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Abstract
Background: More than half of people with HIV are now older than 50 years, and they face an approximately 60% higher
risk of developing dementia compared with the general population. In recent years, the application of artificial intelligence,
particularly machine learning, combined with the growing availability of large datasets, has opened new avenues for develop-
ing prediction models that improve dementia detection, monitoring, and management.
Objective: This systematic review aimed to synthesize the existing literature on the application of machine learning in
dementia research among older people with HIV and identify directions for future research.
Methods: A comprehensive search was conducted in PubMed, CINAHL, and Embase in September 2024, limited to studies
published within the past 10 years. Eligible articles included original research involving people with HIV applying at least 1
machine learning technique and reporting dementia-related outcomes.
Results: The search yielded 721 articles, of which 26 (3.6%) met the inclusion criteria. Most studies were retrospective and
conducted in the United States (n=14, 53.8%), primarily focusing on neurocognitive impairment and HIV-associated neuro-
cognitive disorders. Supervised machine learning techniques were most frequently used and demonstrated strong predictive
performance. Common methodological challenges included small sample sizes, lack of external validation, limited participant
diversity, and concerns about biological interpretability and generalizability.
Conclusions: Machine learning research on dementia among older people with HIV primarily targets HIV-associated
neurocognitive disorders, with limited exploration of age-related neurodegenerative diseases such as Alzheimer disease and
related dementias. The absence of longitudinal studies and external validation remains a key limitation. Future research
should broaden the focus to all-cause dementia beyond HIV-specific conditions; apply advanced machine learning methods;
and leverage large-scale longitudinal, multimodal datasets. Strengthening methodological rigor and enhancing real-world
applications will be critical to improving early detection and effective management of cognitive health in this unique aging
population.
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Introduction
Globally, there were approximately 39.9 million individu-
als living with HIV at the end of 2023 [1]. With advan-
ces in antiretroviral therapy, people with HIV are living
longer, and more than 53% of them in the United States
are now older than 50 years [2]. Although “older adults”
commonly refers to individuals aged 65 years and above,
research in the context of HIV often considers aging-related
health concerns to emerge earlier due to accelerated and
accentuated aging processes. There is a high frequency of
neurocognitive decline reported in people with HIV, with
approximately a 60% higher risk of developing dementia as
they age compared with the general population [2]. Given that
there is no cure for dementia, early detection and effective
management are critical [3].

However, developing early diagnostic and effective
management tools for dementia in this population presents
unique challenges. People with HIV exhibit distinct neuro-
logical changes, which include not only Alzheimer disease
(AD) and AD-related dementias (ADRD; such as vascular
dementia, Lewy body dementia, frontotemporal dementia,
and mixed dementia) but also HIV-associated neurocogni-
tive disorders and HIV-associated dementia. The complexity
of HIV-related pathologies and comorbidities, along with
inconsistent reporting, has posed significant challenges in
HIV and aging research [4-6].

Despite this elevated risk, existing dementia detection
and management strategies often fail to address the unique
needs of people with HIV. In recent years, the applica-
tion of artificial intelligence, particularly machine learning,
combined with the increasing availability of large datasets,
has opened new avenues for developing prediction models
to improve dementia detection, progress monitoring, and
management [3,7-11], offering promising alternatives for
unraveling these complex relationships. Although the number
of studies leveraging machine learning in predictive modeling
of dementia outcomes in people with HIV has been grow-
ing, the scientific literature still lacks a synthesized review
focused on this population. To address this gap, we conduc-
ted a rapid systematic review that followed the core princi-
ples of systematic review methodology but omitted a formal
study quality appraisal to expedite evidence synthesis [12-14].
The objective of this review was to synthesize the exist-
ing literature that has applied machine learning in dementia
research for people with HIV and to highlight directions for
future research.

