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Abstract

Background: The advent of the Smart Home 3.0 era imposes higher technical requirements for the construction of the home
ecosystem. Music is an effective means for humans to regulate their emotions. The emergence of multimodal technology
facilitates the use of music for emotional regulation by older adults in their home environment. Therefore, it is necessary to
carry out further research on the emotional issues of the music interaction system in smart homes that are targeted at older adult
users.

Objective: This study aimed to establish the mapping relationship between music parameters and emotional states based on
the Valence-Arousal emotional model and through the analysis of electroencephalogram (EEG) signals. In addition, a novel
Multimodal Fusion-Adaptive Wellness Interaction model was constructed to match the most suitable music and meet the
emotional needs of older adult users.

Methods: A total of 68 older adult participants aged between 60 and 75 years were recruited. Four groups of music
stimulus materials were formulated to conduct an experimental study on the relationship between the emotions of older adult
participants and music parameters. Finally, the Multimodal Fusion-Adaptive Wellness Interaction model was constructed. With
the recreational sofa as the main body, multimodal, emotional intelligent adaptive interaction was realized.

Results: During the experiment, approximately 68,970,528 EEG signal data were collected. After analyzing the EEG bands
and extracting the event-related potential data, the following results were obtained: For P200, the music stimulus materials
showed significant differences and activation in the left parietal and occipital lobe regions (P7, P3, O1, O2; P<.001). For N400,
there were significant differences and activation in the prefrontal lobe region due to the music stimulus materials (O1, CZ, O2;
P<.001). For P300, the music stimulus materials led to significant differences and activation in the occipital lobe region and the
central line region of the temporal area (F7, FPZ, FZ, F8; P<.001).

Conclusions: Older adult users respond in a way that the Al stimulus material, namely the music material with positive
valence and high arousal (+V + A), can soothe the emotional state of older adult users. This provides a theoretical basis and
evidence for the music interaction regulation module in smart home systems.
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Introduction

The concept of the Smart Home has continually evolved over
the past few decades. It was first introduced in the United
States in 1984, when United Technologies Building presen-
ted the “Intelligent Building” with integrated and informa-
tion-based building equipment [1]. With the advancement
of Internet of Things technology, smart homes entered
the 2.0 era, characterized by interconnectivity and remote
control [2]. The advent of the Smart Home 3.0 era imposes
higher technical requirements for the construction of home
scenarios and user experience, characterized primarily by
scenario-based synergy and context awareness [3]. During
this evolution, human-computer interaction (HCI) modes
have evolved from single-channel physical interfaces, such
as buttons in traditional smart home devices, to multimo-
dal systems that integrate multiple input modalities, includ-
ing voice, gesture, and eye movement [4]. This low-burden
multimodal interaction not only reduces operational difficulty
but also facilitates emotional companionship and psychologi-
cal comfort. As a key potential user group for smart homes,
older adults warrant particular attention regarding their
growing needs for both physical and emotional support. Their
acceptance and use of smart home devices exhibit signifi-
cant heterogeneity, with increasing engagement particularly
in voice-activated and entertainment devices [5]. Emotional
interaction is becoming a mainstream adaptive strategy for
smart homes in domestic environments, garnering increasing
scholarly focus on the emotional integration and psychologi-
cal adaptation of older adults within their home settings [6].
Consequently, this project aims to explore the integration
of multimodal information to achieve adaptive interaction
within a smart furniture system. By focusing on behavioral
and emotional interaction, it seeks to provide older adult users
with an optimized experience that promotes both leisure and
emotional well-being.

Among various interaction modalities, music is widely
recognized as an effective medium for emotional regulation
and for supporting cognitive health for older adults [7].
As a complex auditory input, music plays a crucial role
in influencing emotions within the home environment [8,
9]. For the older adult population, music serves as a nonin-
vasive means of emotional regulation, helping to alleviate
negative emotions such as loneliness, anxiety, and depression,
while also enhancing quality of life and overall home-based
well-being by evoking positive emotional experiences [10].
Previous studies have demonstrated that music listening can
effectively promote social engagement and emotional health
among older adults and even improve cognitive function and
memory to some extent [11]. Moreover, with the accelerating
process of population aging, the dependence and engage-
ment of older adults with music continue to increase. For
example, in the United States, more than 50% of older
adults report listening to music daily [12]. This indicates
that music has gradually become an essential part of daily
recreation for older adults and is regarded as an effective
approach for emotional regulation and maintaining psycho-
logical well-being [13]. Therefore, the design and application
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of music-based interactions in smart home environments for
older adult users hold substantial research significance.

In exploring music’s role in emotional regulation
mechanisms, studies have found that music intervention can
promote hippocampal neurogenesis and improve emotional
states [14]. At the same time, music primarily regulates
users’ emotions by influencing neuronal activity in the brain
[15]. Therefore, using physiological measurement devices to
examine human emotional changes offers multiple advantages
[16], as these signals can continuously and objectively reflect
users’ behavioral and experiential information. By combin-
ing physiological measurements with subjective emotional
assessments, researchers can more accurately reveal the
mapping relationship between music and emotional states
[17].

Compared with subjective evaluations, physiological
measurements provide a more objective and comprehen-
sive description of emotional changes [18]. Consequently,
neuroscience research, particularly studies using electroence-
phalography, a noninvasive neurophysiological signal, has
been widely applied to emotion recognition and regulation
in recent years [19]. From a neural mechanism perspective,
emotional processing in the human brain relies on complex
neural networks. The amygdala is responsible for evaluating
the emotional significance of stimuli, whereas the insular
cortex modulates emotional responses [20]. Electroencephalo-
gram (EEG) studies related to emotion have sought to clarify
the roles of different frequency bands and brain regions
in emotional processing [21,22]. Research has shown that
emotional content can amplify certain event-related potentials
(ERPs) in EEG signals [23], while hemispheric asymme-
try in theta power reflects emotional valence [24]. More-
over, variations in EEG activity in the frontal and parietal
lobes, including o, B, 6/, and o/f ratios, are associated
with individual differences in emotional regulation [25]. The
integration of musical stimuli and EEG signals has gradu-
ally evolved into the field of music neuroscience [26]. For
instance, studies combine analyses of musical elements with
EEG data to investigate music perception and training effects
[27]. Recording motor-related EEG responses evoked by
music has been regarded as a key approach to understanding
emotional experiences [28]. By analyzing the neural activity
patterns elicited by music through EEG, researchers can gain
deeper insights into the mechanisms underlying older adults’
emotional experiences induced by music.

The development of multimodal technologies has enabled
smart home systems to capture the relationship between
users’ emotions and music within home environments with
greater accuracy. On the one hand, multimodal percep-
tion methods such as speech recognition, facial expression
analysis, and physiological signal monitoring allow for a
more comprehensive understanding of the emotional states
of older adults in home settings [29]. Moreover, studies have
demonstrated that different musical melodies and rhythms
can elicit distinct emotional responses in users [30-33].
Integrating music with smart home technologies can thus
serve as an essential multimodal pathway for emotional
regulation, providing older adult users with low-burden and

JMIR Aging 2026 | vol. 9 1 €77218 | p. 2
(page number not for citation purposes)


https://aging.jmir.org/2026/1/e77218

JMIR AGING

continuous emotional regulation support through a closed
loop of perception, feedback, and intervention.

With the support of multimodal technologies, smart
homes can serve as an important platform for music-assisted
emotional regulation. In fact, previous studies have already
begun to explore the potential of integrating smart home
technologies with music-based emotion regulation. Currently,
emotional regulation in smart homes is mainly achieved
through 2 approaches. The first involves contact-based
acquisition of physiological signals to recognize and regulate
emotions. For example, Wagner et al [34] extracted 3 types of
features from heart rate, electrodermal activity, electromyog-
raphy, and respiration signals and used multiple classifiers
for emotion recognition with promising results. The second
approach relies on computer vision analysis, using cameras
to capture users’ facial expressions for emotion recogni-
tion and feedback. For instance, Yu et al [35] designed a
prototype of smart furniture called the “Magic Mirror Table,”
which can infer users’ emotional states. It captures facial
expressions through a camera, performs detailed analysis,
and then plays appropriate sentences or music to influence
users’ emotions. Compared with other emotion recognition
techniques, emotion regulation technologies applied in smart
home environments have the advantage of passively and
continuously collecting multimodal data in natural living
contexts [36], thereby providing a more authentic reflection
of individual emotional changes.

