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Abstract

Background: Mild cognitive impairment (MCI) is a precursor of dementia. Therefore, MCI identification and monitoring are
crucial to delaying dementia onset. Given the limits of existing clinical tests, objective support tools are needed.

Objective: This work investigates quantitative handwriting analysis, tailored to enable domestic monitoring, as a noninvasive
approach for MCI screening and assessment.

Methods: A sensorized ink pen, used on paper and equipped with sensors, memory, and a communication unit, was used for
data acquisition. The tasks included writing a grocery list and free text to mimic daily life handwriting, and a clinical dictation
test (parole-non-parole [PnP] test), featuring regular, irregular, and made-up words, aimed at assessing MCI dysgraphia. From
the recorded data, 106 indicators describing the performance in terms of time, fluency, exerted force, and pen inclination were
computed. A total of 57 patients with MCI were recruited, of whom 45 performed a test-retest protocol. The indicators were
examined to assess their test-retest reliability. The indicators from the test repetition were used to assess their relationship with
the scores of clinical tests via correlation analysis. For the PnP test, differences in the indicators among the 3 types of words were
statistically investigated. These analyses were conducted separately for the cursive (2/3 of the sample) and block letters (1/3 of
the sample) allographs, with the level of significance set at 5%. Data from healthy older adults were available for the grocery list
(34 participants) and free text (45 participants) tasks. These were exploited to build machine learning classification models for
the distinction between patients with MCI and healthy controls.

Results: When dealing with reliability, 93% and 44% of the indicators were characterized by a significant reliability of at least
moderate intensity for cursive and block letters respectively. As for the correlation analysis, patients with preserved cognitive
status and daily life functionality were associated with significantly better temporal performances, both in free writing and PnP.
The analysis of PnP highlighted the presence of surface dysgraphia in the recruited sample, as irregular words showed significantly
worse temporal indicators with respect to regular and made-up ones. The classification models’ built-in free writing data achieved
accuracies ranging from 0.80 to 0.93 and F1-scores from 0.81 to 0.92 according to the input dataset.

Conclusions: The presented results suggest the suitability of ecological handwriting analysis for the all-around monitoring of
MCI, from early screening to disease progression evaluation.

(JMIR Aging 2025;8:e73074) doi: 10.2196/73074
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Introduction

In the last decades, the world has witnessed progressive aging.
This trend brings about various challenges at the social,
economic, and health care levels, as it directly affects citizens’
health, compromising several aspects of their daily lives [1].
First, older individuals experience greater difficulty in
responding to external stimuli, a condition that leads to isolation
and inertia. Second, a gradual, albeit sometimes slow, decline
is observed, causing a state referred to as “frailty” [2]. In this
state, the individual becomes more susceptible to motor-related
accidents, resulting in disability and an increase in
hospitalization. Furthermore, aging is linked to a higher
prevalence of neurodegenerative diseases, for which treatments
that slow down the progression of the disease are the only
available interventions.

Among these disorders, dementia is one of the most prevalent,
being characterized by a decline in cognitive function, memory
loss, and changes in behavior [3]. Dementia leads to a gradual
loss in the ability to perform daily tasks independently, causing
patients to often require round-the-clock care and supervision.
This can translate into emotional and physical toll on family
members and caregivers, who may experience stress, burnout,
and financial strain. The health care systems are not immune
to the negative consequences of the disorder, since it is
associated with extensive long-term care, medications, and
support services [4].

Clinically, a transitional phase between the healthy state and
dementia has been identified and denoted as mild cognitive
impairment (MCI) [1]. MCI can manifest heterogeneously.
While patients with amnestic MCI experience memory-related
cognitive loss, participants diagnosed with nonamnestic MCI
face impairments in the domains of attention, language, and
visuospatial ability [5]. From an epidemiological standpoint,
the aggregate prevalence of MCI among older people ranges
from 15% to 20% [6-9]. The problem lies in the relevant yearly
percentage (up to 15%) of cases that are diagnosed with
dementia after having previously been in the MCI state. This
underscores the need for MCI early screening, aimed at
preventing the progression to dementia [10]. Unfortunately, the
broad spectrum of symptoms and the typically nonsignificant
impact on the participants’ independent life make the detection
of MCI quite challenging.

Cognitive tests are typically used in clinical practice for this
purpose since they are quicker and cheaper than imaging
techniques [11,12]. The existing tests, all conducted under the
clinician’s supervision, vary in the assessed cognitive domains
(eg, memory, language, attention) and in the tasks proposed to
the individual, but are in general capable of providing a snapshot
of one’s cognitive status. The most common are the Mini-Mental
State Examination (MMSE) [12], the Montreal Cognitive
Assessment (MoCA) [13], and the clock drawing test (CDT)
[14]. Despite being largely used, such clinical tests experience
a few drawbacks. As they depend on the clinician administering
the test, interrater reliability and subjectivity in the assessment
are a concern. Moreover, to assess all the relevant cognitive
domains, a combination of different tests should be considered,

thus leading to increased administration time. Finally, the scales
are usually characterized by low granularity, thus making it
difficult to establish universally accepted cutoff scores. Thus,
there is a need for a cheap, noninvasive, objective solution to
complement the standard clinical procedure for MCI screening
[6].

In this sense, the recent literature claimed the importance of
handwriting: given its complexity, it can serve as a biomarker
for cognitive decline [15]. This is because handwriting is the
result of the interaction between various cognitive processes:
attention, language, short and long-term memory, motor
planning, visual-spatial skills, in-hand manipulation, fine motor
control, and sensory awareness of the fingers [16]. With the
goal of characterizing the handwriting gesture of patients with
MCI or with dementia with respect to healthy participants,
several studies have been conducted. In Werner et al [17], a
group of 41 controls, 31 patients with MCI, and 22 patients with
mild dementia were recruited and performed copying tasks of
increasing complexity on a digitizer. Significant differences
emerged, with both groups of patients showing increased
execution times and reduced pressure during the motor task.
Conversely, the Livescribe Echo Pen, used on the Livescribe
paper sheet, was used in Kawa et al [16] to compare the
handwriting of 37 controls and 37 patients diagnosed with MCI.
Again, writing slowness emerged as a peculiar characteristic of
the latter group. This was coupled with significantly higher and
wider written traces. The extracted features were then used to
build a linear discriminant classifier, achieving an accuracy of
70%. The combination of a specific digital pen and paper was
also adopted in [18], investigating Chinese handwriting in
patients affected by Alzheimer disease, for which MCI is a
common precursor. The results confirmed the existing literature,
as worse temporal measures, both on paper and in the air, were
associated with the disease. A higher degree of pressure applied
to the writing surface and a poorer control of the same were
revealed as well. A classification study, aimed at distinguishing
patients in the early stage of dementia from healthy participants,
was conducted in [19]. Cursive loops were acquired with a
WACOM digitizer, to then apply unsupervised clustering
followed by a Bayesian-based classifier. The approach reached
an accuracy of 74%. Execution speed, kinematics complexity,
acceleration, and pressure were computed from the data recorded
by a WACOM digital graphic tablet in [20]. Handwriting tasks,
ranging from drawings to spontaneous sentence production,
were performed on a paper sheet fixed onto the tablet surface
by a group of 17 healthy participants (healthy control [HC]),
12 patients with MCI, and 23 patients with dementia (AD).
Performance results ranged from 69.2% (HC vs MCI vs AD)
to 96.6% (HC vs MCI). Pressure features were the most
influential in the model output. In Chai et al [21], simple graphic
tasks, going from repeatedly writing the letter “T” to drawing
a pentagram, were performed by 39 HCs and 40 patients with
MCI on a commercial tablet using a digital pen. After extracting
8 features, a binary support vector classifier achieved an
F1-score of 83.1%.