Methods
This systematic literature review followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [15].
Data Sources and Search Strategy
A comprehensive search strategy was developed by the
authors (Hwayoung Cho, LL, and RL) through a literature
review, with assistance from a health sciences librarian at

the academic institution where the study was conducted.
Using 3 databases (ie, PubMed, CINAHL, and Embase),
we searched the literature on September 24, 2024, with a
10-year publication limit to ensure inclusion of the most
current advancements in artificial intelligence and machine
learning applications in this area of research. To capture all
relevant studies, additional hand searches were also conduc-
ted using reference lists obtained from the literature relevant
to this review. The search terms used in the title, abstract,
or keywords included the following themes: HIV infections;
all-cause dementia including AD and ADRD, HIV-associ-
ated dementia, and HIV-associated neurocognitive disorders;
machine learning approaches including artificial intelligence,
machine learning, and deep learning. Medical Subject
Headings (MeSH) terms for PubMed, CINAHL Headings for
CINAHL, Emtree terms for Embase, and free-text terms were
used with the Boolean searching technique. Details on the
search strategies are presented in Multimedia Appendix 1.
Overview of Machine Learning
Techniques
To provide context, we briefly summarize the most common
machine learning techniques [11,16,17]. Supervised learning
approaches, such as support vector machines (SVMs) [18,
19], random forests, and logistic regression, use labeled
data to classify or predict outcomes. Unsupervised meth-
ods, such as clustering, identify hidden patterns in unla-
beled data. Semisupervised methods combine these two
approaches, while deep learning techniques [20], including
convolutional neural networks [21] and deep neural networks
[22], use multilayered neural architectures to capture complex
nonlinear patterns. These approaches are increasingly applied
in health care research to improve diagnostic accuracy and
risk prediction [11,16,17].
Study Selection and Eligibility Criteria
A web-based collaboration software platform that streamlines
the production of systematic reviews, Covidence (Veritas
Health Innovation), was used to facilitate the title and abstract
screening, full-text review, data extraction, conflict resolu-
tion, and data verification. During each screening and review
stage, titles and abstracts (LL, RL, RM, JS, and Hannah
Cho) and full texts (JS and Hannah Cho) were independ-
ently assessed by two reviewers to determine study eligibil-
ity. To assess interrater reliability during the screening and
review phases, the Cohen κ was calculated. Differences were
resolved by consensus and, if necessary, by a sixth reviewer
(Hwayoung Cho).

The inclusion criteria included an original research article
that (1) focused on people with HIV as the target study
population, (2) examined at least one dementia-related
outcome, and (3) applied at least one machine learning
technique and reported evaluation metrics (eg, area under
the curve [AUC] of the receiver operating characteristic,
sensitivity, specificity, precision, and F₁-score). We exclu-
ded studies that examined only mild cognitive impairment
without including any form of dementia, as our focus was on
research specifically involving dementia-related conditions.
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We also excluded studies that were not available in the
English language or full text, or gray literature (eg, clin-
ical trials registries, conference abstracts, dissertations or
theses, government reports, issues papers, letters, comments,
editorials, correspondences, blogs, or newsletters).
Data Extraction and Synthesis
The following information was extracted from the stud-
ies included in the final review using a Microsoft Excel
spreadsheet: last name of the first author, year of publi-
cation, location of the study conducted, study objective,
study design, study sample (eg, demographics and sample
size), data source, data period, and subtype of dementia
focused. We also synthesized the following information: main
aim of using machine learning, type of machine learning
techniques, evaluation metrics used for machine learning
models, key outcomes from machine learning models, and
machine learning–related limitations reported in the arti-
cle. Adopting machine learning breakdown frameworks [11,
17], we subcategorized machine learning techniques by
how they infer patterns from data into the following five
types: (1) supervised, (2) unsupervised, (3) semisupervised
(ie, a combination of supervised and unsupervised), (4)

reinforcement learning, and (5) deep learning. Consistent with
rapid review methodology, we did not perform a formal study
quality appraisal. Instead, we summarized the methodological
challenges reported in the included studies. This approach
aligns with the goal of rapid reviews to provide timely,
systematic evidence synthesis using streamlined methods [12-
14].

