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Abstract

Background: Polypharmacy, the concurrent use of multiple medications, is prevalent among older adults and associated with
increased risks for adverse drug events including falls. Deprescribing, the systematic process of discontinuing potentially
inappropriate medications, aims to mitigate these risks. However, the practical application of deprescribing criteria in emergency
settings remains limited due to time constraints and criteria complexity.

Objective: This study aims to evaluate the performance of a large language model (LLM)–based pipeline in identifying
deprescribing opportunities for older emergency department (ED) patients with polypharmacy, using 3 different sets of criteria:
Beers, Screening Tool of Older People’s Prescriptions, and Geriatric Emergency Medication Safety Recommendations. The study
further evaluates LLM confidence calibration and its ability to improve recommendation performance.

Methods: We conducted a retrospective cohort study of older adults presenting to an ED in a large academic medical center in
the Northeast United States from January 2022 to March 2022. A random sample of 100 patients (712 total oral medications)
was selected for detailed analysis. The LLM pipeline consisted of two steps: (1) filtering high-yield deprescribing criteria based
on patients’ medication lists, and (2) applying these criteria using both structured and unstructured patient data to recommend
deprescribing. Model performance was assessed by comparing model recommendations to those of trained medical students, with
discrepancies adjudicated by board-certified ED physicians. Selective prediction, a method that allows a model to abstain from
low-confidence predictions to improve overall reliability, was applied to assess the model’s confidence and decision-making
thresholds.
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Results: The LLM was significantly more effective in identifying deprescribing criteria (positive predictive value: 0.83; negative

predictive value: 0.93; McNemar test for paired proportions: χ2
1=5.985; P=.02) relative to medical students, but showed limitations

in making specific deprescribing recommendations (positive predictive value=0.47; negative predictive value=0.93). Adjudication
revealed that while the model excelled at identifying when there was a deprescribing criterion related to one of the patient’s
medications, it often struggled with determining whether that criterion applied to the specific case due to complex inclusion and
exclusion criteria (54.5% of errors) and ambiguous clinical contexts (eg, missing information; 39.3% of errors). Selective prediction
only marginally improved LLM performance due to poorly calibrated confidence estimates.

Conclusions: This study highlights the potential of LLMs to support deprescribing decisions in the ED by effectively filtering
relevant criteria. However, challenges remain in applying these criteria to complex clinical scenarios, as the LLM demonstrated
poor performance on more intricate decision-making tasks, with its reported confidence often failing to align with its actual
success in these cases. The findings underscore the need for clearer deprescribing guidelines, improved LLM calibration for
real-world use, and better integration of human–artificial intelligence workflows to balance artificial intelligence recommendations
with clinician judgment.

(JMIR Aging 2025;8:e69504) doi: 10.2196/69504
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Introduction

Polypharmacy, widely defined as the regular use of at least 5
medications, is common in older adults and at-risk populations
[1]. In fact, approximately 30% of patients aged 65 years or
older have polypharmacy [2], and nearly half of older emergency
department (ED) patients are discharged with one or more new
medications [3]. Although necessary and beneficial for some
patients, polypharmacy can increase the risk of negative
consequences for patients, including ED visits, adverse drug
events, falls, disability, and inappropriate medication use [1].
While definitions differ, deprescribing is generally defined as
a structured process by which potentially inappropriate
medications (PIMs) are identified and withdrawn under the
supervision of a health care provider. In some definitions, the
process is described as evaluating the risk-benefit tradeoff,
focusing on situations where the potential or actual harms of a
medication outweigh its benefits, considering the patient’s
individual care goals and quality of life [2,4,5].

Deprescribing tools, such as the Screening Tool of Older
People’s Prescriptions (STOPP) [6] and Beers criteria [7], have
been developed to help providers assess and identify PIMs based
on a patient’s medication list [7-9]. These explicit assessments
are criterion-based with clear standards but are often impractical
to implement in time-constrained clinical settings, such as ED,
due to the need to evaluate multiple clinical indications and
specialist-prescribed medications [10]. Attempts to digitize
these criteria into electronic clinical decision support (CDS)
have raised difficulties, typically requiring a labor-intensive
coding process and unstructured information such as free text
from patient records to contextualize certain criteria [11,12].