Given the evidence that emerged in the literature, this work
aims to evaluate handwriting in patients with MCI by changing
the paradigm in terms of the acquisition tool and the proposed
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handwriting tasks, with an eye on the feasibility of remote,
ecological monitoring. Indeed, while able to provide relevant,
objective data on the handwriting performance, limitations can
be pointed out for the approaches found in the literature.
Digitizers can still represent a barrier for older adults [22], who
are typically the ones affected by MCI. Moreover, the writing
execution on the digitizer surface, characterized by a reduced
friction with respect to paper, is inevitably altered [23]. On the
other hand, the methods proposed in studies by Kawa et al [16]
and Qi et al [18] rely on the combination of a digital device and
writing surface, potentially hampering their everyday
employment. For these reasons, in this study, handwriting data
were collected with a sensorized ink pen [24] that writes on
normal paper. As for the tasks, the “Parole-non-Parole” test
(PnP), aimed at assessing the origin of dysgraphic manifestations
associated with MCI, was administered together with 2
unconstrained exercises, aimed at mimicking the natural
handwriting one could perform in the domestic scenario. From
the collected data, a series of indicators was extracted, and 3
specific objectives were investigated. First, the test-retest
reliability of the indicators was assessed, both for the clinical
PnP test and the 2 ecological tasks, to evaluate whether the
proposed approach could be suitable for the longitudinal
monitoring of handwriting in patients with MCI. Second, the
indicators were examined in terms of their quantitative support
for the clinical evaluation. This was done by assessing the
indicators’correlation with the scores of clinical tests. Moreover,
the PnP was specifically analyzed to understand whether the
indicators can be used to support the identification of lexical
and phonological dysgraphia. Last, the unconstrained
handwriting tasks were considered to build classification models
to distinguish between patients with MCI and healthy
participants, with the aim of enabling the ecological, domestic
monitoring of handwriting as a screening tool for the first signs
of cognitive decline.

Methods

Ethical Considerations
The protocol received the approval (ID 07_20/05/2021) from
the Ethical Committee of the section IRCCS Fondazione Don
Carlo Gnocchi of the Ethical Committee IRCCS Regione
Lombardia. An information sheet for study participation was
provided to all eligible participants, and informed consent was
obtained from each of them.

Participants and Protocol
Participants were recruited by IRCCS Fondazione Don Carlo
Gnocchi Milano. The inclusion criteria were (1) confirmed
diagnosis of MCI according to the recommendations by Albert
et al [25]; (2) being aged older than 65 years; (3) having
completed elementary school; (4) having a Clinical Dementia
Rating (CDR) scale [26] score less than or equal to 1; (5)
obtaining negative neurological examination results for both
lateral and extrapyramidal signs; (6) having trail making test A
(TMT-A) results within the normal range for age and education
according to the Italian calibration by Giovagnoli et al [27]; and
(7) not having motor limitations that hinder task performance.
Candidates were excluded in case of the presence of cognitive

impairment of other origin (cerebral stroke, multiple sclerosis,
and Parkinson disease), psychiatric disorders in either recent or
remote anamnesis, severe sensory or intellectual deficits, and
history of substance abuse or alcohol misuse. The recruited
patients underwent clinical assessment, including MMSE, CDR,
CDT, TMT-A, basic activity of daily living (B-ADL) [28], and
instrumental activity of daily living (I-ADL) [29].

The sample size was determined by taking the assessment of
the extracted indicators’ test-retest reliability as the main aim,
since the scientific literature lacks similar works on patients
with MCI. The only comparable study pertains to a systematic
review that reports the psychometric properties of motor
assessments (mobility, walking, balance, and functional
performance) for patients with dementia, yielding intraclass
correlation coefficients (ICC) between 0.42 and 0.99 [30]. On
the other hand, the reliability of the proposed sensorized pen
was demonstrated, the results showing 0.68<ICC<0.99, only in
older adults without any diagnoses [24]. Given the scarcity of
specific evidence in the population with MCI, a conservative
approach was selected. Considering the minimum ICC value
of 0.42 as a target, a statistical power of 80% and a dropout rate
of 10%, the sample size was set to 40.

The protocol was administered under the clinician’s supervision
in a test-retest fashion on the same day, with at least a 30-minute
interval between the 2 repetitions (test and retest) of the protocol.
The time interval was chosen to ensure that the participants
were under the same conditions between test and retest. In this
sense, potential learning effects were not a concern given the
nature of the protocol (no memory-related tasks were
administered). Each patient was provided with blank sheets of
paper to perform three writing tasks in random order, 1 minute
apart: (1) writing a grocery list of at least 6 items (List); (2)
composing a content-free text of at most 7 lines (Text); and (3)
executing the PnP test [31], where the participant wrote a series
of 15 words under dictation. These included 7 regular words
(simple and easily understandable Italian words: “tavolo,”
“cartone,” “attore,” “sorella,” “postini,” “cuoceva,” and
“democratiche”), 3 irregular words (requiring proper semantic
and lexical comprehension of the Italian language to be written
correctly: “cieco,” “nacquero,” and “conoscenza”), and 5
made-up (MU) words (words that do not exist in the Italian
dictionary: “sabomi,” “fule,” “descia,” “sterpanzi,” and
“getrunna”). The order in which words were presented was fixed
across participants and protocol repetitions. Orthographic errors
were then evaluated to assess the eventual presence of lexical
dysgraphia, which is associated with errors in irregular words,
or phonological dysgraphia, linked with errors in MU words.

Sensorized Ink Pen
The handwriting exercises were carried out using a sensorized
ink pen [24], able to record linear acceleration and angular
velocity on 3 orthogonal axes, together with the force applied
on the pen tip with a sampling frequency of 50 Hz. The device
was successfully used for the quantitative analysis of drawing
tasks in patients with Parkinson disease [32] and demonstrated
to be capable of recognizing healthy, older adults of different
ages from unconstrained handwriting samples [33]. Data
acquisition was controlled by the operator administering the
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protocol through a custom iOS app. On top of managing the
start and stop of the recordings, the app allows users to store 4
different types of labels upon pressing buttons displayed on the
user interface. Labels were used to tag the 3 types of words of
the PnP test, so that they could be successively analyzed.

Data Analysis
The data recorded by the sensorized ink pen were elaborated in
MATLAB R2022b (MathWorks, Inc) to extract 106 indicators
measuring heterogeneous characteristics of the handwriting
gesture, namely the temporal performance, the force patterns
applied on the writing surface, the movement fluency, the pen

inclination with respect to the vertical axis (tilt), the high
frequency oscillations both in the domains of time and
frequency. The complete description of the indicators can be
found in [32-35]. The indicators presented in the Results section
are described in Textbox 1 for each domain. The details on their
computation can be found in the Multimedia Appendix 1. The
ones with (S) after the name were selected a priori for the
analysis of reliability, relationships with clinical scores, and
MCI dysgraphia characterization. If all the indicators within a
domain were selected a priori, (S) is found at the end of the
name of the domain.
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Textbox 1. Description of the indicators extracted from the sensorized ink pen data, divided by domain.

Temporal domain (S):

• Execution time: the time in seconds required to complete the execution.

• Rel stroke num: the number of strokes (tracts on paper) generated in the time unit.

• Mean on sheet: the average time in seconds required to produce a stroke.

• On sheet CV: the coefficient of variation (CV) of the time required to produce a stroke.

• On sheet ratio: the percentage of time spent with the tip in contact with the paper with respect to the total time required to complete the execution.

• Mean in air: the average time in seconds spent with the pen in the air.

• In air CV: the CV of the time spent with the pen in the air.

• Mean pause: the average duration in seconds of pauses (in air moments longer than 2 seconds).

• Pause num: the number of pauses in the execution.

• Air sheet ratio: the ratio between the mean in air and the mean on the sheet.

Fluency domain:

• LDLJ A (S): the logarithmic dimensionless jerk of the acceleration signal.

• LDLJ G (S): the logarithmic dimensionless jerk of the angular velocity signal.

• SPARC (S): the spectral arc length of the angular velocity signal.

• G NC (S): the number of changes (NC) in the time unit in the angular velocity signal.

• A NC: the number of changes (NC) in the time unit in the acceleration signal.

• Cons peak diff G (S): the absolute average difference in deg/s between consecutive extrema in the angular velocity signal.

Force domain (S):

• Mean force: the mean force in arbitrary units exerted while the tip is on paper.

• Force overshoot: the difference between the maximum and median exerted force, in arbitrary units.

• Force NC: the NC in the time unit in the force signal.

• Cons peak diff F: the absolute average difference in arbitrary units between consecutive extrema in the force signal.