Results
Search Results
The initial searches resulted in 721 articles, including 144
(20%) from PubMed, 35 (4.9%) from CINAHL, and 542
(75.1%) from Embase. After removing duplicates, 587
(81.4%) articles were screened for titles and abstracts, and
200 (34.1%) articles were reviewed with full texts based on
our eligibility criteria. We had high agreement between raters
when making review decisions (Cohen κ≥0.80). A total of
26 (13%) studies that met the criteria were included in the
review. The PRISMA flow diagram illustrating the review
process is depicted in Figure 1.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of the study selection process.
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Study Characteristics
An overview of study characteristics for a total of 26
studies is presented in Multimedia Appendix 2. Most studies
were conducted in the United States (n=14, 53.9%) [23-
36], followed by China (n=5, 19.2%) [37-41]; Canada (n=3,
11.5%) [42-44]; and other countries (n=4, 15.4%) including
Colombia [45], Brazil [46], Ethiopia [47], and Japan [48].

The majority of studies used retrospective observational
designs, including 3 (11.5%) cohort studies [25,27,42] and
2 (7.7%) cross-sectional [45,47] studies, while 21 (80.8%)
did not specify their design. Data sources included neuroi-
maging (magnetic resonance imaging [MRI] and functional
MRI [fMRI]) [26,28,29,31,32,34,39-41,44], neuropsychologi-
cal tests, clinical and demographic variables from electronic
health records and research cohorts [27,38,40,43,44,47], and
other specialized data such as substance use questionnaires
[25], the Center for Epidemiological Studies Depression Scale
[25,46], and biological samples from research programs [25,
30,31]. Cognitive measures varied across studies and included
the Mini-Mental State Examination [26,45], the International
HIV Dementia Scale [47], self-reported memory assessments
[25,31], and comprehensive neuropsychological test batteries
[36,41,43].

The studies examined multiple forms of cognitive
impairment among people with HIV, including neurocog-
nitive impairment [26-28,38,42,46,47] and HIV-associated
neurocognitive disorders [23-25,29,30,34,39,44,45,48], with
particular attention to asymptomatic neurocognitive impair-
ment as a subset of HIV-associated neurocognitive disorder
[37,40,41]. Control groups included healthy individuals [26,
28,35,38-40,48], HIV-negative cognitively normal partici-
pants [24,31,37,39], preclinical HIV-asymptomatic neuro-
cognitive impairment cases [41], and neuropsychologically
normal controls [23,30,33,43].

Sample sizes ranged from 9 to 8490 participants, with
ages spanning 21 to 81 years. Almost half of the 26 stud-
ies (n=12, 46.2%) focused on middle-aged adults (40‐50
years) [24-27,32,33,36,42-46]. Most participants were male
(>70%) [23,24,26,28,31-33,36,37,42,44,46]. Several studies
(n=4, 15.4%) reported that participants were predominantly
White, followed by African American or Black individu-
als [30-32,42]. Two (7.7%) US studies included primarily
African American samples (82.6 % and 69.1%‐89.8%) [27,
33]. Hispanic participants were represented in some studies
(n=4, 15.4%) [23,30-32], typically comprising 4.8% to 24%
of samples [23,31]. A few studies (n=3, 11.5%) reported
Asian or other racial groups, but these consistently accounted
for less than 5% of participants [23,31,32].
Key Findings on Machine Learning
An overview of main findings from the 26 studies is
presented in Multimedia Appendix 3, summarizing machine
learning applications in dementia research for people with
HIV, the techniques and model performance used, and the
limitations of these applications reported across studies.

