13 (0.20) .003 −70.18 (−70.26 to −70.01) 0.12 .38 —e —
9 73 18.3 (17.7 to 19; 20.6) −33.07 (0.13) .004 −33.07 (−33.15 to −32.99) 0.05 .98 — —
10 49 18.9 (18 to 19.5; 22.6) −36.64 (0.25) .007 −36.64 (−36.84 to −36.43) 0.12 .47 — —
11 65 15.5 (15 to 16.2; 18) −39.58 (0.24) .006 −39.58 (−39.78 to −39.35) 0.10 .53 0.24 .09

aSpearman rank correlation.
bCoV: coefficient of variance.
cCoefficient of variance was computed as the SD/mean.
dKS: Kolmogorov-Smirnov distance.
eCorrelation is not provided because CFS is a constant.

To examine how the complexity of patterns relates to
frailty status, we visualized RényiCI values using time
series plots and categorical scatter (jitter) plots. Because
RényiCI values can vary in scale depending on the num-
ber of sensors and the window size, we applied nor-
malization within each case to enable comparison. To
assess temporal fluctuations in complexity, we also compu-
ted the first-order difference of the normalized RényiCI
sequence: ∆RenyiCI`t = RenyiCI`t − RenyiCI` t − 1 . Here,∆RenyiCI`t represents the change in normalized complexity
between consecutive windows.

To evaluate whether these complexity estimates varied
systematically over time (in comparison to random changes in
complexity), we applied Kolmogorov-Smirnov (KS) tests and
runs tests to each participant’s sequence of RényiCI values
under the null hypothesis of randomness. The KS test checks
whether the complexity values follow a normal distribution,
as would be expected with random data. The runs test looks
at the order of values in the sequence, rather than just
the distribution, to determine if they appear in nonrandom
patterns. Computation of USM-based RényiCI values was
conducted in Python (version 3.9; Python Software Founda-
tion) using our pyusm library [48]. This open-source package
is publicly available and includes tools for computing USM,
USM-Rényi, and generating 2D USM visualizations.

Finally, to resolve ambiguous quantitative results,
sequential explanatory techniques were used. Quantitative
results were reviewed alongside frailty scores assigned
to each week of nursing narrative documentation, which
included written text about participants’ physical and
functional health recorded during weekly phone calls and

monthly home visits. RényiCI complexity values were
compared to recorded CFS scores. Lower complexity values
combined with higher CFS scores meant the participant was
frailer.
Ethical Considerations
The Washington State University Institutional Review Board
approved the presented secondary analysis (protocol 18764)
and parent study (protocol 15412). All participants provi-
ded informed consent, and their data were deidentified and
securely managed for analysis. Participation was voluntary
and without compensation.

Results
Distributional Characteristics and
Statistical Testing
Figure 3 presents time series plots of normalized RényiCI,
frailty scores, and first-order differences in normalized
RényiCI for each case. In the plots, time is measured in
observation days. Summary statistics of overall RényiCI,
KS, and Spearman rank correlation values are reported in
Table 3. The shape of the RényiCI distributions varied
notably across cases. Case 9 exhibited the only unimodal,
symmetric distribution (Figure 4), while the remaining cases
showed skewness or kurtosis. Cases 1 and 2 were strongly
left-skewed, while cases 3, 5, 10, and 11 displayed low
kurtosis. Cases 3 and 11 also showed bimodal distributions.
Despite this heterogeneity, only case 2 showed a statisti-
cally significant deviation from a random normal distribution
(P=.006) based on the KS test of normality.
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Figure 3. Plots of complexity, frailty, and complexity change as a function of time. Lower values reflect less complexity. Δ4RényiCI' represents the
value difference between sliding windows at times t and t-4. CFS: Clinical Frailty Scale; RényiCI: Rényi Complexity Index.
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Figure 4. Histograms of RényiCI values.

Overall, case participants ranged from “fit” (CFS=2) to
“living with moderate frailty” (CFS=6), although the
trajectories of frailty within each participant varied consid-
erably (Figure 3). For example, cases 2, 3, 7, and 11 all
experienced periods of elevated frailty but all recovered and
returned to baseline by the end of observation. Cases 4, 5,
and 6 were the only cases that increased in frailty over time,
ending frailer than their baseline. Most cases exhibited 2‐3
transitions in frailty over time, with the extreme being case 2
with 7 frailty transitions.