In the field of multimodal interaction, previous stud-
ies have explored various approaches to integrating vis-
ual, auditory, motion, and physiological signals to enhance
emotion recognition and HCI performance. In the context of
smart homes, multimodality enables systems to respond to
user needs in a more natural and integrated manner [37].
Some studies have proposed multimodal interaction systems
based on 3 different modalities, eye blinking, voice, and
touch, to allow individuals with limited mobility to control
smart home devices [38]. Other researchers have introduced
multimodal interfaces designed to support independent living
for older adults in smart home environments [39]. How-
ever, in domestic settings, key challenges for multimodal
interaction include user diversity and the dynamic nature of
interaction contexts [40,41]. Existing studies have primarily
focused on improving home interaction by adapting to users
and environmental conditions [42-44]. Current mainstream
control modes in smart homes include voice and gesture
interaction. Related research has also proposed a trajectory
recognition interaction method based on vision, acceleration,
and dynamic gestures, verifying its feasibility for integration
into multimodal and adaptive smart home systems [45].
In terms of emotional regulation, multimodal interaction
research has been applied to distraction detection, emotion
recognition, and stress-level assessment [46]. Other schol-
ars have investigated the relationship between multimodal
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fusion of emotional information and interactive behaviors.
Their studies used emotional color as the theoretical basis
for affective computing in HCI and applied neural network
algorithms to datasets, ultimately developing an efficient
multimodal affective interaction recognition method [47].

In this study, we expect to explore the relationship
between different types of emotional music and the EEG
changes of older adult users and derive the degree of
stimulation of brain waves by other music genres, which will
further perfect the emotion recognition linkage module of the
smart home with the sofa as the carrier. The main contribu-
tions of this work include the following:

1. Innovative construction of the Multimodal Fusion-
Adaptive Wellness Interaction (MF-AWI) model. The
MF-AWI model theory can be disassembled into the
Multimodal Fusion-Adaptive Wellness model. The
main modules can be divided into a posture recogni-
tion module, an emotion recognition module, and a
wellness HCI module. The theoretical approach guides
the realization of the MF-AWI Multimodal Fusion
Adaptive Wellness System. This article focuses on the
emotion recognition module, relying on the theoretical
basis, to achieve the real-time state of the recreation
sofa on the older adult users’ real-time state recogni-
tion, to make the real-time feedback of the recreation
adjustment within the scope of the music adjustment,
to meet the personalized needs of different older adult
users in different scenarios.

2. In the module on emotional state recognition for older
adult users, 4 music genres were classified based on
the theory of the Valence-Arousal (VA) emotion model,
and a control group was set up to explore the role of
music genres in the emotional regulation of older adult
users. Through the EEG physiological signals, the best
music genres for older adult users in different scenarios
were identified.

Methods

MF-AWI Model

The MF-AWI model theory can be decomposed into the
MEF-AWI model, which relies on the foundation of Multimo-
dal Fusion theory to dynamically identify the target partic-
ipant, locate the target participant, and use the MF-AWI
model. The core of the MF-AWI model is based on the
concept of multimodal fusion, that is, the integration of
information from multiple sources or modalities to gain a
more complete understanding of the target participant. In the
context of the MF-AWI model, these modalities are poses and
emotions that are used to identify the target participant and
decompose the target state into its components, as shown in
the recognition process in Figure 1.
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Figure 1. The Multimodal Fusion-Adaptive Wellness Interaction model responds to process iterations. CNN: convolutional neural network; RNN:

recurrent neural network.
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The unified representations will be fed into the Wellness HCI
module, which will use the pretrained Transformer model to
generate adaptive feedback. The Wellness HCI module can
recognize different gestalt states and emotional states of the
older adult users, enabling the system to provide appropriate
adaptive feedback to different older adult users’ inputs. For
example, if the user indicates that they want to go to a resting
state based on their posture and emotional state, the Wellness
HCI module can suggest that the wellness sofa adjust the
backrest angle to give the older user a more comfortable
position, or play soothing music to create a more relaxing
environment. Similarly, if the older adult users appear to have
negative emotions such as stress or anxiety, the Wellness HCI
module can suggest relaxation exercises or provide calming
music to help the user relax. The output of the wellness HCI
module will be used to control the different module functions
of the wellness sofa, including the adjustment of functional
modules such as angles and music. This process can be
repeated to provide a personalized and adaptive interactive
experience for the older adult user on the wellness sofa.
In this model, different input data from the wellness sofa
is processed using a convolutional neural network (CNN)
model, and a multimodal fusion technique is used to combine
these output feature vectors. A unified representation of the

Textbox 1. Emotion recognition module framework.

older adult users’ real-time posture and real-time emotion
will be used by the wellness HCI module to generate control
of the different adaptive modules to produce appropriate
adaptive feedback interactions.

The camera captures video signals, which are then
preprocessed by resizing and grayscale conversion to enable
face detection of older adult users. Using the OpenCV library,
once the user’s face is detected by applying a pretrained
machine learning model, the DeepFace model is used to
extract facial features and identify the user’s emotional state.
Using a CNN, the extracted facial features are used to identify
the user’s emotion and determine sentiment tuning. Once the
real-time emotional state of the older adult users is identi-
fied, the type of music required by the recreational sofa can
be determined to suit the users’ changing emotions. Adjust-
ing the music of the wellness sofa can be done using the
emotional state adjustment determined in the previous step to
adjust the music of the wellness sofa to suit the emotional
state of the user. Finally, the process can be repeated many
times to ensure that the Convalescent Sofa adapts to the
real-time emotions of the older adult users in real time, as
shown in Textbox 1.

# Import necessary libraries
import cv2

import numpy as np

from deepface import DeepFace
# Capture the video feed

cap = cv2.VideoCapture(0)

for (x,y,w,h) in faces:

face_roi = frame[y:y+h, x:x+w]

img = cv2.resize(face_roi, (224, 224))
img = np.expand_dims(img, axis=0)
img =1img /2550

embeddings = DeepFace.represent(img)

pred = svm.predict(embeddings)[1][0][0]

if pred == 0:
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# Extract the facial features using pretrained machine learning models

# Recognize the user's emotion using pretrained machine learning models
svm = cv2.ml.SVM_load('emotion_detection_svm.xml')

# Determine the emotion adjustment needed for the smart sofa
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emotion_adjustment = 5
elif pred == 1:
emotion_adjustment = -5

Zhou et al

Materials

The generic continuous dimension model that has been
widely adopted in music emotion recognition research is
the Circomplex model, also known as the VA model [48].
Research shows that specific musical characteristics are
significantly correlated with Valence and Arousal [49]. For
example, +V +A refers to a fast tempo, major key, and
bright timbre. —V+ A refers to dissonant chords and a fast,
irregular rhythm. -V —A refers to a slow tempo, minor
key, and dull timbre. +V A refers to slow yet harmonious
harmonies. Existing studies have demonstrated that bodily
sensations and emotions triggered by music and based on the

VA model show consistency across different cultures [50].
In this experiment, 4 pure music genres conforming to the
4 quadrants of the VA model were selected, and the stimu-
lus materials were named A1-A4, that is, Al: +V +A, A2:
—V+A, A3: -V-A, A4: +V A, as shown in Figure 2. A control
group was set up using white noise to simulate white noise to
simulate the daily life environment, and the stimulus material
was named AOQ. The use of white noise provided a constant
and semantically neutral auditory background, helping to
avoid interference from background sounds on participants’
emotional responses [51].