Pen inclination domain:

• Mean tilt (S): the average pen inclination with respect to gravity in degrees.

• Tilt CV (S): the CV of the pen inclination with respect to gravity.

• Tilt median bandwidth: the width of the frequency interval that contains 50% of the tilt power spectrum total power.

High frequency oscillations (time domain):

• A ApEn: approximate entropy of the acceleration signal.

High frequency oscillations (frequency domain):

• G peak power: the power at the angular velocity power spectrum peak.

• G RPW 8: the median relative power of the angular velocity power spectrum in a 3 Hz interval centered around 8 Hz.

• G RPW 11: the median relative power of the angular velocity power spectrum in a 3 Hz interval centered around 11 Hz.

• G Dom RPW 11: the relative power of the dominant angular velocity power spectrum in a 3 Hz interval centered around 11 Hz

• A peak frequency: the frequency at which the peak in the acceleration power spectrum is found.

• A peak power: the power at the acceleration power spectrum peak.

• A median bandwidth: the width of the frequency interval that contains 50% of the acceleration power spectrum total power.

• A Dom 68% Peak Bandwidth: the width of the frequency interval, centered around the spectral peak, that contains 68% of the acceleration power
spectrum total power.
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Statistical Analysis

Overview
The same software was used to run the statistical analyses, with
the significance level set at 5%. Given the differences in the
indicators in cursive and block letters (BL) handwriting—the
choice of the allograph was left free to the participant—the
analyses were conducted separately for the 2 allographs. The
pipeline was common for each goal: after testing for the
indicator normality with the Lilliefors test, the proper statistical
test was applied.

Reliability
The indicators test-retest reliability in the MCI group for the
List, Text, and PnP tasks, as well as for PnP regular, irregular,
and MU words separately, was the first aspect to be evaluated.
Before computing the reliability, a paired sample test was
conducted, namely the t test for normally distributed indicators,
the Wilcoxon test otherwise. If the paired test rejected the null
hypothesis (ie, the mean/median of the difference between test
and retest value is equal to 0), the indicator was deemed not
reliable. Otherwise, the ICC (absolute agreement) or the Kendall
W was computed if the indicator was normal or nonnormal,
respectively. Both parameters range between 0 and 1. The
indicator reliability was interpreted as follows: nonreliable if
ICC<0.5 or W<0.2; fairly reliable if 0.2≤W<0.4; moderately
reliable if 0.5≤ICC< 0.75 or 0.4≤W<0.6; good reliability if
0.75≤ICC<0.9 or 0.6≤W<0.8; optimal reliability if ICC≥0.9 or
W≥0.8. Notably, the test-retest reliability analysis did not
involve the indicators measuring variability (namely, all the
indicators measuring variance or coefficient of variation [CV]).

The successive statistical analyses were solely based on the
indicators extracted from the first repetition of the task, to avoid
including eventual learning phenomenon in the data.

Relationship With Clinical Scores
For the second aim (ie, support to the clinical evaluation), the
correlation between the indicators and the clinical parameters
(MMSE, CDT, B-ADL, I-ADL, TMT-A, and number of errors
in PnP test, either globally and divided by word type) was
computed to measure to which extent the former can be used
to approximate the results of cognitive/functional tests. Either
the Pearson (r, normal) or Spearman (ρ, nonnormal) correlation
coefficients were considered with the following interpretation:
weak correlation, 0.2≤∣r, ρ∣<0.4; moderate correlation,
0.4≤∣r, ρ∣<0.6; strong correlation, 0.6≤∣r, ρ∣<0.8; very
strong correlation, ∣r, ρ∣≥0.8. In this case, the PnP task was
considered as a whole (ie, no differentiation among word types).

MCI Dysgraphia Characterization
To provide quantitative information for the detection of lexical
and phonetical dysgraphia, handwriting indicators were
statistically compared among the different types of words in
the PnP task. After averaging the indicators across words of the
same type, the differences among the 3 types were studied using
statistical methods for paired samples: repeated measures
analysis of variance for normal data and Friedman test for the
nonnormal case. Following such tests, in case the null hypothesis
was rejected, a post hoc comparison was conducted to determine

which word groups exhibited significant differences using the
Bonferroni method.

Classification of Unconstrained Handwriting Tasks
Last, binary classification models for the distinction between
patients diagnosed with MCI and HC participants were
developed in Python (version 3.10; Python Software
Foundation). The models were based only on the unconstrained
writing tasks presented in this study (List and Text) to collect
evidence on the suitability of ecological handwriting for MCI
detection. The data for HC participants were collected during
other acquisition campaigns, using the same device. These
participants signed an informed consent for their voluntary
participation. It is worth noting that only participants with age
≥65 years and MMSE ≥27 were included in the HC group, to
avoid considering participants with possibly relevant cognitive
deterioration [36]. The age threshold of 65 years was based on
the age of the youngest participant in the MCI group.
Importantly, HCs were excluded if diagnosed with any
neurological, musculoskeletal, or cardiovascular conditions that
could impair handwriting.

The starting datasets were as follows: (1) List in cursive
allograph, L (C); (2) Text in cursive allograph, T (C); (3) List
and Text in cursive allograph, L+T (C); (4) List in BL allograph,
L (BL); (5) Text in BL allograph, T (BL); (6) List in all
allographs (L); and (7) Text in all allographs (T). Independent
of the considered dataset, the model’s input consisted of
handwriting indicators only, excluding the ones showing a
correlation coefficient greater than 0.9 in absolute value with
at least another indicator [37]. A 10-fold stratified repeated
cross-validation approach was adopted in the training phase,
setting the F1-score as the metric to be optimized, given that,
in general, the datasets were not balanced. At each iteration, the
seed was changed and the whole dataset was divided into train,
validation, and test sets, adopting 0.70, 0.15, and 0.15 ratios,
respectively. The validation set was exploited to optimize the
algorithm hyperparameters through a randomized search
approach running 30 iterations. The test set was used to evaluate
the model’s performance on data not seen by the algorithm in
the previous phases. The global performances were then assessed
by averaging the classification metrics (accuracy, recall,
precision, F1-score, and area under the precision recall curve)
over the 10 folds. Within this framework, several strategies
were adopted. Given the general imbalance of the target classes,
both undersampling and oversampling techniques were
implemented in the training and validation sets through the
imbalanced-learn library [38]. The former included random
undersampling, the NearMiss method, and the Estimated Nearest
Neighbors method. As for the latter, Synthetic Minority
Over-sampling Technique (SMOTE), SMOTE-support vector
machine (SVMSMOTE), Borderline SMOTE, and ADASYN
were considered. Last, the selectKBest feature selection method
[39] was used to reduce the dataset dimensionality, with the
number of features K to be tried ranging from 10 to 50 with
discrete steps of 10. Support vector classifier, random forest,
and a pool of boosting algorithms—namely AdaBoost, gradient
boosting classifier (GBC), XGBoost (XGB), LightGBM
(LGBM), and CatBoost—were tried. The details on the space
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of explored hyperparameters for each model are provided in the
Multimedia Appendix 1. After the identification of the best
performing models on the test set, the importance of indicators
in their predictions was evaluated through Shapley Additive
Explanations (SHAP) analysis [40]. The results of the SHAP
analysis were used to qualitatively explore the patterns of
misclassified samples: for each model, the trend of the 5 most
relevant indicators for the predictions in misclassified samples
was compared with the median trend of the same indicators in
the MCI and HC groups through polar plots. To do so, the
indicators were normalized between 0 and 1 for visualization
purposes.

Results

Participants and Dataset
The characteristics of the recruited participants are reported in
Table 1, separately for the whole sample of patients with MCI,
which was exploited for the classification analysis, and for the
sample that performed test and retest acquisitions, considered
for the statistical analyses. Among the 57 patients with MCI
enrolled, 40 were amnestic and 17 were nonamnestic. In more
detail, the sample included: 3 pure amnestic MCIs (with isolated
memory disturbance); 37 multiple-domain amnestic MCIs (with
memory disturbance associated with disturbance of other
cognitive faculties); 8 multiple-domain nonamnestic MCIs (with
disturbance of other cognitive faculties, eg, attention, executive,

spatial, and language, without memory disturbance); 9
single-domain nonamnestic MCIs (with disturbance of a single
cognitive faculty, mostly dysexecutive).