While the goal of this study is not to directly infer CFS
from RényiCI values, we note that Table 3 shows a sig-
nificant correlation for all cases that have variable frailty
scores. While they are significant, the correlations are mostly
quite small. The overall correlation for all combined values
is ρ=−.055 (P<.001). These results indicate that while a
relationship between behavioral complexity and frailty can
be observed, other factors must be considered when assessing
a person’s frailty from smart home sensor readings.

As Figure 3 demonstrates, trajectories of sensor complex-
ity were similarly varied. RényiCI values for cases 1, 5, 7,
and 9 exhibited downward trends over time, while cases
3 and 6 demonstrated an overall positive trend. Case 11
showed a concave shape with a general downward trend

in sensor RényiCI for the first half of the data, followed
by a general upward trend. The remaining cases exhibited
nonmonotonic fluctuations. In each case, RényiCI values and
frailty trajectories aligned with frailty scores assigned by
the CFS-trained researchers during qualitative processing of
clinical data.
Frailty-Complexity Associations
The relationship between frailty level and sensor data
complexity also varied from case to case. Figure 5 shows
jitter plots of RényiCI values by CFS score grouped by the
number of sensors installed in the home. Cases 5 and 11
exhibited a negative trend between complexity and frailty,
while cases 3 and 7 demonstrated a mostly positive trend. The
range and mean of USM-Rényi values shift farther from 0 as
the number of sensors in the home increases. The range of
RényiCI for the home with the fewest sensors (11 sensors)
spanned approximately −34 to −32, while in the home with
the most sensors (22 sensors), the range extended from about
−71 to −69.

Initial runs tests applied to the full sequence of RényiCI
values were statistically significant (P<.001) for all partici-
pants, suggesting nonrandom temporal ordering. To reduce
potential autocorrelation introduced by overlapping windows,
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we repeated the runs tests on a downsampled sequence using
every fourth window. Under this condition, only cases 3
(P<.001) and 5 (P=.002) remained statistically significant.

To account for these differences, Table 3 also includes the
coefficient of variation (CoV) that normalizes the RényiCI

SD by the mean for each case. Cases 6, 7, and 8 exhibited the
least amount of relative variability in RényiCI (CoV=0.003),
while case 2 exhibited the highest (CoV=0.015).

Figure 5. Categorical scatter (jitter) plot of RényiCI values by frailty, grouped by sensor count and case. CFS: Clinical Frailty Scale.

The cases with statistically significant nonoverlapping runs
tests, cases 3 and 5, also represented the clearest long-term
monotonic trends. Case 3 demonstrated an overall increase in
complexity between the start and end of her data, while case
5 demonstrated an overall decreasing trend. The only RényiCI
distribution with a statistically significant KS test, case 2,
had some of the most extreme variation among the cases,
with an extremely left-skewed distribution and a coefficient
of variation 5 times greater than the smallest coefficient of
variation among the cases. To explore possible explanations
for the diverse patterns of frailty and complexity trajectories
observed, we compared the frailty and complexity trajectories
of the cases with contextual information derived from the
nursing assessment records.

Data selection for cases 2 and 3 started at the beginning
of the COVID-19 pandemic shutdowns. The horizontal bars
in Figure 3 represent sliding window durations (in days).
For both cases, the shortest windows are at the beginning of
the time series. The shorter sliding window durations during
this period likely reflect increased in-home activity, with
participants generating more sensor events due to spending
more time indoors during COVID-19 lockdowns. However,
where RényiCI increased steadily over the coming months for
case 2, RényiCI decreased steadily for case 3 (Figure 3).