Figure 2. VA emotion models as well as experimental stimulus material. VA: Valence-Arousal.
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Participants

Sample size is critical to the reliability and representativeness
of research findings. Following the standards proposed by
Cohen [52], this study used G*Power software (Heinrich
Heine University Diisseldorf, Germany) [53] to estimate the
required sample size, selecting the within-factors repeated
measures ANOVA design. The parameters included an alpha
level of 0.05, a power level of 0.95, a medium effect size of
0.25, and a number of groups of 1. This setup yielded a total
sample size requirement of 31 participants. In addition, to
ensure greater statistical robustness and account for potential
data loss among older adult participants during the experi-
ment, the final sample size was further adjusted. This sample
size is also consistent with previous EEG studies investigat-
ing music perception and stimulation in similar experimen-
tal contexts [54,55]. Therefore, a total of 68 older adult
participants aged between 60 and 75 years were recruited for
this experiment. All participants were recruited from various
regions across China, with culturally diverse backgrounds and
different living environments.

https://aging . jmir.org/2026/1/e77218
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Among the participants, there were 34 female participants
(n=34) with an average height of 160 cm and a mean BMI of
25.5, and 34 male participants (n=34) with an average height
of 171 cm and a mean BMI of 24.86. All participants were
required to be free of chronic diseases of the ear, back, and
legs and in good physical condition.

Ethical Considerations

This experiment was conducted in strict accordance with
ethical guidelines. Prior to the start of the experiment, the
experimental procedures were fully explained to all partic-
ipants, ensuring that the experiment would not pose any
risks to them, and written informed consent was obtained
from all participants. Also, explicit consent has been granted
by a participant to use their images for publication. The
experiment has been reviewed and approved by the Eth-
ics Committee of Nanjing Forestry University (Science and
Technology Department of Nanjing Forestry University) with
the approval number: 2023-03-29. To protect the privacy
of participants, all collected data were anonymized before
analysis, with no personal identifying information retained.
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Upon completion of the experiment, each participant received
a compensation of 100 RMB (1 RMB= US $0.14) for their
time and participation.

Experimental Paradigm Design

The older adult participants were seated calmly in a comfort-
able chair. The experimenter prepared 5 preanalyzed audio
clips, including 4 audio segments based on the VA model, as
the stimulus material. Meanwhile, a white-noise environment
was established as the control condition to ensure a consistent
auditory ambience. The decibel level of these audio clips was
45 dB. This level was determined with reference to previous
studies, which indicate that 45 dB falls within the range of
low-noise and quiet environments for older adults, which
helps maximize auditory clarity while preventing auditory
fatigue or discomfort [56,57]. Although background noise
levels in real smart home environments may exceed 45 dB,
this value was chosen to obtain stable and reproducible ERP
data in a controlled and quiet experimental setting, thereby
minimizing the impact of external interference on older adult
participants.

Prior to the start of the experiment, the experimental
content and precautions were carefully explained to the

Zhou et al

participants. However, no information regarding the specific
types of audio stimuli or their emotional attributes was
disclosed to minimize expectation effects. Participants were
also instructed to avoid vigorous movements or vocaliza-
tion. After obtaining the participants’ consent, the informed
consent form was signed, and preparations for the experi-
ment, including scalp cleaning, began. The experimental
equipment was worn by older adult participants through-
out the experiment. The first formal recording was started
after the participant indicated full understanding and initial
control of the EEG signal. During the experiment, the system
continuously monitored electrode connectivity. When head
movement or electrode displacement caused channel dropouts
or abnormal impedance, the acquisition interface issued a
real-time alert. The experimenter immediately paused the
task, readjusted the electrodes, and resumed recording once
stable contact was restored, ensuring the consistency and
comparability of EEG data across all recording stages. The
EEG signals were recorded continuously in each session and
saved separately. All trial tasks were presented in a random-
ized order to effectively minimize order and learning effects.
The duration of the entire experiment was 15-20 minutes, and
the experimental paradigm is shown in Figure 3.

Figure 3. Experimental paradigm. The device worn by the participants was the Bitbrain hydroelectric electrode EEG, which had 16 channels, a rated
voltage of 3.7 V, and a single-channel sampling rate of 256 Hz. The experiment started after the older adult participants entered the resting state.
The experiment was divided into 5 recording stages, which were 5 sets of subexperiments, as a whole. In each stage, EEG signals were continuously
recorded and saved separately, while each trial task was randomly ordered. EEG: electroencephalogram.
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EEG Recording and Preprocessing

The EEG signal was acquired according to the international
10-20 system lead setup, with 16 electrodes selected, mainly
placed in the frontal, parietal, and central regions, and
covering the left and right hemispheres of the brain and the
midline region, as shown in Figure 4. This study used a
16-channel EEG acquisition system, a configuration widely
used in research on music-induced emotion and cognitive
processing [58,59]. Although the number of electrodes was
relatively limited, the layout covered key brain regions

https://aging.jmir.org/2026/1/e77218

associated with emotional processing, auditory stimulation,
and attentional allocation, effectively capturing the main
activity characteristics of typical ERP components such as
P200, P300, and N400 [60]. In addition, considering that
the participants in this study were older adults, using fewer
electrodes helped maintain signal quality while reducing
physiological fatigue and discomfort caused by prolonged
experiments, thereby improving experimental compliance
and data stability. Based on the experimental acquisition
parameters, it was estimated that approximately 65,313 data
points could be collected per channel for each participant.
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After excluding 2 invalid samples, the total size of the raw by the device sampling parameters and experimental design,
EEG dataset in this study was 65,313x16x66, amounting without any redundant or oversampling processes; therefore,
to approximately 68,970,528 signal data points. This data it did not introduce bias into the results.

volume resulted from the normal accumulation determined

Figure 4. Diagram of the 16 electrode positions selected according to the international 10-20. EEG electrodes in the 10-20 system. The area within
the red circle represents the frontal lobe (Fpz, F7, F3, FZ, F4, and F8), the yellow area represents the central region (C3, CZ, and C4), the blue area
represents the parietal lobe (P3, PZ, P4, P7, and P8), and the green area represents the occipital lobe (O1 and O2). EEG: electroencephalogram.
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During the acquisition process, the reference and ground to the average and interpolated for any bad channels. Artifact
electrodes were placed near the Cz electrode and the anterior removal was based on the standardized pipeline of Infomax
part of the scalp, respectively. EEG signal preprocessing was independent component analysis and canonical correlation
conducted using MATLAB with the EEGLAB 2020 toolbox. analysis built into the ErgoLAB Man-Machine-Environ-
The acquired .edf files were imported into EEGLAB 2020, ment Testing Cloud Platform (ErgoLAB 3.0). Identifica-
and channel localization was performed based on the MNI tion of artifact components referenced conventional criteria
Coordinate Systems standard brain imaging model. Sixteen commonly adopted in EEG research. Independent component
channels were identified as Fpz, F7, F3, Fz, F4, F§, C3, Cz, analysis—derived components were identified and rejected
C4,P7,P3,Pz,P4,P8, O1, and O2, as shown in Figure 4. based on their temporal characteristics, scalp topographies,
and spectral features corresponding to ocular or muscu-
lar artifacts. To further improve signal quality, canonical
correlation analysis was applied to remove residual artifacts.
For the ERP analysis, the event-related time window was set
from —200 to 800 milliseconds, with a baseline period of
—200 milliseconds and a measurement window of 200 to 400
milliseconds.