Large language models (LLMs) have been shown to interpret
complex clinical situations and offer recommendations, from
differential diagnoses to care management, leading to growing
interest in their application in the medical field [13-16].
Moreover, they have been shown to extract medication-related
data such as medication name, dosage, and frequency, necessary

for the application of deprescribing criteria [17]. Finally, LLMs
are excellent in-context learners, requiring very little labeled
data to make predictions [18]. This reduces the annotation
burden for time-constrained ED physicians while improving
the use of unstructured patient records to contextualize patient
medication lists. However, the majority of clinical reasoning
evaluations on LLMs have been conducted using standardized
exams (the United States Medical Licensing Examination) or
digital case reports [14,19]. Their ability to perform clinical
reasoning and calibrate responses over physician-generated text
remains understudied.

Here, we propose to evaluate the performance of an LLM-based
data pipeline in recommending deprescribing options for older
adult ED patients at discharge based on 2 leading deprescribing
criteria, Beers and STOPP. We have also included a recently
developed list of criteria, Geriatric Emergency Medication
Safety Recommendations (GEMS-Rx), intended to prevent the
initiation of inappropriate medications in the acute care setting,
as similar deprescribing lists specific to this care environment
are not available [3]. Through this work, we hope to evaluate
whether an LLM-based CDS system can effectively triage
medications eligible for electronic deprescribing in older adults.
Successful implementation of such a system would help address
gaps in electronic deprescribing by using an LLM to
contextualize recommendations within individual patient records
and reduce manual development in CDS tools.

Methods

Ethical Considerations
This study was conducted with approval from the Institutional
Review Board (IRB) at Yale University, under protocol number
2000035077. The IRB determined that this research qualifies
for exemption as it involves secondary analysis of existing
electronic health record (EHR) data, with no additional patient
contact or data collection. The original data were collected with
patient consent, and the current analysis adheres to the
conditions of that consent and IRB approval, permitting
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secondary analysis without the need for additional consent. All
data were de-identified prior to analysis to ensure patient
confidentiality. This study complies with ethical standards and
guidelines for research involving human subjects.

Patient Cohort
All older adults (aged 65 years and older) with polypharmacy
(5 or more active outpatient medications) presenting to an ED
in a large academic medical center in the Northeast United States
between January 2022 and March 2022 were identified. Due to
budgetary constraints and a lack of prior evidence regarding the
performance of LLMs in this task to guide a power calculation,
we selected a random sample of 100 unique patients for
evaluation.

Identification of Consensus-Based High-Yield Criteria
We conducted a consensus-based evaluation to filter three
preexisting deprescribing lists (ie, STOPP [6], Beers [7], and
GEMS-Rx [3]) into a focused set of high-yield deprescribing
criteria for the LLM to use in its recommendations. High-yield
criteria were defined as those posing a significant clinical risk
to the patient and being identifiable within the electronic health
records (EHRs). To identify these criteria, we evaluated 180
recommendations across 2 key dimensions: clinical risk and
EHR computability. The consensus panel consisted of 6
board-certified physicians (in Emergency Medicine, Internal
Medicine, and Clinical Informatics) and 1 ED pharmacist. Each
member of the group individually reviewed each of the criteria
and rated them on a 5-point Likert scale. We selected the top
50% of criteria with an average score greater than 3 on both
dimensions, calculated across all experts, as high-yield criteria.
We further elaborate on this consensus process and the final set
of criteria in the Results section.

The need to filter the criteria before proceeding with the study
was identified in our preliminary research [20], which revealed
that one of the main causes of discrepancies between physicians
and LLMs arose from ambiguous inclusion or exclusion
conditions in deprescribing criteria. For example, criteria like
“Statins for primary cardiovascular prevention in persons aged
≥85 with established frailty with expected life expectancy likely
less than 3 years” include elements—such as “established
frailty” and “expected life expectancy”—that are challenging
to quantify and therefore difficult to implement computationally.

The dimensions used to filter criteria were chosen to ensure that
an LLM-enabled CDS tool prioritizes meaningful
recommendations from high-quality EHR data, enabling
accurate, actionable deprescribing recommendations and
reduction of alert fatigue. We present the final set of high-yield
criteria based on the average results of the consensus study.