As for the HC sample, information is displayed separately for
the List and Text tasks. For this group, only the MMSE score
was available. When comparing the MMSE score of participants
with MCI and HC, the score of the MCI whole group was
significantly lower than that of the HC sample who performed

the List (P=5.4×10–05) and the HC sample who performed the

Text (P=6.4×10–07).

The time required for completing the PnP test, given in seconds
as median (IQR), was 126.42 (102.56-155.27) seconds at test
and 122.56 (95.16-141.47) seconds at retest.

The allographs adopted by patients who underwent the test-retest
protocol are reported hereafter:

• List, 29 cursive, 12 BL, 4 mixed (ie, BL in one repetition
and cursive in the other).

• Text, 33 cursive, 11 BL, 1 mixed.
• PnP, 31 cursive, 11 BL, 3 mixed.

The allograph distribution of the data used in the classification
problem is shown in Table 2. Here, the information refers to
the available handwriting data, since both the test and retest
acquisitions of the MCI group were considered, while HC
participants performed the tasks multiple times.
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Table 1. Sample characteristics.

HC (text; n=45)HCb (list; n=34)MCI (test-retest; n=45)MCIa (whole; N=57)Characteristics

Sex

23183032Female

22161516Male

———d9NAc

73.44 (7.50)73.35 (7.79)78.22 (5.15)78.92 (5.59)Age (years), mean (SD)

8 (5-15)8 (5-13.5)12 (8-13)10 (8-13)Education, median (IQR)

29 (28-30)29 (28-30)27 (24-28)27 (24-28)MMSEe, median (IQR)

——0.5 (0.5-0.5)0.5 (0.5-0.5)CDRf, median (IQR)

——3 (3-5)3 (3-5)CDTg, median (IQR)

——6 (5-6)6 (5-6)B-ADLh, median (IQR)

——6 (4-8)6 (4-8)I-ADLi, median (IQR)

——67 (51-90)64 (48-89)TMT-Aj, median (IQR)

——4 (2-5)4 (2-5)PnPk errors, median (IQR)

——1 (0-1)1 (0-1)PnP errors Rl, median (IQR)

——1 (0-1)1 (0-1)PnP errors Im, median (IQR)

——2 (1-3)2 (1-3)PnP errors MUn, median (IQR)

aMCI: mild cognitive impairment.
bHC: healthy control.
cNA: not available.
dNot applicable.
eMMSE: Mini-Mental State Examination.
fCDR: clinical dementia rating.
gCDT: clock drawing test.
hB-ADL: basic activity of daily living.
iI-ADL: instrumental activity of daily living.
jTMT-A: trail making test–A.
kPnP: parole-non-parole test.
lR: regular words.
mI: irregular words.
nMU: made-up words.
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Table 2. Allograph distribution in the datasets used for the binary classification problem.

NAaBlock lettersCursiveTask

MCIb

202862List

32168Text

02161List and text

HCc

52126List

534106Text

0617List and text

aNA: not available.
bMCI: mild cognitive impairment.
cHC: healthy control.

Reliability
The analysis regarded the data collected from participants with
MCI, denoted as “MCI Test-Retest” in Table 1. Participants
who adopted different allographs across the test-retest protocol
were excluded. For the sake of brevity, the results are reported
for a subset of temporal, force, fluency, and tilt indicators, since
these domains are the most commonly investigated in the
literature.

Table 3 displays the results obtained on the 2 unconstrained
handwriting tasks, separately for cursive (“C” columns) and
block letters (“BL” columns) allograph.

In the List executed in cursive, optimal, good, and moderate
reliability was revealed for 6 of 15, 8 of 15 (mean pause not
reaching significance), and 1 of 15 indicators, respectively. The
trend was confirmed in the Text task, with 7, 5, and 2 indicators
showing optimal, good, and moderate reliability. Only a single
unreliable indicator emerged, namely “Mean Force.” When
dealing with BL, the results were comparable for the Text, with
only 2 indicators being not reliable. Among the reliable ones,
statistical significance was not reached in 4 of 13 cases (mean
in air, mean pause, LDLJ A, mean tilt). The situation was instead
slightly worse for the List task: reliability was mostly of

moderate intensity (10/15 indicators), coupled with 8 cases with
a P value greater than the critical threshold of .05.

The indicators’ reliability related to the PnP task performed in
cursive (Table 4) was optimal, as the analysis yielded 14 out of
15 significant results of at least good reliability. Significance
was not revealed only for the mean in air. The breakdown of
the 3 types of words (Table 4) revealed that the positive results
obtained on the whole task were due to the contribution of
regular (Force NC being the only nonreliable indicator) and
irregular words (besides cons peak diff G, all the indicators
were significantly reliable). MU words were indeed
characterized by 5 out of 15 unreliable indicators and 2
nonsignificant results among the reliable ones. Furthermore, in
this case, the BL allograph was associated with worse outcomes
in the whole PnP (Table 5: 5 unreliable indicators and 6 at least
moderately reliable but not significant ones). Here, the poorest
results happened with irregular words (6 reliable indicators
reaching significance, 6 not reliable), while MU words revealed
better reliability values than the corresponding in cursive,
although only 4 showed a P value lower than .05.

Figure 1 displays a heatmap of the overall reliability intensity
across indicators—the same reported in Tables 3-5—and tasks.
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Table 3. Reliability results for List (“L” columns) and Text (“T” columns). Refer to Textbox 1 for descriptions of the indicators.

T (BL)L (BL)bT (C)L (C)aDomain and indicator

P valueRelNP valueRelNP valueRelNP valueReldNc

Temporal domain

.0010.89e0.0460.67f08.2×10–90.89e01.8×10–50.83e0Rel stroke num (num-
ber/s)

.740.00h0.030.69f0.010.83g1.0050.65f0Mean on sheet (s)

1.7×10–50.95g0.040.68f08.5×10–100.90g03.0×10–40.76e0On sheet ratio

.080.84g1.240.63f17.5×10–60.81e0.020.83g1Mean in air (s)

.070.86g1.360.55f1.020.55f0.090.70e1Mean pause (s)

.050.92g1.120.55f02.3×10–60.83e0.030.78e1Air sheet ratio

Fluency domain

.120.77e1.110.55f0.0030.91g18.3×10–80.89e0LDLJ A

.010.77e0.050.89g16.4×10–90.89e0.0070.90g1LDLJ G

.050.92g1.040.67f01.3×10–110.93g02.9×10–70.88e0SPARC

.020.75e0.080.61f0.0040.90g1.010.86e1Cons peak diff G
(deg/s)

Force domain

.0010.91g02.2×10–50.94g0NANAh,i02.4×10–90.93g0Mean force (arbitrary)

.0010.89e03.0×10–50.94g01.1×10–160.97g0.0050.94g1Force OVS (arbitrary)

3.3×10–40.90g0.0030.82e04.4×10–90.89e04.4×10–60.8e0Force NC (number/s)

.200.41h0.060.65f04.4×10–160.97g0.010.87g1Cons peak diff F (arbi-
trary)

Tilt domain

.050.90g1.080.83g18.7×10–40.69f0.020.81g1Mean tilt (deg)

aC: cursive.
bBL: block letters.
cN: normality (0 normal, 1 nonnormal).
dRel: reliability.
eGood reliability.
fModerate reliability.
gExcellent reliability.
hNot reliable.
iIndicator failed the paired samples test.
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Table 4. Reliability results for parole-non-parole test (PnP) test and regular (R), irregular (I), and made-up (MU) words in cursive. Refer to Textbox
1 for descriptions of the indicators.