EEG data preprocessing was performed on the Jinfa EEG
Signal Analysis Platform. First, all recordings were visually
inspected by researchers to remove segments with obvi-
ous artifacts or discontinuities. A zero-phase finite impulse
response filter was then applied for band-pass filtering
(0.1-30 Hz), and a notch filter was used to eliminate 50
Hz power-line noise. The original and filtered signals are
shown in Figure 5. The data were subsequently rereferenced

Figure 5. Comparison between the original band of the electroencephalogram and the data processed by filtering.
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EEG Bands

The EEG bands in this experiment are divided into 5 bands.
Gamma waves play an important role in the cognitive activity
of the human brain and in higher-level activities such as the
transmission of information in the brain, integrated process-
ing, and feedback [61-63]. Beta waves, with amplitudes of
5-20 pV, are the fastest of the EEG waves and are more
pronounced in the frontal and central regions [64]. Alpha
waves, with amplitudes of 20-100 uV, are the fastest of the
EEG waves and are more pronounced in the occipital and
parietal regions [65]. Theta waves have an amplitude of 20
to 150 pV and are the slowest of the EEG waves, generally
more pronounced in the parietal and temporal regions [66-
69]. Delta waves, which typically exhibit amplitudes of up to
approximately 200 uV, are the slowest type of EEG activity
and are mainly observed in the frontal and occipital regions
and generally occur during deep sleep, making them difficult
to capture during the waking state [70-73]. The brain can be
divided into parietal, temporal, frontal, and occipital lobes, of
which the parietal lobe is mainly responsible for processing
internal feedback, such as skeletal muscles and limbs [74-77].

ERP Data

ERP is a high-level functional potential of the human brain
[69]. ERPs are changes in brain potentials associated with
cognitive processes such as judgment, attention, perception,
decision-making, and working memory content [78]. Recent
studies have shown that the amplitude and latency of ERPs
are considered to be very important indicators of cognitive
load in humans.

There are 3 key parameters of ERP, namely amplitude,
latency, and distribution on the scalp [79]. By calculating
the average amplitude of the ERP within the corresponding
time window, the differences between different conditions
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can be analyzed. The latency represents the time interval
from the onset of the stimulus to the occurrence of the ERP
peak, usually expressed in milliseconds. The distribution of
the ERP on the scalp can reveal which areas of the brain
are functioning when the stimulus appears. The ERP with
these 3 key parameters can reveal individuals’ cognitive and
emotional processing under specific conditions [80,81].

ERPs are typically defined as time-locked neural respon-
ses to brief stimuli. Nevertheless, previous studies have
shown that ERP components with typical temporal charac-
teristics can also be observed under continuous or natu-
ral musical stimulation, particularly when different audio
segments exhibit distinct conditional variations [82-84]. In
this experiment, each music clip was treated as an independ-
ent event type. The onset of each music clip was set as the
event trigger point (time=0 milliseconds), and a time window
of —200 to 2000 milliseconds was extracted with a 200
milliseconds baseline correction applied. For each participant,
the trial waveforms of the same music type were extracted
and averaged to obtain the ERP, which reflects the cognitive
and emotional processing of different music types in older
adults.

Results

EEG Band Analysis

This experiment mainly collected the EEG changes of the
older adult participants in the leisure state, so the electrode
position of the parietal lobe was mainly selected as the key
observation object, and these 3 bands of 0, a, and 3 were
selected as the main discriminating parameters of the brain
fatigue in this experiment. The power of the EEG bands under
the stimulation materials of A0-A4 is shown in Table 1.

Table 1. Electroencephalogram band power under AO-A4 stimulation material.

Stimulation materials and

project ) 0 a § Y
A0
Total power -4.89 16.43 15.18 13.38 8.29
Average power -9.66 1041 740 1.34 -4.50
Percentage power (%) 0.31 41.54 31.18 20.6 6.38
Al
Total power -25.49 10.18 12.27 12.64 9.31
Average power -30.27 4.16 4.49 0.60 -3.48
Percentage power (%) 0.01 19.22 31.14 33.89 15.74
A2
Total power -2.08 20.35 19.51 16.26 9.28
Average power —6.85 14.33 11.72 422 -3.51
Percentage power (%) 0.25 43.56 35.82 16.97 34
A3
Total power -18.42 12.18 13.27 12.71 791
Average power -23.19 6.16 549 0.67 —4.88
Percentage power (%) 0.02 26.36 3391 29.83 9.87
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Stimulation materials and

project ) 0 a p Y

A4
Total power -18.39 13.29 15.29 12.37 6.15
Average power -23.16 7.26 7.51 0.33 -6.64
Percentage power (%) 0.02 27.84 44.20 22.56 5.38

The total power value of the theta band was 20. Thirty-five at
the highest in stimulus material A2 and occupied 43.56% of
the power in this stimulus band, which can be monitored in
the sleepy state, especially in the depressed or frustrated state.
This indirectly verifies that the stimulus material A2, that is,
—V+ A, can induce negative emotions such as sleepiness and
frustration. The total power value of the alpha band accounted
for the highest percentage of power, which was 44.20% when
using stimulus material A4. Clinical research has shown that
this is related to spatial attention. Therefore, the stimulus
material A4 (ie4+ V A) may facilitate higher levels of
creative thinking in older adult participants during cognitive
tasks [85]. For stimulus material Al, the beta band’s total

Figure 6. Brain wave band ratio under AO-A4 stimulation material state.

power value accounted for the highest percentage, 33.89%.
Clinically, this band is linked to emotional arousal, indicating
that A1 (+ V +A) can easily trigger emotional fluctuations in
older adult participants.

The ratio of theta to beta wave energy, F(6/ 8), and the
ratio of the sum of theta and alpha wave energy to beta wave
energy, F(a + 0) / B, are used as characteristic quantities
for EEG fatigue assessment [47,48]. As F(0 / B) rises, the
degree of fatigue further increases. The EEG band ratios for
the AO to A4 stimulus material states were derived by further
processing of the ratios in Table 1, as shown in Figure 6.
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Stimulus Materials

This study found that different musical stimuli have an impact
on the mental workload of older adult participants to some
extent. The F(a + 0) / P value was much lower than the
F(a + 0) / P values for the other 4 musical stimulus states
when the stimulus material was Al. So the EEG fatigue
level of the older adult participants was lowest when the
stimulus material was Al, that is, +V+A, and highest when
the stimulus material was A2, that is, —-V+A. The F (o +
0) / P value of stimulus material A3 indicates that it can be
selected as an auxiliary stimulus in moderate situations. The
effect of music stimulation on the brain load of the older
adult participants was therefore reflected in some way. It can
be seen that music stimulates the brain waves of older adult
participants and that different types of music can be used
in daily life to induce emotions in older adult participants.
+V+A music, such as exhilaration, excitement, and happiness,
helps to reduce fatigue, while music of the —V+A type (eg,
evoking anxiety, anger, or panic) induces negative emotions
and increases brain load [86].

https://aging.jmir.org/2026/1/e77218

ERP Data Analysis

The frontal zone electrodes (F7, F8, FPZ, and FZ), central
zone electrodes (CZ), parietal zone electrodes (P3, P4, P7,
P8, and Pz), and occipital zone electrodes (O1 and O2) were
selected for the analysis. EEG data from each condition were
analyzed using Statistical Product Service Solutions (SPSS;
IBM Corp) software. Given that the objective of this study
was to explore differences in EEG activity among older
adult participants under various music stimulation conditions,
one-way ANOVA with least significant difference (LSD)
post hoc comparisons was used to maintain sensitivity in
detecting potential effects during this exploratory phase. The
regions (left, middle, and right) were divided for the evoked
P200, P300, and N400 EEG components, as shown in Table
2. The selection of P200, P300, and N400 components as
analytical indicators was based on their respective neurophy-
siological significance in emotional and cognitive processing.
The P200 component typically occurs approximately 200
milliseconds after stimulus onset and can be regarded as an
initial perceptual response to auditory stimulation [87]. The
P300 component usually emerges around 300 milliseconds
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after stimulus onset, reflecting neural activity associated
with attention allocation, working memory, and cognitive
evaluation processes [88]. The N400 component generally
appears approximately 400 milliseconds after stimulus onset
Table 2. Division of evoked potentials into brain regions.