Cases 2 and 3 also showed pronounced shifts in RényiCI
midway through the observation period. For both cases, this
period roughly correlates to a time period of hazardous air
quality caused by continued wildfire smoke over the course of
about a month. However, the steep dip in RényiCI for case 2
occurring between days 186 and 212 is short, while for case
3, the sharp increase in RényiCI around day 231 appears to be
a vertical shift in their average complexity that continues for
the rest of her data.
Case Narratives

Case 2
A woman in her 70s with congestive heart failure and mild
asthma. She was independent at baseline (CFS=3) and in
stable health, which is consistent with the increasing RényiCI
values plotted in Figure 3 at the beginning of data collection.
This participant experienced 3 episodes of worsening fatigue
and shortness of breath (days 20‐54, 160‐215, 258‐397),
which impacted her ADLs and IADLs and contributed to
transient increases in frailty. During the first episode, the
nurse’s report indicated that “walking has been much more
taxing on her this past week. She will walk around the
building today but runs out of energy very quickly... her
fatigue level has increased significantly over the past week.”
During the second episode, the nurse reported “the last 3
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days she noticed … more soa [sic, shortness of air] and
tired[ness].” During the third episode, the nurse recorded
a direct quote from the participant indicating that she had
“absolute fatigue beyond anything I’ve experienced.” Two of
these periods coincided with substantial troughs in RényiCI,
suggesting alignment between behavioral simplification and
functional decline. The primary movement patterns manifes-
ted in the CFS score and measured by RényiCI (ie, mecha-
nisms of interest) were less in-home overall activity and less
time spent out of the home on walks and social activities
(frequency and duration). This case also had the highest
variability in complexity and was the only one with a
statistically significant KS test result. Possible gerontological
clinical actions informed by these results include recom-
mendations to follow up with the cardiologist, referral to
a pulmonologist, and referral to senior services to deter-
mine whether the patient qualifies for in-home care support
services.

Case 3
A woman in her 80s with cardiovascular disease and
allergy-induced asthma. Initially independent, she experi-
enced progressive health decline, including 2 hospitalizations
for acute hypertension and dyspnea. Her frailty peaked after
the second hospitalization during a period of wildfire smoke,
when she relied full-time on a walker for ambulation. Nursing
records include statements during this timeframe like “no
energy, has not left the house since Thursday [4 d]” and
“overall health is declining.” Following physical therapy, she
recovered and reported no activity limitations by day 295.
The nursing record indicated that she “went shopping” and
had “several visitors over” across multiple days of the week.
Her RényiCI trajectory reflected this pattern. As shown in
Figure 3, the RényiCI values initially show a steady decrease
aligned with the health issues. After she received treatment
and improved her ambulation and functional independence,
the RényiCI values showed a steady rise in complexity.
Notably, this case showed a strong monotonic increase in
RényiCI and passed the runs test even under downsampling.
This result provides evidence that the pattern of increasing
frailty, followed by improvement after treatment, is distinct
and nonrandom. The mechanism of interest impacting her
RényiCI trajectory was a renewed increase in time spent
out of the home (frequency and duration) concurrent with
an increase in the number of visitors. The case exempli-
fies how RényiCI trajectories could help clinical gerontol-
ogists understand treatment efficacy through novel remote
patient monitoring tools that include sensor monitoring and
associated behavior patterns.

Case 5
A man in his 80s with Parkinson disease. He began with
mild frailty (CFS=4) and was independent but slowed by
symptoms. Over time, he required increasing assistance with
ADLs and IADLs. Nurses recorded that he began to require
assistance “getting compression sock on in the morning and
off at night” and “needing help with laundry and housekeep-
ing” and that his daughter began assisting with bill paying.
He experienced multiple hospitalizations and rehabilitation

stays and ultimately progressed to moderate frailty (CFS=6).
The moderate frailty score was based on the nurse report-
ing “unsteady gait” and that he “has cracked ribs from a
fall last week” and his “symptoms of PD [are] increasing,
[and] noticeable upon observation.” His RényiCI trajectory
followed a corresponding decline, with complexity peak-
ing early and then falling across successive rehabilitation
episodes. This case also exhibited a significant runs test
and a clear downward trend in complexity. The mechanism
of interest in this case was more overall time spent in his
recliner chair, more nighttime sleeping in the recliner chair,
and the decreased time spent out of the home (frequency and
duration). This case illustrates how RényiCI trajectories may
support automated smart home monitoring aimed at detecting
increasing frailty upstream so interventions can be implemen-
ted.
Cases 4 and 10
Both cases involved sustained or increased caregiving over
time. In case 4, RényiCI peaked just before caregiving
began and declined thereafter. Case 10, who had consistent
caregiving throughout, showed generally lower complexity
than case 6, who lived alone with the same number of
sensors. These comparisons suggest that increased caregiving
frequency does not necessarily lead to increased behavio-
ral complexity as measured by RényiCI. Older adults with
consistent professional caregiving are likely to experience
slower rates of decline due to the intentionality of caregiv-
ing, which aims to extend independence through building
physical, functional, and cognitive strength. Findings could
inform care planning and resource allocation.