Deprescribing Recommendations by GPT-4o
The study was approved under an exemption by the Yale
University institutional review board prior to commencement
(HIC# 2000035077). All patient-level data were deidentified
prior to use with the LLM. We leveraged Microsoft’s Azure
OpenAI GPT-4o (GPT-4o model version: 2024-08-06 and
OpenAI API version: 2024-02-15-preview) to produce
deprescribing recommendations through a 2-stage process, as
shown in Figure 1. In stage 1, GPT-4o was prompted to filter
the full list of high-yield criteria solely based on the patient’s
medication list, ignoring inclusion or exclusion conditions. In
stage 2, GPT-4o was prompted to use its previously filtered
criteria list, along with structured (eg, demographics, lab values,
vitals, and past medical history) and unstructured (most recent
progress note and discharge summary) information, to determine
if the patient satisfied any deprescribing criteria and the
medication should be recommended for deprescribing. Each
medication was evaluated individually to prevent errors from
simultaneous processing, such as misattribution of criteria or
medication omissions. To ensure optimal performance, we
engineered prompts in an iterative fashion [21], using 1 patient
at a time from a set of patients (up to 10% of the cohort) not
used in the subsequent evaluation. After each evaluation,
prompts were adjusted to correct any systematic errors (eg,
instances where no relevant criteria in step 1 led to
noncriteria-based deprescribing recommendations in step 2) by
the LLM. After our third prompt yielded an output without any
identifiable errors, we stopped the iterative prompt development
process. Consequently, the final 2 patients initially reserved for
this purpose were included in the final cohort evaluation (n=92
patients, 626 medications). Aside from the consistency-based
method described later, all LLM calls were performed with a
fixed temperature (temperature=0; low randomness in generated
responses) and seed to ensure reproducibility and deterministic
outputs.

Figure 1. Overview of the evaluation pipeline, consisting of a 2-step GPT-4o process, performance comparison with junior annotators (medical students),
and final adjudication by senior annotators (board-certified physicians). ED: emergency department; EHR: electronic health record; FN: false negative;
FP: false positive; IRR: interrater reliability; TN: true negative; TP: true positive; YNHH: Yale New Haven Hospital.

This 2-stage process was developed to correct errors identified
when both stages were accomplished at once. Our initial testing

revealed that providing the LLM with the full set of criteria and
medications led to simple reasoning errors. The large number
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of criteria, combined with the simultaneous processing of the
complete patient medication list, resulted in inaccuracies in
applying individual criteria to specific medications. Separating
the process of criteria filtering and application both reduces
confusion due to large input context sizes [22] and ensures that
extraneous context does not distract the LLM [23]. The full
prompts for step 1 and step 2 are included in Figures S5 and S6
in Multimedia Appendix 1.

Selective Prediction Methods
In addition to evaluating an LLM’s ability to make deprescribing
recommendations, we assessed whether its confidence estimates
were well-calibrated and examined their impact on predictive
performance. To do so, we collected GPT-4o’s decision
confidence for both steps using 2 validated confidence elicitation
methods: chain-of-thought verbalized confidence and
self-random sampling with average-confidence aggregation,
referred to as consistency-based confidence [24]. In verbalized
confidence, we asked the LLM to explicitly estimate its
confidence for each step following its decision. For the
consistency-based approach, we followed the best practices
established in prior work [24] by sampling the LLM multiple
times (number of samples=5) with high temperature (T=0.8;
high randomness in generated responses) and used a majority
vote weighted by the confidence of each response to determine
the final deprescribing recommendation.

In a human-in-the-loop decision-making system, the LLM’s
confidence would be used to determine if the model should
abstain due to low certainty regarding its own decision. In
practice, this case would be considered too difficult for the LLM
and forwarded to an expert reviewer. This human-in-the-loop
decision-making pipeline is known as selective prediction and

has been commonly found to improve performance in
non–text-based applications [25,26]. We evaluated both selective
prediction methods using risk-coverage curves [27,28],
substituting risk for the F1-score (a measure of the predictive
performance of a model balancing precision and recall) to
capture the full range of predictive performance. Coverage was
also expressed inversely as the deferring fraction, representing
the proportion of instances where the LLM abstained from
making a decision. We conducted a more in-depth analysis of
the method that proved to be more effective.