MUIRPnP (C)aDomain and indicator

P valueRelNP valueRelNP valueRelNP valueRelcNb

Temporal domain

.0080.87d1.0010.69e0.0030.94d1.0030.93d1Rel stroke num (number/s)

NANAf,g1.0030.93d1.0020.97d1.010.84d1Mean on sheet (s)

.240.59e1.0490.74h12.8×10–80.89d02.5×10–50.84h0On sheet ratio

.140.64h1.040.75h12.8×10–70.86h0.060.72h1Mean in air (s)

.040.75d1.030.77h1.020.82d1.020.81d1Mean pause (s)

.200.28g0.0040.65e03.2×10–70.86h0.020.80d1Air sheet ratio

Fluency domain

NANAg12.2×10–70.87h03.6×10–60.83h0.0050.90d1LDLJ A

NANAg16.3×10–90.90d0.010.86d1.0030.93d1LDLJ G

.0040.92d1.0140.83d1.0020.95d1.0040.91d1SPARC

NANAg1.0770.70h1.0040.92d1.0040.91d1Cons peak diff G (deg/s)

Force domain

2.9×10–100.93d03.6×10–90.91d01×10–100.93d08.1×10–100.92d0Mean force (arbitrary)

.0040.91d1.0040.92d14.2×10–110.94d02.8×10–80.89h0Force OVS (arbitrary)

.0010.69e04.2×10–50.78h0NANAg04.9×10–90.91d0Force NC (number/s)

.0060.89d18.6×10–70.85h06.4×10–90.90d04.3×10–120.94d0Cons peak diff F (arbi-
trary)

Tilt domain

4.8×10–80.89h06.2×10–80.89h08.3×10–190.90d04.4×10–80.88h0Mean tilt (deg)

aC: cursive.
bN: normality (0 normal, 1 nonnormal).
cRel: reliability.
dExcellent reliability.
eModerate reliability.
fIndicator failed the paired samples test.
gNot reliable.
hGood reliability.
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Table 5. Reliability results for parole-non-parole test (PnP) test and regular (R), irregular (I), and made-up (MU) words in block letters. Refer to Textbox
1 for descriptions of the indicators.

MUIRPnP (BL)aDomain and indicator

P valueRelNP valueRelNP valueRelNP valueRelcNb

Temporal domain

.100.57e0.0070.79d0.150.72d1.010.77d0Rel stroke num
(number/s)

.010.77d0.0020.86d0.0030.84d0.170.41f0Mean on sheet (s)

.250.63d1NANAf,h0.090.83g13.4×10–40.93g0On sheet ratio

.060.66e0NANAf1.010.79d0.110.79d1Mean in air (s)

.140.74d1NANAf1.090.83g1NANAf0Mean pause (s)

.070.63e0NANAf1.0090.79d0NANAf0Air sheet ratio

Fluency domain

.440.10f0.040.68d0.470.04f0.240.37f0LDLJ A

.020.76d0.030.67d0.060.66e0.120.77d1LDLJ G

.050.91g1.080.83g1.020.75d0.150.50e0SPARC

.150.51e0.160.48f0.200.45d0.150.51e0Cons peak diff G
(deg/s)

Force domain

.060.88g1.050.93g1.050.90g1.050.90g1Mean force (arbi-
trary)

.070.87g1.0040.82d0.0010.88d0.060.89g1Force OVS (arbi-
trary)

.120.51e0.320.58e1.060.67e0.0010.87d0Force NC (num-
ber/s)

.040.70e0.250.38f0.0030.850.0010.87d0Cons peak diff F
(arbitrary)

Tilt domain

.040.65e0.520.45i1.080.55e0.170.41f0Mean tilt (deg)

aBL: block letters.
bN: normality (0 normal, 1 nonnormal).
cRel: reliability.
dGood reliability.
eModerate reliability.
fNot reliable.
gExcellent reliability.
hIndicator failed the paired samples test.
iFair reliability.
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Figure 1. Reliability heatmap. Each row represents an indicator extracted from the sensorized ink pen with its measurement unit (if absent, the indicator
is dimensionless), while each column represents a task. The color bar on the right encodes the reliability intensity. For the sake of visualization, here
there is no distinct interpretation between ICC and Kendall W for the color coding: only the reliability value is considered. BL: block letters; C: cursive;
I: irregular words in PnP; L: list; LDLJ A: logarithmic dimensionless jerk of the acceleration signal; LDLJ G: logarithmic dimensionless jerk of the
angular velocity signal; MU: made-up words in PnP; NC: number of changes; OVS: overshoot; PnP: parole-non-parole; R: regular words in PnP;
SPARC: spectral arc length of the angular velocity signal; T: text.

Relationship With Clinical Scores
The statistically significant correlations of handwriting
indicators with clinical parameters are reported in Table 6.
Overall, significant correlations were identified mainly for the
unconstrained tasks in BL allograph. The I-ADL score was also
significantly correlated with the indicators extracted from the

Text in cursive allograph, while the cursive List exhibited no
significant results at all. The PnP test, on the other hand,
revealed relationships with the computed indicators mainly
when considering the number of errors in the irregular words.
The correlation absolute values ranged from moderate to strong,
and their direction followed the expected trends.
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Table 6. Correlation results. The correlation coefficient value and its corresponding P value are reported for all the tasks, separately for cursive (C)
and block letters (BL) allographs. The clinical parameter “PnP errors - I” refers to the number of errors with irregular words in the parole-non-parole
test (PnP) test. The correlations, in this case, were computed only with the indicators extracted from irregular words. Refer to Textbox 1 for descriptions
of the indicators.

PnP (BL)PnP (C)T (BL)L (BL)dTc (C)La (C)bClinical parameter
and indicator

P valuecorrP valuecorrP valueCorrP valuecorrP valuecorrP valuecorre

MMSEf

————.000.66.040.52————gRel stroke num
(number/s)

.040.51——.020.57.010.62.030.41——On sheet ratio

————.00–0.66.02–0.56————Mean in air (s)

.05–0.51——.01–0.63——————Mean pause (s)

.001–0.74————.004–0.68.02–0.42——Pause num (num-
ber)

————.02–0.57.02–0.58————Air sheet ratio

CDRh

——.047–0.80.047–0.80——————On sheet CV

————.0470.80——.0470.80——Mean in air (s)

————.0470.80——————Air sheet ratio

CDTi

.030.53————.050.50————Mean force (arbi-
trary)

————.020.58.020.59————Force OVS (arbi-
trary)

——————.010.63————Force NC (num-
ber/s)

.0010.74————.020.57————Cons peak diff F
(arbitrary)

I-ADLj

————.010.65.020.57.020.42——Rel stroke num
(number/s)

————————.02–0.42——Mean on sheet (s)

————.010.65.010.66————On sheet ratio

————.00–0.83.01–0.63.01–0.49——Mean in air (s)

————.04–0.52——.03–0.41——Mean pause (s)

.003–0.69————.02–0.57.01–0.48——Pause num (num-
ber)

————.001–0.73.01–0.61————Air sheet ratio

TMT-Ak

————.030.55——.010.47——Mean in air (s)

————.04–0.51——————Mean force (arbi-
trary)

——.03–0.41——.045–0.51.04–0.39——Force NC (num-
ber/s)

————.02–0.59.02–0.58————Cons peak diff F
[arbitrary]

PnP errors – I
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PnP (BL)PnP (C)T (BL)L (BL)dTc (C)La (C)bClinical parameter
and indicator

P valuecorrP valuecorrP valueCorrP valuecorrP valuecorrP valuecorre

.01–0.65——————————Mean on sheet (s)

.007–0.69——————————On sheet ratio

.0050.70——————————Air sheet ratio

.02–0.61.002–0.54————————G NC (number/s)

aL: list.
bC: cursive.
cT: text.
dBL: block letters.
ecorr: correlation.
fMMSE: Mini-Mental State Examination.
gNot applicable.
hCDR: clinical dementia rating.
iCDT: clock drawing test.
jI-ADL: instrumental activity of daily living.
kTMT-A: trail making test-A.

MCI Dysgraphia Characterization
The statistically significant results of the post hoc comparison
of indicators (ie, the indicators for which the repeated measures

ANOVA or Friedman test rejected the null hypothesis) among
regular, irregular, and MU words are reported in Table 7 for
both cursive (“C” columns) and block letters (“BL” columns).
Most significances regarded irregular words.
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Table 7. Results of the parole-non-parole test post-hoc comparison among different word types. “Type 1” and “Type 2” indicate the type of words
being compared. The columns “LB,” “Diff,” and “UB” represent, respectively, the lower bound, the estimate, and the upper bound of the difference in
the indicator between the type 1 and type 2 words. Refer to Textbox 1 for descriptions of the indicators.