Discussion
Principal Results
This study introduces and applies a novel entropy-based
algorithm, the RényiCI, to quantify behavioral complex-
ity from smart home sensor data in older adults. Using
a USM framework with multiscale Rényi entropy, our
method captures subtle temporal dynamics in sensor-derived
movement sequences. In this exploratory case series,
within-person indoor-movement complexity, as exhibited by
RényiCI values, fluctuated over time. In several cases, these
fluctuations coincided with frailty changes.

Across 11 participants, we observed diverse complexity
trajectories, ranging from steady increases, steady declines,
and concave patterns to nonmonotonic fluctuations. Case-
level analysis revealed that greater fluctuations in complexity
were frequently aligned with periods of functional decline
or recovery. Notably, 2 cases (3 and 5) exhibited statisti-
cally significant nonrandom patterns in complexity over time,
confirmed by runs tests on downsampled data, and showed
clear monotonic trends in behavior complexity that matched
health trajectories. Only one case (2) showed a RényiCI
distribution that deviated significantly from normality,
corresponding with extreme within-person variability and
periods of worsening frailty. Scatter plots further revealed
heterogeneous associations between complexity and frailty,
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with both positive and negative trends across cases. Impor-
tantly, increased caregiver presence was not associated with
greater behavioral complexity, suggesting that RényiCI may
reflect intrinsic changes in individual functional capacity
rather than external support.

Changes in CFS scores fluctuated in alignment with
changes in RényiCI values for some cases, like 2, 3, 6, and
7. These cases may suggest that changes in frailty do impact
the person’s behavioral routine and regularity. However, in
cases 8 through 10, we observed changes in RényiCI values
despite the lack of change in frailty scores. This observation
highlights the fact that our findings provide 1 set of indicators
of changes in frailty, but should not be analyzed in isolation.
Other factors, such as visitors, seasonal effects, and external
events, can also impact behavioral routines. These should
be controlled for when examining frailty as a function of
changes in RényiCI.

While observed repetitive behavior may correlate with
frailty, the relationship is not one-to-one. Reduced complex-
ity of movement often, but not always, aligns with frailty
progression. Repetitive behavior can signal frailty because it
reflects narrowed activity routines, reduced introduction of
new routine elements, and corresponding reduced adaptabil-
ity. At the same time, we note that complexity is multi-
factorial. Other influences, such as visitors in the home,
home layout, and external events, also affected the entropy
measures. The results showed nonmonotonic relationships
in those cases. To interpret complexity, it is therefore best
to consider an individual over time rather than compare
cross-sectionally. Moreover, interventions aimed at slowing
the impact of frailty on maintaining independence, like a
smart home that projects RényiCI trajectories, would be more
helpful for older adults living alone. Mechanisms of interest
become difficult to automatically recognize in multiresident
homes where ambient sensors detect movement from all
residents.
Limitations
Several factors impacted the interpretation and generaliza-
bility of our findings. First, entropy-based measures like
RényiCI are inherently sensitive to sample length and the
number of sensors deployed in a participant’s home. To
prioritize intraindividual validity, we customized the sliding
window size for each participant using a fixed number
of sensor messages (n), rather than a fixed time duration.
This approach allowed for consistent comparisons within
individuals but introduced variability in the time span covered
by each window, both within and across cases, limiting our
ability to analyze complexity as a direct function of chrono-
logical time. Future work could develop correction factors for
RényiCI to account for sample length, enabling the detec-
tion of periodic, seasonal, or event-driven patterns in indoor
behavior.

Relatedly, interindividual comparisons were constrained
by differences in sensor configurations across homes.
Participants varied in the number and placement of sen-
sors, affecting both the density of event data and the

scale of RényiCI values. Standardizing sensor deployments
in future studies would facilitate more robust cross-partic-
ipant comparisons and support investigation into whether
home-level sensor complexity systematically relates to frailty
markers at the population level.