Comparison and Adjudication With Clinical Experts
In this study, we used a rigorous human review and adjudication
process to assess model performance. Two trained senior
medical students (M4) classified all medications in the test
cohort using a 2-stage pipeline, after first computing interrater
reliability (IRR) on an adjudication set of 75 medications from
5 patients. Similar to the LLM pipeline, for each medication, a
medical student determined (1) if there exists a relevant
high-yield criteria based on the medication list, and (2) whether
the medication should be recommended for deprescribing.
Discrepancies between the students (junior annotators) and the
LLM across both stages were adjudicated by 2 board-certified
ED physicians (senior annotators). Similarly to the junior
annotators, we measured the IRR between the 2 senior ED
physicians, prior to adjudication on the full set of discrepancies.
Finally, we classified the errors leading to incorrect
recommendations by the LLM, leveraging a prior evaluation
framework [29]. We classified each error as 1 of 4 error types:
incorrect reading comprehension, incorrect recall of knowledge,
incorrect reasoning step, and not enough information, as
described in Table 1.

Table 1. Definitions of GPT-4o error types inspired by framework from Lièven et al [29] relevant to deprescribing recommendations.

ExampleDefinitionGPT-4o error types

GPT failed to recognize acetaminophen by name from

the list of STOPPa criteria in a patient at risk for mal-
nutrition or liver disease.

Includes misunderstanding of order of text, such as
when a medication is dependent on another medica-
tion in a specific arrangement. Also includes ignoring
information provided in the input text, such as miss-
ing a relevant category explicitly stated in the recom-
mendations.

Incorrect reading comprehension

GPT correctly recognized amlodipine was a calcium
channel blocker but failed to recognize it was more
broadly an antihypertensive.

Includes failure to recognize classes of medications
or other medical facts necessary to perform the task.

Incorrect recall of knowledge

GPT recommended discontinuing warfarin in a patient

with a therapeutically elevated INRb after assuming
that this elevated INR was due to a bleeding disorder.

Faulty reasoning, such as inappropriate assumptions
or leads of logic unsupported by the clinical data.

Incorrect reasoning step

GPT recommended discontinuing a QTc prolonging
antidepressant based on the possibility of QT prolon-

gation without any ECGd data or history of abnormal
QT interval.

Inappropriate application of missing data leading to
potentially unreliable conclusions, such as assuming
abnormality of a missing laboratory study.

Not enough information

aSTOPP: Screening Tool of Older People’s Prescriptions.
bINR: International normalized ratio.
cQT: QT interval.
dECG: electrocardiogram.
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Data Analysis
We evaluated whether the LLM or the medical student was
correct, using a gold standard derived from senior annotator
(board-certified ED physicians) adjudication of discrepancies.
To compare their proportions of correct responses, we applied
the McNemar test, a statistical method commonly used to
analyze paired nominal data, such as diagnostic accuracy from
different assessments applied to the same cases [30]. All analysis
was performed using Python (version 3.9; Python Software
Foundation). Statistical testing was carried out using statsmodels
(version 0.14.4) [31] and all visualizations were generated using
seaborn (version 0.13.2) [32] and matplotlib (version 3.8.2)
[33].

Results

Patient Cohort
In total, we identified 10,977 unique patients across 15,161
emergency department encounters from January 2022 to March

2022 meeting our selection criteria, from which 100 patients
were randomly selected (Table 2). As our criteria only pertain
to oral medication, nonoral medications were subsequently
filtered out, resulting in 712 total oral medications across the
cohort and a median of 6 oral medications per patient (Figure
2). From our initial study cohort of 100 patients, 10 patients
were set aside for both prompt engineering and calculation of
IRR between junior annotators. Fewer iterations were needed
to refine the prompt than initially anticipated, so the remaining
2 patients were included in the final study cohort. This resulted
in a final evaluation cohort of 92 patients, encompassing a total
of 626 medications. Based on the mechanism of action, statins
were the most common medication class (atorvastatin and
rosuvastatin; 6.8% combined), followed by proton pump
inhibitors (pantoprazole, esomeprazole, and omeprazole; 4.6%
combined). When classified by therapeutic effect,
antihypertensive agents were most prevalent (amlodipine,
lisinopril, losartan, and valsartan; 10.6% combined).

Table 2. Demographic overview of the 100 patients included in the evaluation (N=100).