BLbCaType 2Type 1Indicator

P value

(PH)f
UBDiffLBP valueP value (PH)UBeDiffLBdP valuec

Execution time (s)

.007–0.24–1.14–2.053.3×10–4.001–0.28–0.90–1.521.7×10–6IhRg

4.7×10–4–0.52–1.43–2.333.3×10–41.4×10–6–0.68–1.30–1.921.7×10–6IMUi

Rel stroke num (number/s)

.0150.630.350.07.0251.9×10–41.651.030.424.4×10–5IR

.0150.660.360.07.0255.4×10–41.580.970.354.4×10–5IMU

On sheet ratio

.0050.170.100.031.6×10–4————j.88IR

.0070.220.120.031.6×10–4————.88IMU

Mean in air (s)

4.7×10–4–0.52–1.43–2.333.4×10–4.029–0.05–0.67–1.285.9×10–5IR

.0070.24–1.14–2.053.4×10–43.4×10–5–0.52–1.13–1.755.9×10–5IMU

In air CV

.008.0040.380.220.06.001MUR

.0190.59–0.320.05.008.0440.00–0.17–0.33.001IMU

Mean pause (s)

.006–0.23–1.04–1.84.002.002–0.24–0.82–1.391.5×10–5IR

.0091.80–1.000.20.0021.8×10–5–0.51–1.08–1.661.5×10–5IMU

Pause num (number)

.016–0.01–0.64–1.20.018.001–0.18–0.55–0.92.002IMU

Tilt CV

4.7×10–42.331.430.526.3×10–4.0021.480.870.25.003IR

.0421.830.930.026.3×10–4————.003IMU

LDLJ G

.013–0.04–0.22–0.39.001.029–0.05–0.67–1.28.032MUR

.0040.570.340.11.001————.032IMU

aC: cursive.
bBL: block letters.
cP value of the statistical test investigating the differences among the 3 types of words (ANOVA or Friedman test).
dUB: upper bound.
eLB: lower bound.
fPH: P value of the pairwise post hoc comparison.
gR: regular.
hI: irregular.
iMU: made-up.
jNot applicable.
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Classification of Unconstrained Handwriting Tasks
The best classification performances for each dataset are
displayed in Table 8, together with the adopted training strategy

in terms of under- or oversampling and feature selection.
Classification metrics on the test set are given as average (SD)
over the 10 folds of stratified repeated cross-validation.

Table 8. Binary classification performances on the test set. For details, see the Methods section (Data Analysis subsection).

PRCc AUCdF1-scorePrecisionRecallAccuracyFSbSamplingaModelDataset

0.82 (0.07)0.87 (0.04)0.83 (0.08)0.93 (0.07)0.84 (0.05)1SMOTEhRFgLe (C)f

0.76 (0.12)0.83 (0.07)0.81 (0.14)0.87 (0.08)0.86 (0.06)0SMOTECBjTi (C)

0.84 (0.09)0.90 (0.07)0.85 (0.09)0.96 (0.08)0.84 (0.09)0NoABkL+T (C)

0.77 (0.17)0.81 (0.13)0.78 (0.18)0.90 (0.17)0.80 (0.14)1SVMSMOTEmCBL (BL)l

0.87 (0.14)0.92 (0.09)0.87 (0.14)1.00 (0.00)0.93 (0.07)0RUSoSVCnT (BL)

0.85 (0.09)0.87 (0.06)0.88 (0.09)0.88 (0.07)0.84 (0.07)0SMOTEXGBpL

0.73 (0.13)0.81 (0.10)0.79 (0.12)0.85 (0.12)0.86 (0.08)0RUSSVCT

aThe adopted sampling strategy is reported.
bFS is 1 if feature selection was applied, 0 otherwise.
cPRC: precision recall curve.
dAUC: area under the curve.
eL: list.
fC: cursive.
gRF: random forest.
hSMOTE: Synthetic Minority Oversampling Technique.
iT: text.
jCB: CatBoost.
kAB: AdaBoost.
lBL: block letters.
mSVMSMOTE: Synthetic Minority Oversampling Technique-Support Vector Machine.
nSVC: support vector classifier.
oRUS: random undersampling.
pXGB: XGBoost.

The top 5 most important indicators for each model, according
to the SHAP analysis, are presented in Table 9.

A total of 21 indicators resulted among the possible 35 (5 top
relevant indicators for 7 datasets), the most relevant ones. The
most prevalent was Tilt CV, being present in 5 out of 7 datasets
(one occurrence of Tilt CVT in the L+T [C] dataset), followed
by G peak power (4/7). The indicators A peak frequency and
force NC were found in 3/7 cases, while cons peak diff G, A
ApEn, and execution time resulted in 2/7 datasets. The
remaining indicators occurred only once. Importantly, the
indicators occurring multiple times were always characterized
by the same direction in the MCI group. A high degree of
consistency was revealed for the 3 models trained on cursive
samples. Indeed, Tilt CV was the most important indicator in
all 3 cases, while cons peak diff G, A ApEn, and G peak power
were found in the 2 models trained with List cursive samples
(L [C]; L+T [C]). For the 2 models trained on BL samples, the
opposite trend occurred, with no superpositions among their 5
most relevant indicators.

Given these outcomes, the analysis of misclassified samples
was carried out for cursive-samples models only.

In the L (C) model, G peak power showed trends compatible
with those of patients with MCI in 50% (5/10) of false positive
(FP) samples. The other recurrent altered indicators in FPs were
cons peak diff G and air sheet ratio (4/10, 40%). Tilt CV and
G peak power were found to be in line with that of HC
participants in 83% (5/6) and 67% (4/6) of the false negatives
(FNs), respectively.

In T (C), FPs were mainly associated with problems in temporal
indicators (execution time: 11/16, 69%; mean pause: 10/16,
63%) and in a peak frequency (11/16, 69%). This last indicator
was the main contributor to the presence of FNs (12/16, 75%),
together with Tilt CV and mean pause (10/16, 63%).

When combining the information of the 2 tasks (L+T [C]), Tilt
CVT was found to deviate from the expected values in most
misclassified samples: 67% in both FPs (4/6) and FNs (2/3).
The other main contributor to FPs was A NC (3/6, 50%).
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Table 9. For each indicator, the indicator name, the corresponding absolute Shapley Additive Explanations value, and the direction in patients with
MCI are presented for each dataset. The results are related to the best-performing model in each dataset, presented in Refer to Textbox 1 for descriptions
of the indicators.

#5 Indicator#4 Indicator#3 Indicator#2 Indicator#1 IndicatorDataset

G peak power 0.019 (+)Air sheet ratio 0.019 (+)A ApEn 0.044 (+)Cons peak diff G 0.057
(+)

Tilt CV 0.093 (+)cLa (C)b

Mean pause 0.042 (+)A_Peak frequency 0.058
(–)

Execution time 0.083 (+)Force NC 0.090 (–)Tilt CV 0.129 (+)Td (C)

G peak power 0.010 (+)Cons peak diff G 0.036
(+)

A NC 0.056 (+)A ApEn 0.059 (+)Tilt CVT
e 0.090 (+)L+T (C)

On sheet CV 0.022 (+)Force overshoot 0.041
(+)

G peak power 0.066 (+)A_Peak frequency 0.105
(–)

LDLJ A 0.108 (–)gL (BL)f

Tilt median bandwidth
0.032 (–)

G RPW 8 0.035 (+)A Dom 68% peak band-
width 0.039 (+)

G RPW 11 0.040 (+)Force NC 0.042 (–)T (BL)

G Dom RPW 11 0.024
(+)

G peak power 0.027 (+)A peak frequency 0.041
(–)

Execution time 0.073 (+)Tilt CV 0.077 (+)L

Tilt CV 0.030 (+)G NC 0.039 (+)A median bandwidth
0.043 (+)

A peak power 0.043 (+)Force NC 0.063 (–)T

aL: list.
bC: cursive.
c+ denotes increased indicator values.
dT: text.
eTilt CVT in the L+T (C) dataset refers to the Tilt CV indicator in the text task. The other indicators in the row refer to the list task.
fBL: block letters.
g– denotes decreased indicator values.