Zhou et al

and represents a neural response to semantic incongruity or
expectancy violation [89]. By analyzing these 3 components,
individual emotional responses can be comprehensively
evaluated across different stages of cognitive processing.

EEG® component Left area Middle area Right area
P200 P7,P3,01 PZ P4, P8, 02
P300 F7 FPZ,FZ F8
N400 0] CZ 02

9EEG: electroencephalogram.

Statistical Analysis of P200 Components

For the P200 EEG component, the latency averages of each
electrode (P7, P3, O1, PZ, P4, P8, and O2) were obtained by

total superimposed averaging of the participants’ waveforms
in a total of 5 stimulus material states from AO to A4, as
shown in Table 3.

Table 3. AO-A4 mean latency for each electrode of the P200 component in the stimulated.

Stimulation materials pP7 P3 Ol |4 P4 P8 02

A0 0.094 0.086 0.095 0.088 0.093 0.091 0.088
Al 0.189 0.067 0.165 0.087 0.184 0.086 0.154
A2 0.034 -0.147 -0.099 —0.470 0.027 0.303 0.108
A3 0.072 0.003 0.050 0.080 0.181 0.079 0.110
A4 0.053 0.062 0.680 0.069 0.072 0.060 0.074

Analysis of the mean values of the latency of each electrode
for the P200 component in the A0-A4 stimulation material
condition shows that there were differences in the mean
values of the latency of each electrode for the P200 compo-
nent. In the AO stimulation condition, the mean value of the
O1 channel was the largest, and the mean value of the P3
channel was the smallest; in the Al stimulation condition,
the mean value of the P7 channel was the largest, and the
mean value of the P3 channel was the smallest. In the A2
stimulation condition, the mean value of the P8 channel was
the largest, and the mean value of the PZ channel was the
smallest. In the A3 stimulation condition, the mean value of

Table 4. P200 component ANOVA results.

the P4 channel was the largest, and the mean value of the
P3 channel was the smallest. In the A4 stimulation condi-
tion, the mean value of the O2 channel was the largest, and
the mean value of the P7 channel was the smallest. The
P200 component data obtained were imported into the SPSS
mathematical analysis software. One-way ANOVA was used
to test the influence of different stimulus materials on the
P200 components of each electrode, and the means and SDs
were calculated, as shown in Table 4. To further analyze the
differences, we used the LSD method for post hoc multiple
comparisons, as depicted in Figure 7.

Variable and value Mean (SD) F-score P value
P7 12.342 <.001
A0 2.382 (8.783)
Al —0.276 (6.735)
A2 0.750 (2.604)
A3 2.903 (6.550)
A4 18.507 (32.256)
Total 4.853(16.933)
P3 6.243 <.001
A0 1.638 (9.222)
Al 1.290 (5.440)
A2 0.914 (2.482)
A3 -1.369 (2.579)
A4 7.605 (17.856)
Total 2.016 (9.838)
o1 9.931 <.001
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Variable and value Mean (SD) F-score P value
A0 1.002 (7.944)
Al 0.450 (5.555)
A2 0.734 (1.840)
A3 -1.279 (3.282)
A4 8.307 (15.511)
Total 1.843 (8.930)
PZ 7216 <.001
A0 0.552 (8.025)
Al 1.358 (3.445)
A2 1.009 (1.253)
A3 -2.218 (2.567)
A4 5.871 (14.469)
Total 1.314 (8.039)
P4 10.441 <.001
A0 1.536 (6.285)
Al 0.954 (3.973)
A2 1.262 (1.878)
A3 1.262 (3.524)
A4 7.185 (14.409)
Total 1.734 (8.014)
P8 1.683 155
A0 0.330 (0.492)
Al 0.598 (4.628)
A2 1.224 (1.939)
A3 —1.699 (3.888)
A4 2.007 (14.895)
Total 0.492 (7.590)
02 6.408 <.001
A0 —-0.126 (5.572)
Al 0.280 (4.399)
A2 1.092 (1.087)
A3 -1.623 (3.135)
A4 6.474 (17.694)
Total 6.474 (9.023)
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Figure 7. Analysis of the P200 heat map under the states of stimulus materials AO-A4. Each cell in the heatmap represents the P value of the pairwise
comparison between conditions, with deeper colors indicating more significant differences. The diagonal cells represent self-comparisons and are
displayed as 1. The numerical values in the figure correspond to the P values from the least significant difference post hoc test, and significance levels

are denoted as *P<.05, **P<.01, and ***P<.001.
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Further analysis of the potential amplitudes of the P200
component revealed that there were significant differences in
different types of musical stimulus materials on the electrodes
P7, P3, O1, and O2. For the variable P7 (Fy4 268=12.342,
P<.001, 1?=0.168), the LSD test showed that the amplitude
of the Al stimulation (mean —0.276) was significantly lower
than that of the A4 stimulation (mean 18.507, P<.001). For
the variable P3 (Fy, 268=6.243, P<.001, 1>=0.092), the LSD
test showed that the amplitude of the A2 stimulation (mean
0.914) was significantly lower than that of the A4 stimulation
(mean 7.605, P=.010). For the variable O1 (Fy4, 268=9.931,
P<.001, 1?=0.140), the LSD test showed that the amplitude
of the Al stimulation (mean 0.450) was significantly lower
than that of the A4 stimulation (mean 8.307, P=.001). For
the variable O2 (Fy4, 268=6.408, P<.001, ?>=0.095), the LSD
test showed that the amplitude of the A0 stimulation (mean
—0.126) was significantly lower than that of the A4 stimula-
tion (mean 6.474, P=.014).

https://aging jmir.org/2026/1/e77218

1.000

0.014 0.018 0. 0.002
* * *k
0.8000

0.101 0.014

0.6000

0.4000

0.687 1 0.014
*
02000
1 0.687
0000

A0 Al A2 A3 A4

02 Electrode

1.000

0.001 0.001
*k *k

0.8000
0.738 0.019 0.033
* *
0.6000
0.211 0.317 1
0.4000
0.093 1 0.317 0.019
* *ork
02000
1 0.093 0211 0.738 0.001
*x

A0 Al A2 A3 Ad

0.000

P7 Electrode

A detailed analysis of the heatmap shown in Figure 7
revealed that A4 stimulation, that is, +V A, had the stron-
gest activation, with significantly higher average potential
amplitudes across all channels compared with other stim-
uli and the AQ control. Musical stimuli also differentially
activated the left parietal and occipital lobes.

Statistical Analysis of P300 Components

For the P300 EEG component, the voltage-phase EEG data
of each electrode in the period of 150-250 milliseconds
were extracted. The latency averages of each electrode of
P300 (F7, FPZ, FZ, and F8) were obtained by averaging the
superimpositions of the participants’ waveforms in 5 stimulus
material states of AO-A4, as shown in Table 5.
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Table 5. AO-A4 mean latency for each electrode of the P300 component in the stimulated.

Stimulation materials F7 FPZ Fz F8

A0 0.037 0.078 0.073 0.112
Al -0.015 -0.407 0.071 -0.010
A2 -0.527 -0.470 0.274 0.303
A3 —0.340 —0.336 0.141 0.189
A4 0.046 0.167 0.126 0.109

Analysis of the latency averages for each electrode of the
P300 component in the AO-A4 stimulus material condition
shows that there were differences in the latency averages
for each electrode of the P300 component. Under the AO
stimulation condition, the mean value of the F8 channel was
the largest, and the mean value of the F7 channel was the
smallest. Under the A1l stimulation condition, the mean value
of the FZ channel was the largest, and the mean value of
the FPZ channel was the smallest. Under the A2 stimulation
condition, the mean value of the F8 channel was the largest,

Table 6. P300 component ANOVA results.

and the mean value of the F7 channel was the smallest.
Under the A3 stimulation condition, the mean value of the F8
channel was the largest, and the mean value of the F7 channel
was the smallest. Under the A4 stimulation conditions, the
mean value of the FPZ channels was the largest, and the mean
value of the F7 channels was the smallest. The obtained data
of the P300 component were calculated for the means and
SDs and subjected to one-way ANOVA, as shown in Table 6.
The LSD method was used for post hoc multiple comparisons
to further analyze the differences, as illustrated in Figure 8.