ValuesCharacteristics

75.8 (7.6)Age, mean (SD)

Sex, n (%)

63 (63)Female

37 (37)Male

Race, n (%)

1 (1)Asian

16 (16)Black or African American

69 (69)White or Caucasian

13 (13)Other or not listed

1 (1)None

Ethnicity, n (%)

10 (10)Hispanic or Latino

90 (90)Non-Hispanic

Smoking status, n (%)

47 (47)Former smoker

43 (43)Never smoker

8 (8)Current every day smoker

1 (1)Passive smoke exposure—never smoker

1 (1)Light tobacco smoker

6.0 (5.0-8.2)Number of medications, median (IQR)
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Figure 2. Medication information about baseline cohort. (A) The top 20 most commonly prescribed medications represented as a percentage of the
total medication set. (B) Distribution of medications across different age groups.

Evaluation of Consensus-Based High-Yield Criteria
To streamline evaluation by the LLM, we filtered criteria using
the average scores from an expert consensus panel. All criteria
(n=180) were evaluated based on their scores for clinical risk
(Q1) and EHR computability (Q2-Q5), as assessed by an expert
panel; average scores by deprescribing list are shown in Figure
3. Any criteria scoring less than 3 on both clinical applicability
and EHR computability were excluded resulting in 161 criteria.
From the remaining set, the top 50% were selected, resulting
in 81 high-yield criteria across all 3 deprescribing lists.

On average, STOPP criteria had the lowest clinical risk and
EHR computability ratings, while the Beers criteria had the

highest, contributing to their respective adoption rates of 45.9%
and 62.5% among high-yield criteria. Reduced inclusion of
STOPP criteria was primarily attributed to panelists’ concerns
that the information required was not readily accessible within
the EHR and would necessitate additional data at the point of
care. We also present the results of feasibility in various clinical
settings by criteria list in Figure S1 in Multimedia Appendix 1,
showing more likelihood for deprescribing in both outpatient
and inpatient contexts, compared to the ED, across all 3 criteria
lists. A scatter plot of risk versus EHR computability of
high-yield criteria is presented in Figure S2 in Multimedia
Appendix 1.
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Figure 3. Average distribution of results used to filter high-yield criteria on a 5-point Likert scale from a consensus study by an expert panel (n=7)
split by 3 criteria lists: Beers, GEMS-Rx, and STOPP. EHR: electronic health record; GEMS-Rx: Geriatric Emergency Medication Safety
Recommendations; STOPP: Screening Tool of Older People’s Prescriptions.

Deprescribing Recommendations by GPT-4o
We next evaluated the LLM’s deprescribing recommendations
by comparing them to those of medical students, resolving any
discrepancies through adjudication by board-certified EM
physicians. As shown in Figure 4, 315 medications (50.3% of
the total) lacked relevant high-yield deprescribing criteria. The
LLM effectively identified these cases, achieving an F1-score
of 0.86 (precision=0.83, recall=0.90). Among those medications
with relevant criteria, 64 (10.2% of the total) were cases where
either GPT-4o or the medical student recommended
deprescribing. In this second step, which involved applying
relevant criteria to make a recommendation, the LLM performed
less effectively, with an F1-score of 0.58 (precision=0.47,
recall=0.76).

For cases where the LLM and the medical students differed, 2
senior annotators (board-certified Emergency Medicine
physicians) adjudicated 126 discrepancies after standardizing

the codebook and verifying IRR (Cohen k: eligibility=0.795,
deprescribing=0.745). Notably, the confusion matrix (Figure
4) revealed that a major source of discrepancy was the
significantly higher likelihood of the LLM to recommend
deprescribing (11.6%) compared to the medical students
(1.91%). The confusion matrix describes all possible outcomes
when comparing the LLM with the medical students (eg, the
medical student recommended deprescribing with eligible
criteria and the LLM found no eligible criteria). The adjudication
yielded similar results to those observed in comparison with
medical students (Figure 5A). Across all discrepancies, GPT-4o
was significantly more effective in criteria filtering compared
to the medical student (McNemar test for paired proportions

[30]: χ2
1=5.985; P=.015). However, in applying relevant criteria,

GPT-4o performed worse than the medical students, though the
difference was not statistically significant (McNemar test:

χ2
1=1.818; P=.178). Adjudication was chosen as the gold

standard for resolving discrepancies because preliminary
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research showed low IRR among medical students for both
steps of the process (Cohen k: step 1=0.68, step 2=0.33) across
75 medications.