The impact of the COVID-19 pandemic further compli-
cates interpretation. Several participants were enrolled during
or shortly after the onset of pandemic-related lockdowns,
which led to changes in daily routines, increased time spent
indoors, and potentially long-term shifts in behavior and
social support. These behavioral changes may have altered
both the complexity of movement and its relationship to
frailty. Additionally, one period of the study coincided with
prolonged hazardous air quality due to regional wildfires,
which may have further restricted participants’ movement
and contributed to abrupt changes in sensor complexity. Such
exogenous events likely altered daily routines independent of
health. We therefore interpret Rényi changes within homes
and in the presence of annotated event periods. We also
provide event-excluded sensitivities to reduce confounding.

Sensor noise and dropout also presented challenges.
While preprocessing steps excluded known periods of sensor
failure or participant absence, subtle forms of sensor drift
or inconsistent message delivery could still introduce noise
into the RényiCI estimates. Further improvements to sensor
reliability and the integration of sensor health metrics
into complexity analysis pipelines would strengthen future
research.

In terms of statistical methods, the runs test was useful
in identifying nonrandom patterns in behavioral complexity
over time, but it is not well-suited to detecting more complex
temporal structures such as oscillatory or nonlinear trends.
Future research may benefit from time series models drawn
from signal processing or machine learning that can more
precisely characterize evolving behavioral dynamics.

Frailty measurement also posed a limitation. Because
frailty was not a primary outcome in the parent study,
we relied on retrospective CFS scoring based on weekly
nursing reports. This limits temporal precision and may miss
subtle fluctuations in functional status. Larger-scale studies
using prospectively collected frailty data, including both
clinician-reported and self-reported measures, could reveal
more detailed associations between complexity and health.

Finally, this sample was racially and culturally homogene-
ous, limiting the generalizability of our findings. RényiCI
analyses should be interpreted as a within-home monitor-
ing signal rather than a cross-sectional diagnostic tool. As
efforts to diversify smart home research populations expand,
it will be essential to explore whether the relationships
between sensor-derived behavioral complexity and frailty
differ across racial, cultural, and socioeconomic groups.
Inclusive, representative samples are critical to ensuring that
digital biomarkers are both effective and equitable.

JMIR AGING Wuestney et al

https://aging.jmir.org/2026/1/e77322 JMIR Aging 2026 | vol. 9 | e77322 | p. 13
(page number not for citation purposes)

https://aging.jmir.org/2026/1/e77322


Conclusions
Detection of incipient frailty in community-dwelling older
adults is a key component to supporting their independence.
The findings in this study demonstrate that RényiCI, as a
passive and unobtrusive complexity metric, offers a promis-
ing tool for monitoring functional health changes in aging
populations and may help enable early detection of frailty in
real-world settings. The PyUSM software package developed
for this analysis is publicly available and supports future
application of this method in diverse behavioral monitoring
contexts. These findings support the potential of entropy-
based digital behavior markers to unobtrusively monitor
intraindividual health changes and capture early signs of
frailty in aging-in-place.

Future enhancements of this analysis may reveal additional
factors that influence change in indoor movement complexity
and inform how the complexity of smart home data may
inform clinical practice. For example, significant departures
of RényiCI values from a person’s complexity baseline may
trigger a nurse call or follow-up when integrated into a
remote monitoring or telemonitoring system. In routine care,
weekly summaries of the analysis would support triage and

help care providers select appropriate actions. Additionally,
when performing a functional assessment of an individual, a
summary of the complexity trend augments traditional frailty
analysis to improve assessment and treatment options. Future
work will also emphasize analytical validity (repeatability and
robustness across sensors and windowing), clinical validity
(prospective prediction of frailty transitions), and clinical use
(impact on downstream outcomes such as unplanned care,
falls, and functional decline) for diverse homes and popula-
tions.

Additionally, future work should focus on integrating
RényiCI in machine learning predictive modeling as a
high-level feature to assist with identifying meaningful digital
biomarkers [49]. Other temporal activities associated with
frailty (eg, walking speed, ADL, and IADL behaviors)
could also be integrated to optimize frailty classifications.
Machine learning integration of features from RényiCI values
that signal possible increasing frailty will support nurses
and caregivers in providing timely interventions, thereby
potentially extending independence and optimizing older
adults’ outcomes.
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