Variable and value Mean (SD) F-score P value
F7 17.065 <.001
A0 1.608 (6.967)
Al —0.482 (4.099)
A2 —-0.101 (1.062)
A3 0.387 (2.386)
A4 13.404 (20.879)
Total 2.963 (11.307)
FPZ 668.888 <.001
A0 1.044 (4.771)
Al —0.152 (2.882)
A2 —-1.249 (1.351)
A3 —0.307 (2.232)
Ad 44444 (28.429)
Total 8.756 (22.062)
FZ 30.449 <.001
A0 -1.152 (7.616)
Al —1.146 (4.626)
A2 —4.109 (2.355)
A3 —0.900 (3.342)
A4 57.083 (12.804)
Total 9.955 (24.699)
F8 117.799 <.001
A0 0.990 (7.455)
Al 0.918 (6.245)
A2 —0.986 (1.086)
A3 —1.197 (3.580)
A4 12.585 (12.766)
Total 2.462 (8.945)
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Figure 8. Analysis of the heat map of P300 at each electrode under the states of stimulus material AO-Al. Each cell in the heatmap represents
the P value of the pairwise comparison between conditions, with deeper colors indicating more significant differences. The diagonal cells represent
self-comparisons and are displayed as 1. The numerical values in the figure correspond to the P values from the least significant difference post hoc
test, and significance levels are denoted as *P<.05, ¥**P<.01, and ***P<.001.
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A further analysis of the potential amplitudes of the P300
component revealed that there were significant differences
and activation phenomena in the prefrontal lobe region for the
musical stimulation materials. Specifically, for the variable
F7 (F4,268=17.065, P<.001, n?>=0.218), the LSD test showed
that the average potential amplitude under the A2 stimula-
tion material (mean —0.101) was much lower than that under
the A4 stimulation material (mean 13.404, P<.001). For the
variable FPZ (Fy4 263=668.888, P<.001, n?>=0.916), the LSD
test showed that the average potential amplitude under the Al
stimulation material (mean —1.146) was much lower than that
under the A4 stimulation material (mean 57.083, P<.001). For
the variable FZ (F4, 268=30.449, P<.001, ?=0.332), the LSD
test showed that the average potential amplitude under the A3
stimulation material (mean —1.197) was much lower than that
under the A4 stimulation material (mean 12.585, P<.001). For
the variable F8 (Fy4 268=117.799, P<.001, 12=0.658), the LSD
test showed that the average potential amplitude under the Al
stimulation material (mean —0.152) was much lower than that
under the A4 stimulation material (mean 44 .444, P<.001).
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A detailed analysis of the heatmap shown in Figure
8 reveals that there are significant differences among the
different types of musical stimulation materials at the F7,
FPZ, FZ, and F8 electrodes. The average potential amplitudes
of the variables for each channel under the A4 stimula-
tion material, that is, +V A, were much higher than those
under the other 3 types of stimulation materials and the AQ
stimulation material of the control group.

Statistical Analysis of N400 Components

For the N400 EEG components, the voltage EEG data
of each electrode in the period of 150-250 milliseconds
were extracted. By averaging the total superposition of the
participants’ waveforms in the 5 stimulus material states from
A0-A4, the latency averages of each electrode of the N400
(01, CZ, and O2) were obtained, as shown in Table 7.

Table 7. AO-A4 mean latency for each electrode of the N40O component in the stimulated.

Stimulation materials 01

Ccz 02

A0 0.095

0.088 0.072
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Stimulation materials Ol CcZ 02
Al 0.165 0.120 0.154
A2 -0.099 0.116 0.108
A3 0.050 0.136 0.110
A4 0.069 0.076 0.074

Analysis of the mean latency values of each electrode of the
N400 component under the stimulation material conditions of
AO0-A4 shows that there are differences in the mean latency
values of each electrode of the N400 component. Under the
AQ stimulation condition, the mean value of the O1 channel
was the largest, and the mean value of the O2 channel was
the smallest. Under the Al stimulation condition, the mean
value of the Ol channel was the largest, and the mean value
of the CZ channel was the smallest. Under the A2 stimulation
condition, the mean value of the CZ channel was the largest,
and the mean value of the Ol channel was the smallest.

Table 8. N400 component ANOVA results.

Under the A3 stimulation condition, the mean value of the
CZ channel was the largest, and the mean value of the Ol
channel was the smallest. Under the A4 stimulation condition,
the mean value of the CZ channel was the largest, and the
mean value of the O1 channel was the smallest. The obtained
data of the P300 component were calculated for the means
and SDs and subjected to one-way ANOVA, as shown in
Table 8. The LSD method was used for post hoc multiple
comparisons to further analyze the differences, as illustrated
in Figure 9.

Variable and value Mean (SD) F1-score P value
O1 63.016 <.001
A0 1.002 (7.944)
Al 1.568 (6.642)
A2 0.430 (0.808)
A3 —-1.806 (3.316
A4 21.713 (15.859)
Total 4.581 (12.160)
CzZ 12.095 <.001
A0 —0.954 (5.789)
Al 0.450 (5.555)
A2 0.734 (1.840)
A3 —-1.279 (3.282)
A4 8.307 (15.511)
Total 1.452 (8.672)
02 6.408 <.001
A0 —0.126 (5.572)
Al 0.280 (4.399)
A2 1.092 (1.087)
A3 —-1.623 (3.135)
Ad 6.474 (17.694)
Total 1.219 (9.023)
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Figure 9. Analysis of the heat map of N400 at each electrode under the states of stimulus material AO-A1l. Each cell in the heatmap represents
the P value of the pairwise comparison between conditions, with deeper colors indicating more significant differences. The diagonal cells represent
self-comparisons and are displayed as 1. The numerical values in the figure correspond to the P values from the least significant difference post hoc
test, and significance levels are denoted as *P<.05, ¥**¥*P<.01, and ***P<.001.
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A further analysis of the potential amplitudes of the N400
component reveals that there are obvious differences and
degrees of activation in the occipital lobe region and the
central line region of the temporal area caused by the musical
stimulation materials. The analysis shows that for the variable
Ol (F4, 268=63.016, P<.001, 1?2=0.507), the LSD test reveals
that the average potential amplitude under the A2 stimula-
tion material (mean 0.430) is much lower than that under
the A4 stimulation material (mean 21.713, P<.001). For the
variable CZ (F4,268=12.095, P<.001, 1?=0.165), the LSD test
indicates that the average potential amplitude under the Al
stimulation material (mean 0.450) is much lower than that
under the A4 stimulation material (mean 8.307, P<.001). For
the variable O2 (Fy4, 268=6.408, P<.001, 1>=0.095), the LSD
test shows that the average potential amplitude under the A0
stimulation material (mean —0.126) is much lower than that
under the A4 stimulation material (mean 6.474, P<.001).

A detailed analysis of the heatmap shown in Figure 9
reveals that there are significant differences among different
types of musical stimulation materials at the O1, CZ, and
02 electrodes. In the N400 component, the average potential
amplitudes of the variables for each channel under the A4
stimulation material, that is, +V A, are much higher than
those under the other 3 types of stimulation materials and the
AO stimulation material of the control group.

Discussion

Principal Results

This study aims to establish a mapping relationship between
musical parameters and emotional states based on a music
emotion model, and to provide empirical evidence for the
design of a music-interaction module for intelligent leisure
sofas in home environments. Based on the VA model, 4
sets of musical stimulus materials were formulated, and the
state responses of older adult participants while listening to
different musical stimulus materials were collected by the
Bitbrain hydropolar EEG imaging system. The experimental
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results indicated that different types of musical stimuli
exerted significant effects on the EEG activity of older adults.