In cases where GPT-4o was incorrect, error analysis highlighted
key patterns across the 2 steps. For criteria filtering, senior

annotators observed that errors often stemmed from incorrect
reasoning or reading comprehension issues (Figure 5B).
Similarly, in making recommendations, the most common error
was incorrect reasoning, followed by cases where the LLM
lacked sufficient information to make an accurate determination
and subsequently made inappropriate assumptions.

Figure 4. Confusion matrix (n=626 medications). The joint confusion matrix across both steps showing alignment and discrepancies between the
GPT-4o model and medical students.

JMIR Aging 2025 | vol. 8 | e69504 | p. 8https://aging.jmir.org/2025/1/e69504
(page number not for citation purposes)

Socrates et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. (A) Expert adjudication (n=126). Adjudication by senior clinical expert comparing junior annotators and GPT-4o in both criteria filtering
and deprescribing recommendation tasks. (B) GPT-4o error modes. Types of errors by GPT-4o in the adjudication set (n=126) for both criteria filtering
and deprescribing recommendation tasks.

Selective Prediction Methods
Finally, we investigated the impact of incorporating confidence
estimates from the LLM to guide selective prediction, allowing
the model to abstain from making predictions in cases of low
confidence. We compared 2 approaches: verbalized confidence
and consistency-based confidence. Verbalized confidence
demonstrated a narrower range of F1-scores overall, with step
1 (eligibility) ranging from 0.860 to 0.863 and step 2
(deprescribing) from 0.58 to 0.69, as shown in Figure S3 in
Multimedia Appendix 1. In contrast, consistency-based
confidence exhibited broader and higher F1-score ranges, with
step 1 spanning 0.85 to 0.88 and step 2 ranging from 0.62 to

0.73 (Figure 6A). These results suggest that consistency-based
confidence provides more flexibility and improved performance
compared to verbalized confidence across both steps.

In particular, consistency-based selective prediction
demonstrates a positive linear relationship between accuracy in
deprescribing recommendations and deferring fractions.
However, despite some minor improvements, we find that the
LLM is poorly calibrated, as shown in Figure 6B. Despite
consistency-based weighting, the confidence distribution is
severely left-skewed with the minimum confidence being 58.5%
in eligibility filtering and 54.5% in deprescribing
recommendations.
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Figure 6. Consistency-based selective prediction. (A) Range of F1-scores resulting from the application of consistency-based selective prediction in
both steps of the deprescribing pipeline. The dotted line shows ideal performance as a function of deferring fraction. (B) Distribution of confidences
for deprescribing recommendations from GPT-4o on a log scale.

Discussion

Principal Findings
In this retrospective cohort study evaluating deprescribing
opportunities for PIMs among older adults with polypharmacy
in the ED, we found that LLMs effectively identify relevant
criteria from verified lists but are less adept at applying these
criteria to individual patient cases. GPT-4o’s performance was
compared to that of medical students in a 2-step pipeline:
filtering for criteria-eligible medications and making specific
deprescribing recommendations. Adjudication by senior
clinicians was used to resolve discrepancies, and selective
prediction methods were tested to improve the model’s
reliability. The results offer insights into both the capabilities
and limitations of LLMs in a real-world clinical context,
highlighting key areas for improvement in both LLM
frameworks and deprescribing guidelines.

Effectiveness of the 2-Step LLM Pipeline
The LLM demonstrated strengths in the initial filtering step,
accurately identifying a high proportion of medications that

matched deprescribing criteria, thus offering the potential to
support clinicians in rapidly screening complex medication lists.
In fact, the LLM outperformed medical students by a significant
margin (80.1% vs 59.5% correct, McNemar test: P=.02). The
adjudication, combined with strong overall performance
(maximum F1-score: 87.8%) using selective prediction methods,
suggests that the LLM can effectively minimize the number of
criteria requiring final review for deprescribing
recommendations. Cases of misclassification were relatively
uncommon and primarily related to nonstandard drug class
names or overly broad groups, which could be improved with
refined deprescribing criteria. However, in the second
step—making specific deprescribing recommendations—the
LLM encountered considerable difficulty, particularly when
dealing with ambiguous criteria, missing information, and
nuanced clinical scenarios. For example, thiazide diuretics are
recommended for deprescribing in cases of significant
hypokalemia, hyponatremia, hypercalcemia, or a history of gout.
However, GPT-4o recommended deprescribing without access
to current electrolyte values, instead basing its suggestion on a
history of chronic kidney disease, a condition associated with
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potential electrolyte imbalances but not meeting the relevant
inclusion criteria. If implemented in clinical decision support,
these inaccuracies might contribute to increased alert fatigue
and extend the time required to interpret LLM-generated
recommendations, potentially offsetting the intended efficiency
gains in identifying deprescribing opportunities.