Applications for Machine Learning in
Dementia Research Among People With
HIV
In this review, machine learning was applied to improve the
diagnosis, prevention, and management of dementia among
older people with HIV across studies. Of the 26 studies,
some (n=12, 46.2%) applied machine learning algorithms to
enhance diagnostic accuracy by analyzing neuroimaging data,
cognitive assessments, and biomarkers (including 1, 3.8%
study focusing on genetic features [48]) to identify early signs
of dementia in people with HIV [23,28-30,33,35,36,41,43,46-
48], while other studies (n=2, 7.7%) used machine learning
to monitor disease progression, identify symptom clusters,
and optimize tailored treatment plans for people with HIV
[38,45].
Machine Learning Techniques and Model
Performance
Various machine learning techniques were identified across
the 26 included studies and classified into supervised,
unsupervised, semisupervised (a combination of supervised
and unsupervised), reinforcement learning, and deep learning
[11,17]. Supervised machine learning was the most prevalent
approach, applied in 20 (77%) studies [23,24,26,28-33,35-
37,39-43,45-47]. Only 1 (3.8%) study applied an unsuper-
vised machine learning approach [38], while a combination
of supervised and unsupervised methods was used in 5
(19.2%) studies [25,27,34,44,48]. Deep learning was used in
2 (7.7%) studies [35,36], whereas reinforcement learning was
not reported in any of the included studies.

Supervised machine learning techniques included SVMs,
random forests, logistic regression, ensemble models (eg,
Adaptive Boosting and Extreme Gradient Boosting), and
feature selection methods such as least absolute shrinkage
and selection operator and classification and regression trees
[23,24,26,28-33,35-37,39-43,45-47]. SVMs were the most
frequently applied algorithm, used in 7 (26.9%) studies [24,
30,32,33,39,41,48], with reported AUC values up to 0.85
and classification accuracy as high as 82% [24]. Logistic
regression was also implemented in 7 (26.9%) studies [25,
26,28,37,43,46,47], achieving classification accuracy between
68% and 90% [43]. Random forests were used in 5 (19.2%)
studies [31,42,43,46,48], demonstrating strong predictive
performance with AUC values up to 0.87 and accuracy levels
exceeding 80% [46]. Ensemble models, such as Adaptive
Boosting, showed robust performance, with precision and
recall scores of 0.80 and 0.77, respectively [46].

Unsupervised learning techniques, including k-means
clustering, hierarchical clustering, and mutual connectiv-
ity analysis, were primarily used to stratify patients into
subgroups and identify distinct cognitive profiles. For
example, k-means clustering was applied to classify HIV-
associated neurocognitive disorder subtypes and demonstra-
ted strong performance in identifying connectivity profiles,
achieving AUC values up to 0.89 [34].
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Deep learning techniques were applied in only a few
(n=2, 7.7%) studies [35,36]. Convolutional neural networks
demonstrated classification accuracies surpassing 90% across
various domains [35], while deep neural networks achieved
an accuracy of 82% for cognitive impairment and 75% for
frailty classification [36].

Internal validation methods, such as k-fold cross-valida-
tion, were implemented in 18 studies (69.2%) [24,26,28-36,
39-41,43,45,46,48]. In contrast, 6 (23.1%) studies did not
explicitly report validation methods [23,25,37,42,44,47], and
none included external validation.

Limitations of Machine Learning in
Dementia Research Among People With
HIV
The researchers in the included studies acknowledged several
methodological challenges. A predominant limitation across
studies was small sample size [26,30-32,35-37,39-43,48].
Additionally, study cohorts were largely male, limiting
generalizability [23,26,40,43]. Some (4/26, 15.4%) studies
highlighted unaddressed confounding variables, such as
recreational drug use [37,47], antiretroviral therapy resistance
[42], and comorbidities, including hepatitis C virus coinfec-
tion [42] and depression [23]. Overlapping variables between
HIV-associated neurocognitive disorders and other conditions
were also reported [43], along with potential overdiagnosis
due to scoring methods such as the Global Deficit Score [33].