First, compared with the white noise control condition,
all 4 types of musical stimuli exhibited significant differen-
ces in EEG activation levels, indicating that music stimula-
tion can effectively influence the neural workload of older
adult participants. This finding is consistent with previous
research on the regulatory effects of music on neural activity.
For instance, Kucikiené et al [90] reported that preferred
music enhanced EEG power across multiple frequency bands,
particularly within the o/p bands. Similarly, Yang et al
[91] found significant associations between brain activity in
different frequency bands and musical rhythm. In the present
study, we observed that +V+A pleasurable, excited, and
happy types of music elicited higher levels of EEG activation,
which may be associated with increased o and § power and
decreased 0 activity, changes that facilitate positive emotional
experiences and reduce fatigue [92]. In contrast, -V+ A
anxious, angry, and extremely panicky types of music were
characterized by higher proportions of O activity and peak
(a+0)/p ratios, which may correspond to EEG mechanisms
commonly observed during negative emotional stimulation,
such as enhanced 0 and suppressed a power [93].

Analysis of the ERP data revealed significant differences
among the 4 types of musical stimuli for the P200, P300,
and N400 components, reflecting the modulatory effects of
music on cognitive processing and emotional responses in
older adult participants. Regarding the P200 component, our
study showed significant differences across electrode sites
P7, P3, O1, and O2, primarily localized in the left parietal
and occipital regions. This suggests that music can activate
the brain’s perceptual and attentional networks at an early
processing stage, facilitating the initial encoding of auditory
information. Similarly, Patel et al [94] reported that musical
stimuli could evoke early-stage neural responses for attention
and perceptual processing, with the P200 component being
closely linked to perceptual and selective attention processes.
In addition, Portnova et al [95] found that the perception of
emotional stimuli in comatose patients was associated with
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early P200 responses, whereas healthy individuals exhibited
more complex ERP patterns.

Regarding the P300 component, its amplitude is closely
associated with attention, working memory, and emotional
states [96]. Evidence suggests that musical stimuli can
modulate brain activity during later stages of cognitive
processing, significantly influencing P300 amplitude. For
instance, Pawlowski et al [97] noted that the P300 component
is strongly related to cognitive evaluation and decision-mak-
ing processes. In the present study, significant differences in
P300 amplitudes were observed across electrode sites O1, Cz,
and O2, with particularly prominent differences in activa-
tion in the occipital and temporal regions. These findings
indicate that musical stimuli of different emotional types can
significantly affect the allocation of attention and the level
of cognitive evaluation in older adult participants, reflecting
the specific modulatory role of music in brain cognitive
processing.

Regarding the N400 component, although N400 was
originally studied in the context of language processing,
recent research has extended its application to the field
of music to investigate the neural mechanisms underlying
musical semantic processing. For example, Calma-Roddin
et al [98] found that disharmonious or unexpected changes
in familiar melodies elicited an N400-like effect similar to
that observed in language, suggesting that music process-
ing also involves semantic-related cognitive mechanisms.
In our analysis of the N400 component, significant differen-
ces were observed across electrode sites F7, Fpz, Fz, and
F8, particularly in the frontal region. This finding is consis-
tent with previous research, indicating that musical stimuli
can evoke brain neural responses associated with semantic
processing and emotional evaluation. For instance, Portnova
et al [95] reported that the N400 component is closely related
to emotional perception and semantic processing, and that
higher N400 amplitudes have been linked to the perception of
emotional expression in sounds.

In summary, different types of musical stimuli exhibit
significant differences in the brain activity of older adult
participants. These results provide empirical evidence for the
neural mechanisms underlying the regulatory effects of music
on the emotions and cognition of older adults and offer a
basis for the design of music-interaction regulation modules
in smart home systems. From a theoretical perspective, the
findings of this study further enrich the research framework
regarding emotion-driven adaptability of home environments
in smart home design [99] and support the necessity
of introducing emotional response mechanisms in home
environments [100]. Meanwhile, this study also provides
empirical supplementation to the affective-rational theory
[101,102]. The experimental results indicate an interaction
between emotional experience and rational processing in the
older adult users under musical stimulation. On this basis, the
proposed music feedback mechanism can achieve adaptive
regulation of users’ emotions by identifying the correspond-
ing relationship between emotions and music, which aligns
with the laws of human cognitive processing and people-ori-
ented HCI models [103]. Finally, through a comprehensive
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analysis of musical stimuli and EEG responses, this study
reveals the emotional interaction relationships of the older
adult users in the context of smart homes. As Desmet
et al [104] noted, emotional artifacts promote well-being
and psychological balance by evoking positive emotional
experiences. This provides an actionable theoretical basis
and experimental support for the future design of emotional
products for older adult users and the development of
health-promoting interaction systems.

Practice

The emotion recognition module plays a key role in the
multimodal HCI system of the Recreation Sofa, which
provides an immersive and personalized musical experience
for the user. The module is designed to recognize the current
behavioral and emotional state of the older adult user and
adjust the music and interaction accordingly according to
predefined criteria in the recreation module. This involves
the integration of multiple sensors and algorithms to detect
the emotional, behavioral, and activity levels of the older
adult user and select music that matches their preferences
and needs. For example, if an older user is feeling stressed
or tired, the emotion recognition module can select calming
or relaxing music to help them unwind. Or, if the older user
is feeling energetic or happy, the music module can select
more upbeat or lively music to enhance their emotions. If
the older user is in a relaxed state, the emotion recognition
module will select calm and soothing music to match the
user’s emotional and behavioral state. The emotion recog-
nition module also adjusts the volume and tempo of the
music to the user’s preferences, ensuring a comfortable and
enjoyable musical experience when using the lounge sofa.
The emotion recognition module thus plays an important
role in providing a personalized and adaptive user experience
that is tailored to the user’s emotional and behavioral state.
The emotion recognition module uses the predefined music
matching criteria set in the Recreation module to select the
appropriate type of music.

The emotion recognition module carries out facial
recognition of the older adult users through the Intel
RealSense camera. The facial features are divided through
the emotion recognition module, which mainly identifies the
3 main parts of the older adult users’ face, the eyes, nose, and
corners of the mouth, and the recognition process is shown
in Figure 10. During the recognition process, the captured
image will be grayed out to determine the gender of the target
user, establish where the target facial range of the user lies,
extract the 3 main facial feature parts of the target user in
turn, and determine the actual emotional state of the user
through a comprehensive evaluation of the algorithm. At this
stage, the module has been developed as a prototype to test
the feasibility of facial emotion recognition and its integration
effect in the interactive music system. The study adopts the
CNN-DeepFace framework to process the facial images of 68
older adult participants in the EEG-music experiment. These
images serve as the initial dataset for verifying the effective-
ness of the emotion mapping and adaptive playback process.
The purpose of this stage is not to train a new deep learning
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model, but to evaluate the technical feasibility and response
accuracy of the system in a controlled environment.

Figure 10. Model foundation framework.

The emotion recognition and music interaction module
developed based on the conclusions of this experimental
study aims not only to enhance user experience through its
technical implementation, but also needs to be examined
within the broader context of national, cultural, and ethical
frameworks [105]. At the societal level, this study responds
to the global trends of intelligent older adults’ care and
home-based health promotion [106]; it seeks to improve the
psychological and emotional well-being of the older adults in
home environments through noninvasive emotion perception
and matched music interventions. At the cultural level, the
randomized controlled experiment conducted using EEG in
this study prioritizes cultural universality in music selection
and intervention strategies. Music based on the VA model
was selected to avoid emotional biases or culturally insen-
sitive interventions caused by cultural differences, thereby
ensuring the cross-cultural acceptability of the experiment
[107].