Interestingly, 3 HCs and 2 MCIs were misclassified across all
3 cursive datasets. As for the HC group:

• PEN024 was consistently misclassified because of trends
in A ApEn and temporal indicators (execution time, mean
pause, and air sheet ratio) compatible with those of patients
with MCI.

• PEN025 instead showed alterations in the kinematics of
the handwriting movement, with high values of Tilt CV in
the T (C) task and great angular velocity oscillations power
in both tasks (G peak power).

• PENT002 exhibited a heterogeneous pattern, with
difficulties in the force and pen inclination domains in the
T (C) task. Altered values of cons peak diff G were among
the reasons for the wrong prediction both in L (C) and L+T
(C).

Moving to the patients with MCI:

• DGSMN07 revealed a high coherence across tasks. The
modulation of rotational kinematics (cons peak diff G and

G peak power) was similar to that of HCs, in turn causing
the same behavior in Tilt CV.

• DGMSN17 was misclassified in all datasets due to the trend
of Tilt CV. The effect of temporal indicators was identified
in the T (C) task.

The indicators’ trend for these samples is presented in the
following radar plots for each classification model (in order, L
[C], T [C], and L+T [C]). For each model, the most relevant
indicator is displayed at the top of the radar. Then, indicators
are displayed counterclockwise in decreasing order of relevance.
All the values are normalized between 0 and 1 for visualization
purposes. The dashed green line represents the indicators’
median value, while the green area represents the interval
between the 25th and the 75th percentile in the HC group. The
red elements represent the same for the group of patients with
MCI. The solid lines represent the indicator’s value for the
sample under examination. Blue hues are used for HC samples
in Figure 2, while orange hues are used for MCI samples in
Figure 3.
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Figure 2. Radar plots for HC samples from participants PEN024, PEN025, and PENT002. A ApEn: approximate entropy of the acceleration signal;
C: cursive; CV: coefficient of variation; HC: healthy control; L: list; MCI: mild cognitive impairment; T: text; Tilt CV T: tilt CV indicator in the text
task.
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Figure 3. Radar plots for MCI samples from participants DGSMN07 and DGSMN17. A ApEn: approximate entropy of the acceleration signal; C:
cursive; CV: coefficient of variation; HC: healthy control; L: list; MCI: mild cognitive impairment; T: text; Tilt CV T: tilt CV indicator in the text task.

Discussion

Principal Findings
This work presented the quantitative analysis of handwriting in
a population of patients diagnosed with MCI. With respect to
the existing body of literature on the topic, an ecological
approach for data acquisition was proposed. Handwriting tasks
were executed on traditional paper using a sensorized ink pen
able to record kinematic and dynamic signals. Moreover,
content-free handwriting composition tasks were proposed to
the participants to mirror the writing that can be carried out in
everyday life. These aspects were deemed necessary for the
development of a solution that potentially unlocks the
monitoring of handwriting in the home environment. However,
such features alone are not sufficient for the purpose.

That is why the first goal of the work was the assessment of the
test-retest reliability of the information extracted from the
acquisition protocol. High reliability is an essential requirement

for any measurement instrument, particularly for solutions meant
to detect anomalies in unsupervised longitudinal frameworks,
in order to avoid high FP rates and alert fatigue. Importantly,
the reliability analysis was conducted by separating different
writing styles, namely cursive and BL, given that they differ in
both temporal and kinematic parameters. The results were
excellent for the cursive allograph, considering the 3 tasks, 42
out of the 45 presented indicators resulted significantly reliable,
with reliability values mostly rated as good or optimal. This
percentage dropped for BL: this was caused mainly by P values
not reaching statistical significance, rather than by low reliability
values. The outcome could be explained by the reduced number
of participants who adopted the BL allograph in the recruited
sample, which could also be the reason behind the overall better
results found for cursive. Interestingly, the best results were
achieved with the unconstrained tasks (List and Text), regardless
of the adopted allograph. This could imply that one’s peculiar
handwriting process characteristics are preserved independently
of the content itself, thus making the analysis of unsupervised
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handwriting activity a promising approach for the remote
tracking of MCI progression. On the other hand, the reliability
of the indicators from the standardized PnP test in BL was not
always verified. The unreliability of the mean pause indicator,
measuring the average duration of moments longer than 2
seconds spent with the pen in the air, could, in theory, be due
to differences in the dictation timing of the operator between
test and retest acquisitions.

Regarding the support for the clinical evaluation, the correlation
analysis revealed a scarce presence of significant results (around
10% of the total correlation values). Such an outcome should
not be interpreted negatively for 2 reasons. First, the
administered clinical tests are not meant to assess the
handwriting performance specifically. Even the CDT and the
TMT-A, which require the patients to draw and trace lines for
their completion, are not evaluated according to the graphomotor
performance itself, but rather on their accuracy. The same holds
for the PnP test: the scoring is based on the orthographic
correctness of the written words, while the proposed indicators
are aimed at characterizing the handwriting process. Thus, a
direct correspondence between the clinical scores and the
handwriting indicators does not exist. Moreover, the CDR and
B-ADL scores were characterized by low granularity (the former
presented with only 2 distinct values, namely 0.5 and 1),
resulting in poor significance. Second, and most importantly,
the obtained significant correlations were of at least moderate
intensity and in line with the existing literature [17]. Diving
into detail, the highest number of correlations was found
between temporal handwriting indicators and the MMSE and
the I-ADL scores. As the MMSE and I-ADL increased, rel
stroke num and on on-sheet ratio increased as well, while the
mean in air, the mean pause, pause num, and air sheet ratio
decreased. Therefore, in the recruited sample, participants who
are more cognitively intact and functional in daily life tend to
write faster thanks to a reduced degree of hesitation. Another
relevant finding concerns the 2 tests involving the use of a pen
or pencil. Those who performed well in the CDT and TMT-A
applied a greater force on the writing surface, coupled with a
higher number of changes in the force signal direction (the
opposite signs of the correlation values are due to the opposite
interpretation of the tests score). Such a pattern is associated in
the literature with the healthy status [19]. Last, significant
correlations between indicators and the number of errors in the
PnP test emerged only for the errors in Irregular words. Here,
when the BL allograph was used, a higher number of errors was
associated with a faster performance on the sheet: the mean
time spent with the pen on paper (mean on sheet) and the
percentage of time spent on paper when writing a word (on
sheet ratio) both showed a negative correlation. This could
suggest that errors in irregular words occurred because the
participants paid reduced attention (hence the increased speed
on the sheet) to the words to be written, despite requiring
orthographic knowledge to be written correctly. Linking the
observed correlation patterns with specific domains of cognitive
function is not trivial. The clinical tests used in the correlational
study are useful in providing general measures of one’s cognitive
functioning or some of its high-level variables, such as
processing speed, or measures of the patient’s level of autonomy.
In contrast, they are not thought of, nor have they shown

particular accuracy and validity in detecting dysfunctions of
individual cognitive functions such as memory, attention,
executive functions, critical thinking, language, spatial abilities,
visual perception, and so on. Any attempt to explain the obtained
correlations in terms of individual cognitive domains would
therefore be highly speculative and unsupportable with the
available data. However, to a first approximation, the
correlations between temporal indicators and MMSE and I-ADL
scores seem to closely resemble what clinicians call cognitive
hesitancy, an aspect of general insecurity in test responses that
can be framed in the context of executive function
dysfunctionality.

Dealing with the quantitative information derived from the PnP
test, another neat trend emerged for irregular words. Independent
of the handwriting style and orthographic errors, irregular words
posed the greatest challenge to the recruited sample. With
respect to the other types of words, irregular ones were
consistently and significantly associated with worse in-air
temporal performances (ie, longer times spent with the pen in
the air), as revealed by mean in air and mean pause. This
translated into a significantly slower rate of grapheme
production (Rel stroke num) and, consequently, into the longest
times required to write the words (execution time). In the BL
allograph, alterations were also found in the on-sheet execution,
as irregular words exhibited around 10% less time spent with
the pen on the writing surface (on-sheet ratio). Last, irregular
words were linked to a reduced variability in the pen inclination
(Tilt CV), possibly suggesting an impaired manipulation of the
writing instrument when dealing with this type of word.
According to the classical cognitive models of handwriting, the
marked alteration of the handwriting process found in the current
work for irregular words, which require semantic and lexical
knowledge to be written correctly compared with regular and
MU words, could underline alterations in the lexical pathways
as a result of dysfunctions in the orthographic retrieval process.