Our findings on the LLM’s performance in identifying
medications with relevant deprescribing criteria based on
eligibility guidelines align with evidence from clinical trial
matching literature [34], where LLMs have shown performance
comparable to physicians in applying such criteria to identify
eligible patients. One study used a similar “filter-and-apply”
pipeline, in which trials were first filtered and then matched to
patients, showcasing the effectiveness of this approach [35].
However, despite successes in eligibility filtering, challenges
remain when applying complex criteria to specific patient cases.
Similar errors to those observed in our work have been reported,
such as incorrectly identifying patients who meet partial criteria,
or assuming a patient with breast cancer does not have lung
cancer simply because it is not explicitly mentioned [36,37].
Overall, while LLMs hold promise for reducing the time burden
in determining deprescribing eligibility, their application
requires careful consideration, particularly in tasks involving
complex clinical reasoning.

Role of Selective Prediction in Clinical Decision-Making
To address the model’s limitations in clinical decision-making,
we implemented selective prediction methods, which allowed
the LLM to “abstain” from making a recommendation in cases
of low confidence. Selective prediction marginally improved
the LLM’s filtering accuracy by enabling it to defer uncertain
cases to human reviewers. However, the effectiveness of this
approach was limited by the poorly calibrated confidence levels
assigned by the LLM to its decisions. Specifically, the LLM
displayed a minimum confidence level of 54%, even in cases
where its recommendations were incorrect. This indicates a
tendency toward overconfidence, particularly in its deprescribing
recommendations. While verbalized confidence is known to be
overconfident in clinical question answering [38], our results
contradict recent work that suggests that consistency-based
methods alleviate some of these concerns [39]. This discrepancy
underscores the importance of task-specific confidence
thresholds and suggests that selective prediction, while useful,
is not a one-size-fits-all solution in complex clinical applications.

Improved uncertainty calibration in LLMs could enhance
selective prediction methods, optimizing physician-artificial
intelligence (AI) workflows in clinical settings. Future
applications of a well-calibrated deprescribing CDS tool could
flag cases where critical information is missing (eg,
antipsychotics at unchanged doses for more than 3 months
without a documented medication review). This approach could
streamline medication filtering while preserving human
oversight, allowing clinicians to focus on complex cases where
LLM reliability is limited.

Need for Clearer Deprescribing Guidelines
A notable finding from this study is the need for clearer and
more consistent deprescribing guidelines. Ambiguities in criteria

definitions, such as those related to medication administration
routes and drug classes, present substantial barriers to
automation and contribute to discrepancies between human and
model interpretations. Additionally, the model often
recommended deprescribing medications that, while potentially
inappropriate, required specific contextual qualifiers (eg,
patient’s life expectancy, nutritional status, frailty status) to
justify deprescribing—criteria that the LLM misapplied due to
lack of explicit context or ambiguous language in the guidelines.
It is important to note that current deprescribing criteria were
not originally designed for direct implementation in CDS
systems, but rather as general recommendations for prescribing
physicians. Reorganizing these criteria into a structured, explicit
framework tailored for CDS use could reduce ambiguity,
improve the model’s performance, and support more consistent
application in clinical practice. In general, streamlining
deprescribing criteria to ensure consistent application across
clinical contexts could improve model reliability and help
standardize deprescribing practices.