At the level of technical ethics and safety practice, the
design integrating the interaction module with the leisure
sofa adheres to the design guidelines for HCI safety [108].
The main hardware involved includes a speech recognition
microphone array, an emotion recognition camera, and an
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intelligent audio playback device. At the communication
level, the system primarily relies on wireless communication
protocols such as Wi-Fi, Bluetooth, and LoRa, while realizing
multimodal data interaction and scenario linkage through
a smart home gateway. However, subsequent research and
practice need to consider data security, a critical consider-
ation in the smart home ecosystem, which requires balanc-
ing the protection of user privacy with the migration and
linkage between smart products [109]. From the perspective
of ethics and social well-being, this system aims to provide
older adults with an intelligent companionship solution that
offers emotional comfort and is oriented toward social care.
It enables music to serve not only as feedback for product
functions but also as a carrier for emotional care, which
aligns with the goal of technology facilitating a better quality
of life [110]. Meanwhile, the system should also emphasize
that technology should be people-oriented, explainable, and
supportive of social dialogue. This requires prioritizing design
values over technical implementation, rather than merely
pursuing performance optimization [111].
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Comparison With Prior Work
The analogies between the findings of this paper and the
existing literature related to music emotion recognition or
regulation are shown in Table 9.
Table 9. Correlation of the findings of this paper with the existing literature on musical emotion recognition and regulation.
Takashima et al Vieillard and Gilet
Comparison This work Yanget al [112] [113] Wang et al [114] Sutcliffe et al [115] [116]
Research Older adults General Datasets Youth and older Youth and older Youth and older
participants adults adults adults
Research methods  Model building, Model building, = Model building, = Experiments, Experiments, Experiments,
experiments, performance dataset physiological data  physiological data  physiological data
physiological data  testing experiments analysis analysis analysis
analysis
Research tools EEG? and ERP? Multimodal EMER-CL® Residual Research Electromyogram
research convolutional (EMG)
network

Application
scenarios

Age-friendly, smart Multimedia tools
sofa

Encoder training

Music generation ~ Deepen research Emotion regulation

4EEG: electroencephalogram.
PERP: event-related potential.

“EMER-CL: embedding-based music emotion recognition using composite loss.

These studies all aim to expand the possibilities of
music emotion recognition from different perspectives, thus
enabling mutual supplementation and validation. Through
comparative and correlational analysis with other litera-
ture, this study demonstrates significant differentiation and
innovation in several aspects. First, unlike previous studies
that mainly targeted the mixed-age groups [112,113], this
study specifically focuses on the older adult population,
aiming to address the specific emotional regulation needs
of the older adults in smart home environments. Methodo-
logically, this study obtained the physiological responses
of older adult participants through EEG and ERP analyses
and established an emotional state mapping in combination
with musical parameters. The MF-AWI model proposed
in this study integrates multimodal data and health-promot-
ing HCI, which differs from existing multimodal emotion
recognition studies in terms of model framework. Exam-
ples include the rhythm prediction model by Wang et al
[114], or the experiments on young and mixed-age groups
by Sutcliffe et al [115] and Vieillard and Gilet [116].
The proposed model not only considers music and emo-
tion recognition but also emphasizes individual adaptabil-
ity in home interaction scenarios. Furthermore, numerous
studies have demonstrated that multimodal fusion methods
outperform single-modality approaches in emotion recogni-
tion tasks. For instance, when combining EEG with facial
expressions for emotion classification, multimodal fusion
consistently achieves higher accuracy than unimodal methods
[117]. Therefore, the MF-AWI model incorporates emotional
gradients and health-promoting thresholds in feature fusion,
enabling personalized emotional feedback, and its prelimi-
nary validation in the intelligent home sofa scenario further
highlights the potential of multimodal emotion recognition
and regulation for practical adaptability and operability.
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Limitations

This study has several limitations. First, regarding the
participant population, the sample was restricted to older
adults aged 60-75 years. Future research should further
refine user needs and personal habits by examining behav-
ioral habits and individual preferences, as well as potential
gender differences in emotional responses and interaction
behaviors. Second, all participants in this study were healthy
older adults, as the primary aim was to establish a foun-
dational model for music—emotion interaction within smart
home systems. However, individuals with cognitive decline,
dementia, or other impairments, who represent key poten-
tial beneficiaries of such systems, were not included [118].
Since cognitive processing and emotional responses may
differ between healthy and cognitively impaired older adult
populations, the generalizability of the findings remains to
be verified in special older adult groups. Future studies
should therefore expand the sample to include older adults
with varying levels of cognitive function to comprehen-
sively assess the applicability and effectiveness of the music
interaction module across diverse user groups. Compara-
tive studies between groups with different health statuses
are also recommended to better understand how cognitive
conditions influence emotional and behavioral responses to
such interactive systems.

At the model and system level, this study primarily
focused on using experimental data to validate the feasibility
of the multimodal emotion recognition and adaptive music-
matching mechanisms within the MF-AWI model. The study
is positioned as a mechanism-level validation. In addition,
the CNN-DeepFace emotion recognition component in this
study mainly served to verify the feasibility of integrating
visual emotion detection into the interactive music system,
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rather than to develop a fully trained and optimized recogni-
tion model. Consequently, systematic quantitative evaluations
of the multimodal emotion recognition module and the
adaptive feedback module, such as accuracy and Fj-score,
have not yet been conducted, and their performance can-
not be directly compared with existing EEG-based, multimo-
dal, or single-modality emotion recognition models. Future
work will involve large-scale experiments and cross-context
validation, complemented by usability testing and subjec-
tive satisfaction assessments, to comprehensively evaluate
the model’s effectiveness in real-world application scenar-
i0s. The model can also be further trained and optimized
using larger and more diverse datasets of older adult users
to enhance recognition accuracy and generalizability. In
addition, standardized performance metrics will be applied
to compare multimodal fusion methods with unimodal
approaches in home-based environments, thereby further
validating the practical benefits of the model in emotion
recognition tasks. Finally, regarding statistical analysis, post
hoc pairwise comparisons were performed using the LSD
method following significant ANOVA results. As this study
primarily focused on examining neural activity differen-
ces elicited by different musical stimuli, the LSD method
provides high sensitivity for detecting effects. However, no
further strict multiple comparison corrections were applied,
which may increase the risk of type I errors. Future studies
will consider using more rigorous correction methods, such as
Bonferroni or false discovery rate adjustments, to verify the
robustness of the results.

From an application and technical perspective, this study
also has certain limitations. The experimental validation was
carried out using a leisure sofa as the primary prototype.
Future work could integrate multiple types of sensors to
collect multichannel physiological signals, thereby improving
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emotion recognition accuracy and response speed. Moreover,
EEG signal acquisition remains susceptible to environmen-
tal noise, poor electrode contact, and participant move-
ment. Subsequent studies should focus on improving signal
processing algorithms and denoising strategies, enhancing
model generalization, and conducting long-term validation
in real-world smart home environments to ensure system
reliability and sustained usability and user experience.

Finally, from a social and cultural perspective, this study
did not deeply address issues related to cross-cultural contexts
or the socio-psychological effects of such systems among
older adults. Although the system design and experiments
were intended to promote user well-being, future interdiscipli-
nary research should consider cultural diversity and social
inclusiveness when evaluating and optimizing emotional
smart products for the older adult population.

Conclusions

The research object of this paper is explicitly for the older
adult users, and it aims to solve the problems related to the
emotions of older adult users in their home environment.
At the same time, the mapping relationship between music
parameters and emotional state is constructed. In conjunction
with experimental and physiological data analysis, several
aspects are considered, and it is concluded that Al stimulus
materials can soothe the emotions of older adult users. In
terms of research methodology, this paper uses EEG and ERP
analysis, and the application scene is a smart sofa for older
adults. It is compatible with the research object and has a
certain degree of practicality. At the same time, based on
this, the music emotion interaction module in the multimodal
HCI system of the health care sofa is set up, and it provides
health care thresholds and theoretical support for the health
care sofa.
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