The “black box” nature of machine learning models raised
concerns about clinical relevance and whether predictive
accuracy should outweigh biological plausibility [24,33]. For
example, brain connectivity patterns in fMRI data [24] and
least absolute shrinkage and selection operator-selected MRI
features [33] lacked clear neuropathological explanations,
undermining interpretability. Finally, some (3/26, 11.5%)
studies did not explicitly acknowledge limitations [28,34,46],
potentially omitting critical considerations.

Discussion
Principal Findings
This is the first systematic review to examine how machine
learning has been applied to dementia-related outcomes in
people with HIV, addressing a critical gap in the litera-
ture at the intersection of aging, HIV, cognitive decline,
and artificial intelligence. Historically, research on cognitive
decline in HIV has centered on HIV-associated neurocogni-
tive disorders, including HIV-associated dementia—a form of
neurocognitive impairment resulting from the direct effects of
HIV on the brain [4,49-56]. This emphasis largely reflected
the shorter life expectancy in the early antiretroviral era, when
age-related dementias were less prevalent.

We identified 26 studies, most of which focused
on neurocognitive impairment related to HIV-associated
neurocognitive disorders, with few investigating age-rela-
ted dementias such as AD and ADRD. This imbalance
underscores a major gap in the current literature and

highlights the need for future research exploring the full
spectrum of cognitive decline among older people with HIV.
Although “older adults” is a common term in aging research,
many included studies focused on middle-aged populations,
reflecting the earlier onset of aging-related concerns in the
context of HIV. As people with HIV continue to age, our
findings highlight the need for future research to explore the
intersection of HIV, aging, and neurodegenerative conditions
beyond HIV-associated neurocognitive disorders.

A rigorous study design is essential when applying
machine learning techniques in health care research. Most
included studies were retrospective or cross-sectional,
limiting understanding of disease progression. Because most
studies used cross-sectional designs, they were unable to
model change over time or to distinguish transient from
persistent cognitive impairments. Such designs cannot capture
how small errors in measurement or prediction may accu-
mulate and influence dementia trajectories. Future research
should use longitudinal designs and temporal modeling
approaches to track cognitive changes and evaluate progres-
sion risk among older people with HIV.

In addition, retrospective and cross-sectional study designs
restrict the ability of current machine learning models to
account for real-world contextual factors such as environmen-
tal influences, day-to-day variability in cognitive perform-
ance, social interactions, and cultural factors that may affect
how dementia symptoms manifest or are reported in people
with HIV [57,58]. Without longitudinal or ecologically valid
data, current machine learning models cannot fully cap-
ture the dynamic and multidimensional nature of cognitive
changes over time [59,60]. Moreover, most studies did not
incorporate contextual or social determinants of health, such
as social support, treatment adherence, living conditions, or
daily activity patterns, even though these factors are known
to influence cognitive trajectories and dementia risk among
older people with HIV. Integrating such variables into future
machine learning frameworks could enhance the ecological
validity and predictive performance of dementia models [61,
62]. Longitudinal datasets are also critical for developing
models that predict dementia onset or progression [63], as
they enable temporal analyses and improve generalizabil-
ity. Leveraging multimodal data, such as MRI and fMRI,
laboratory tests, and neuropsychological assessments across
time, can provide a comprehensive view of brain health and
facilitate early detection of dementia among older people with
HIV.