Implications for LLM Use in Clinical Practice and
Future Directions
The results of this study underscore the promise of LLMs in
enhancing deprescribing workflows by providing rapid filtering
of PIMs, which could alleviate some of the burdens on health
care providers. However, this work also highlights the
limitations of current LLMs in complex, context-sensitive
clinical decision-making tasks. The LLM’s frequent tendency
to overrecommend deprescribing, as compared to medical
students, indicates that clear boundaries for medication
eligibility and exclusion are critical for reducing false positives
in automated recommendations. Cases with the potential for
human harm were observed, such as suggesting deprescribing
anticoagulation in a patient with recent thromboembolism.
Additionally, cases were seen in which the LLM recommended
deprescribing without citing a specific criterion. These behaviors
suggest that strong guardrails on the LLM are needed to ensure
safe, high-quality recommendations. Enhancing guideline
specificity, particularly for complex inclusion or exclusion
criteria, could reduce both human and model error rates and
may foster greater acceptance of AI-assisted deprescribing tools
among clinicians. Our findings highlight the potential value of
human-AI collaboration frameworks. For example, a
human-in-the-loop framework (a model in which humans review
difficult cases the LLM cannot resolve) could involve LLMs
assisting in the identification of deprescribing opportunities
while deferring final recommendations to clinicians [40].
Alternatively, the LLM could focus on the initial filtering of
relevant deprescribing criteria for specific medications, leaving
the recommendation task entirely to the clinician, thereby
leveraging the LLM’s strength in mapping medications or
medication classes to appropriate criteria efficiently [41]. These
approaches not only leverage the model’s efficiency in data
processing but also mitigate risks associated with erroneous
recommendations, particularly in this high-risk clinical context.
Future research should focus on refining LLM architectures to
better handle the nuances of clinical reasoning and context
interpretation, perhaps by incorporating more advanced natural
language processing techniques and domain-specific training.
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Additionally, efforts to standardize deprescribing guidelines
would greatly benefit the development of automated tools in
this area, making them more reliable and broadly applicable.

Limitations
This study has several limitations that warrant consideration.
First, the retrospective nature of our analysis, relying on
historical data from EHRs, may not fully capture the complexity
of real-time clinical decision-making in emergency settings.
The study’s focus on a single large academic medical center
limits the generalizability of our findings to other settings with
different patient populations, documentation patterns, and health
care practices. Second, the selective prediction methods, while
providing insights into the LLM’s confidence, were not
universally effective, particularly in the nuanced task of
deprescribing recommendations. The model’s performance in
these recommendations highlights the challenge of translating
structured criteria into actionable clinical decisions, especially
when faced with ambiguous inclusion or exclusion conditions.
Additionally, the model’s reliance on textual prompts and
structured EHR data may not fully account for nuanced clinical
contexts that influence deprescribing decisions. Third, the small
sample size for detailed analysis (100 patients) limits the
statistical power and may not reflect broader patterns of
medication use and deprescribing needs. Cost may be a barrier
to larger sample sizes in the future, as the total application
programming interface utilization fees were approximately US
$300-$400 over these 100 patients and the cost to both evaluate
and implement the system in the real world would scale linearly
with the study population. Additionally, the study relied on
medical students for initial annotation. While these annotations
were reviewed and adjudicated by board-certified physicians,

this process may introduce variability, potentially affecting the
reliability of their use as a gold standard in selective prediction
methods. Our process for selecting these criteria also did not
explicitly include any geriatricians, though did include a range
of individuals who regularly care for older adults. Finally, the
criteria used (STOPP, Beers, and GEMS-Rx) were selected
based on their perceived clinical risk and EHR computability,
which may not encompass all relevant deprescribing scenarios.
The lack of standardized guidelines for implementing
deprescribing criteria in LLMs also poses a challenge to
consistency and accuracy.

Conclusions
This study demonstrates the potential of LLMs to augment
clinical decision support by effectively filtering deprescribing
criteria for older adults with polypharmacy in ED. While the
LLM showed promise in identifying medications eligible for
deprescribing, it faced challenges in making nuanced
deprescribing recommendations, underscoring the need for
human oversight in AI-driven processes. Future research should
prioritize refining the model by addressing ambiguities in
deprescribing criteria and integrating broader clinical context,
such as longitudinal data from prior progress notes and discharge
summaries, to enable the detection of relevant clinical trends.
Expanding the dataset and exploring more effective strategies
for integrating human judgment with AI capabilities will help
overcome limitations in generalizability, helping optimize
patient care. The findings underscore the potential of LLMs in
AI-enabled automated CDS tools for deprescribing while
emphasizing the need to refine deprescribing criteria and
establish clearer guidelines to support the integration of AI into
clinical practice.
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