Overall, the implemented quantitative indicators seem able to
capture relevant aspects of the handwriting gesture that are
linked to the participant’s general conditions. On top of that,
the indicators can also identify altered patterns that can provide
a deeper understanding of the nature of the patient’s handwriting
impairments. This stresses once again the suitability of
handwriting monitoring in the population with MCI, as
impairments in the gesture could be associated with a cognitive
or functional decline.

The last evaluated aspect was the ability of the indicators to
distinguish unconstrained handwriting samples generated by
patients with MCI from those written by older adults without
any diagnoses and MMSE ≥ 27. The choice of focusing on the
List and Text tasks was motivated by their potential application
in the domestic scenario. In such a condition, the information
could be gathered in ecological modality without the need for
the operator’s supervision. The classification performances were
good, with F1-scores selected as the evaluation criterion given
the datasets’ imbalance, ranging from 0.81 to 0.92. Importantly,
the results do not appear to be task or allograph-dependent.
These results highlight the power of the proposed analysis: the
extracted handwriting process indicators do provide relevant
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information on the participants’ cognitive status, regardless of
the writing content and the allograph adopted to realize it. When
comparing with the existing literature, the current results are
placed between the accuracies of 74% in [19] and 96.6% in
[20]. It is, however, worth pointing out that the latter
classification performance, related to the execution of a
spontaneous sentence, was obtained in different conditions. A
digitizer was used, thus providing information also on the
written trace, not available in this study, on a narrow sample
size (12 patients with MCI and 17 controls). Moreover, the
authors reported the participants’ age, which was not balanced
between groups, as one of the most discriminative features for
the model. Such a variable was not included in the models
presented here.

The exploration of the relevance of indicators in the predictions
of models provided great insight into the aspects that mostly
differentiate the execution of patients with MCI and HC
participants. This was true particularly for the cursive allograph,
since heterogeneous results were found in the models based on
BL samples, likely because of the reduced sample size. In
general, the outcome of the SHAP analysis was not the expected
one. Despite anticipating temporal indicators to carry the highest
discriminative power, reflecting hesitations and greater
processing times for patients with MCI, their occurrence among
the most relevant was somewhat limited: only 5 out of 35
temporal indicators emerged, never placed in first or second
position. The biggest determinant in the classification models
was the variability of the pen inclination with respect to the
vertical axis (Tilt CV), as it was found among the 5 most
relevant indicators in 6 out of 7 models, being in the first place
in 4 cases. In the classification models built on the cursive List
samples (L [C] and L+T [C]), the relevance of Tilt CV, with
high values always steering the classification towards the MCI
group, was coherently associated with the presence of other
kinematic indicators, both in the fluency and in the frequency
domains. Such an outcome could open new perspectives on the
evaluation of the handwriting performance of patients with MCI,
traditionally focused on execution time, product quality, and
orthographic accuracy. Researchers and clinicians should also
consider the handwriting process kinematics that underlie the
generation of the written trace. The results of the SHAP analysis
were the basis for the inspection of misclassification patterns
in the cursive-based models. These were homogeneous in FNs,
for whom Tilt CV was the main reason why the models
predicted them as belonging to the HC group. When this was
not the case, the cause was still found in the handwriting
kinematics. The situation was variable for FPs. In L (C), three
archetypes emerged: (1) the participants who experience
alterations in the variability of pen inclination; (2) the
participants with excessive amplitude in rotational movements;
(3) a heterogeneous group, with difficulties both in kinematics
and in-air durations. The same number of patterns showed up
in T (C). The first was again characterized by abnormal values
of Tilt CV, while the second exhibited the opposite behavior,
with no impairments in Tilt CV. The last archetype was the
most anticipated one, where increased times were the sole reason
for misclassifications. When combining List and Text in cursive,
2 main patterns were highlighted. Once again, the most prevalent

had Tilt CVT as the cause of FPs occurrence, while the other
one was the entropy of the acceleration signal. Overall, the
analysis revealed the multifaceted nature of the handwriting
process in older adults, highlighting the importance of the
participant-specific exploration of the model predictions. This
would allow one to unveil one’s peculiar pattern of handwriting
impairments, thus helping the clinician in identifying the motor
and cognitive aspects that need a thorough assessment.

It is important to highlight the limitations found in this work.
Regarding the recruitment, depression and anxiety disorders,
relevant for various aspects of cognitive motor processes, were
not formally measured during patients’ assessment. However,
patients with a history of anxiety disorders or depression were
excluded from the sample. So, caution should be placed when
trying to generalize the presented findings to the population
with MCI. As for the inclusion of control participants, their
selection was solely based on their MMSE score. While they
did not report any neurological diagnoses, they did not undergo
any thorough clinical examination aimed at assessing their
cognitive status. Thus, the presence of cognitively impaired
participants in the control group cannot be excluded. In the
statistical analysis of the available data, the percentage of
recruited patients who adopted the BL allograph (around 1/3 of
the total) was limited with respect to cursive. This translated
into a reduced number of statistical significances in the
reliability analysis, while the binary classification models trained
on BL samples were characterized by greater SDs of the
classification metrics across the 10 folds of the stratified
repeated cross-validation, with respect to their cursive
counterparts. Despite the imbalance in the adopted allograph,
we do believe that the performance difference between
BL-trained and cursive-trained classification models does not
imply a reduced discriminative power of the former writing
style. Although additional BL samples are needed to prove this
hypothesis, this allograph should be better suited for the binary
classification problem based on the proposed tool and indicators.
Indeed, being the allograph characterized by a highly
standardized motor pattern of stroke generation, the main source
of variability between MCI and HC participants should be found
in the indicators measuring the in-air performance, which should
reflect longer processing times and hesitations in the former
group. When dealing with cursive, the participants’ personal
handwriting style comes into play, making the classification
task more challenging. Just as an example, greater times on-sheet
could indicate either slowness of movement or a writing style
characterized by longer, interconnected strokes. In general, the
choice of the allograph was left free to the participant to
guarantee an ecological execution of the task and to align with
the PnP test instructions, which do not specify how the
participant should write, but the presented findings should be
confirmed by increasing the BL sample size. The free choice
turned out to be a liability in a limited number of cases, where
patients adopted different allographs in the test and retest
acquisitions, thus making them unsuitable for the reliability
analysis. Given the impossibility of characterizing specific
cognitive domains with the battery of clinical tests used in this
work, the inclusion of more specific clinical tests for different
cognitive domains is planned as a next step to refine the
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correlation analysis. In this regard, the positive results obtained
with the words and nonwords writing test, which is the only
instrument investigating a specific cognitive function in the
study, indicate that such a research objective seems promising
and feasible. With respect to the digitizers, the used sensorized
ink pen cannot directly provide information on the trace made
on paper. Future work should focus on proper methods for the
extraction of product-related handwriting information to reduce
this gap, particularly for the cursive allograph. Other promising
directions can be found in multimodal approaches for the
classification of patients with MCI. For example, the authors
in [21] demonstrated that the fusion of handwriting and EEG
parameters can improve the classification performance with
respect to considering a single data source alone. Of course, the
feasibility and user friendliness of the protocol should be
carefully designed in such a case. The results also found the
basis for additional research: a longitudinal study could be
conducted, possibly in an unsupervised scenario. Last, the

clinical community would benefit from comparative
investigations on the discriminative efficacy of various
handwriting-based screening methods. They should also consider
their implementation complexity to provide an all-around
informed documentation regarding the utility and feasibility of
their integration into clinical practice.

Conclusions
The relevance of handwriting in the population with MCI was
confirmed in this work, which described a novel approach for
its quantitative characterization. The analyses revealed 2
potential complementary scenarios for its fruitful application.
On one side, information related to the participant’s clinical
conditions can be quickly and noninvasively extracted, both
through the PnP test and unconstrained handwriting. On the
other hand, the handwriting tool emerges as a viable solution
to track old adults’ conditions in a transparent and ecological
way, fostering MCI remote monitoring in a home setting.
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