Integrating biomarker and genetic data with clinical
and neuroimaging features offers promise for enhancing
prediction of dementia outcomes [64-67]. Of the studies
included in this systematic review, only 1 used machine
learning to identify key genetic features predictive of
HIV-associated neurocognitive disorder status and proposed
a framework for biomarker development [48]. Future
research should integrate biomarker and genomic informa-
tion to improve predictive performance and support clinical
applications.
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Supervised learning methods, including SVMs, logistic
regression, and random forests, were the most frequently
used and generally demonstrated strong predictive perform-
ance across studies. However, despite their high accuracy,
supervised machine learning models often require large
datasets and substantial computing resources that may
limit their scalability and generalizability, particularly in
resource-constrained settings or smaller research cohorts
[68]. Unsupervised and semisupervised methods (eg, k-means
clustering and mutual connectivity analysis) were less
common but useful for identifying subgroups and latent
cognitive profiles (eg, brain connectivity profiles) [34]. Deep
learning methods, although applied in only a few stud-
ies, showed promising performance in classifying cognitive
impairment and related outcomes. No studies used rein-
forcement learning, representing an opportunity for future
work. As datasets grow in size and complexity, advanced
approaches such as deep and reinforcement learning could
enhance early detection and personalized risk assessment
for dementia in people with HIV [69]. Lessons from these
machine learning–based dementia studies may also inform
broader efforts to develop scalable, multimodal prediction
tools for older populations with complex comorbidities. These
approaches can extend beyond HIV-specific contexts to other
aging populations facing overlapping challenges in cognitive
health and care delivery.

A key limitation identified in this review was the lack
of external validation across studies. Although most studies
used internal validation methods (eg, k-fold cross-validation),
few tested models on external datasets, limiting generaliz-
ability and real-world applicability [70]. Future research
should prioritize external validation to enhance reproduci-
bility and clinical relevance of machine learning–based
dementia prediction in people with HIV.
Limitations
Our systematic review has several limitations. First, although
a comprehensive search strategy was used across multiple
databases, it is possible that relevant studies were missed
due to publication bias or indexing issues (eg, the limi-
ted timeframe, exclusion of non-English publications, or
exclusion of gray literature). Second, despite the system-
atic screening and review process conducted independently
by multiple reviewers, the subjective nature of eligibility
assessment might introduce potential reviewer bias. To
mitigate this, we assessed interrater reliability using the
Cohen κ and achieved strong agreement. We also did
not perform a formal study quality appraisal; rather, we

reported the methodological limitations noted by individ-
ual studies. While this approach aligns with rapid review
guidance [12-14], it limits formal assessment of study quality.
Several included studies relied on self-reported measures,
such as subjective memory complaints, which are inherently
susceptible to recall bias and response error. These sources of
measurement bias were not explicitly addressed or adjusted
for in the reviewed studies, limiting the interpretability of
self-reported cognitive outcomes. Finally, while our review
aimed to categorize and evaluate machine learning techniques
used for dementia-related outcomes in people with HIV,
the rapid advancements in machine learning may mean that
recently published or ongoing studies were not captured at
the time of our search; thus, continuous updating is needed in
future systematic reviews.
Conclusions
This review examined how machine learning methods
have been applied in dementia research for people with
HIV, summarizing the techniques used, their strengths and
limitations, and practical implications for future research.
Despite promising predictive performance, most studies used
supervised machine learning methods and lacked exter-
nal validation, which limits their generalizability. Future
dementia research in HIV could benefit from the adoption
of advanced machine learning methods. The dominance of
studies focused on HIV-associated neurocognitive disorders,
with little attention to age-related neurodegenerative diseases
such as AD and ADRD, underscores a critical gap in
literature. As the population of people with HIV ages, there is
a need to expand longitudinal cohort studies using large-scale
real-world data that integrate multimodal information from
multiple sources, including clinical covariates, neuroimaging,
cognitive assessments, and genetic data, to capture disease
progression, identify early biomarkers, and enable personal-
ized risk assessment.

Future machine learning research in this area should
ensure methodological rigor, the inclusion of diverse data
sources, and external validation to enhance clinical applic-
ability and ultimately improve dementia-related outcomes
in older people with HIV. By highlighting current trends
and research gaps, this review provides a foundation for
advancing machine learning–driven cognitive health research
to improve early detection and management of all-cause
dementia in older people with HIV. These insights may
also inform broader efforts to enhance neurodegenerative
outcomes in aging populations through informatics and digital
health tools.
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