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Abstract

Background: Dementia is a progressive neurodegenerative condition that affects millions worldwide, often accompanied by
agitation and aggression (AA), which contribute to patient distress and increased health care burden. Existing assessment
methods for AA rely heavily on caregiver reporting, introducing subjectivity and inconsistency.

Objective: This study proposes a novel, multimodal system for predicting AA episodes in individuals with severe dementia,
integrating wearable sensor data and privacy-preserving video analytics.

Methods: A pilot study involving 10 participants was conducted at Ontario Shores Mental Health Institute. The system
combines digital biomarkers collected from the EmbracePlus (Empatica Inc) wristband with video-based behavioral monitor-
ing. Facial features in video frames were anonymized using a masking tool, and a deep learning model was used for AA
detection. To determine optimal performance, various machine learning and deep learning models were evaluated for both
wearable and video data streams.

Results: The Extra Trees model achieved up to 99% accuracy for personalized wristband data, while the multilayer perceptron
model performed best in general models with 98% accuracy. For video analysis, the gated recurrent unit model achieved
95% accuracy and 99% area under the curve, and the long short-term memory model demonstrated superior response time
for real-time use. Importantly, the system predicted AA episodes at least 6 minutes in advance in all participants based on
wearable data.

Conclusions: The findings demonstrate the system’s potential to autonomously and accurately detect and predict AA events
in real-time. This approach represents a significant advancement in the proactive management of behavioral symptoms in
dementia care.
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Introduction

Background

Dementia is a neurodegenerative condition that leads to a
progressive decline in cognition and is one of the leading
causes of death, disability, and hospitalization in Canada and
worldwide. Currently, dementia is the seventh cause of death
worldwide [1]. Worldwide, over 55 million individuals are
living with dementia; as the ratio of older people increases,
this number will grow to 78 million by 2030 and 139 million
by 2050, making dementia a major global health crisis [1].
In addition to cognitive and functional decline, people living
with dementia also experience noncognitive neuropsychiatric
symptoms (NPS) during their illness [2]. NPS commonly
includes agitation, aggression, apathy, symptoms of psycho-
sis, delusions, hallucinations, and disturbances of sleep and
appetite. Among NPS, agitation and aggression (AA) occur
frequently in severe cases and are a common source of
distress for patients and caregivers [3]. They commonly
occur during care and are believed to be manifestations of
perceived or real unmet needs [3]. Behaviors of AA include
pacing, rocking, gesturing, restlessness, shouting, throwing
objects, and destroying property [4]. These symptoms are the
leading cause of hospitalizations, extended length of stay of
inpatients, and increased demand for placement in long-term
care facilities [5]. AA enormously burdens people living with
dementia, their families, caregivers, and health care systems.

In current practices, AA is commonly assessed through
caregiver reports. Many observational methods have been
developed, including the Neuropsychiatric Inventory [6]
and the Cohen-Mansfield Agitation Inventory [7]. These
assessments are based on manual observations, which are
subject to potential bias depending on the caregiver’s memory
or emotional state. It is possible to address these limitations
by using artificial intelligence (AI) and predictive algorithms
to predict episodes of AA in people living with demen-
tia. In 2025, Al technologies are expected to be worth an
estimated US $36 billion [8]. There is growing evidence
that combining AI and sensory technologies to develop
a solution for NPS detection will guide the provision of
personalized interventions for people living with dementia
[9-11]. The timely detection of critical events in people
living with dementia using digital technologies is gaining
wide acceptance [12,13]. Predicting and managing AA in
people living with dementia requires innovative approaches
that integrate multiple data sources. Wearable sensors and
video-based monitoring systems provide unique opportunities
for the real-time detection of AA and preagitation behav-
iors, but challenges such as privacy concerns and scalability
have limited their adoption in clinical settings. This study
addresses these challenges by combining biometric data from
wearable sensors with Al-driven video analysis, enabling
real-time detection and prediction of AA. This integrated
approach aims to facilitate timely interventions, reduce care
costs, and improve outcomes for both patients and caregivers.
We conducted a pilot study in the Geriatric Dementia Unit
(GDU) and the Geriatric Transitional Unit at the Ontario
Shores Center for Mental Health Sciences [14]. We combine
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biometric data from the EmbracePlus wristband [15] and
video data from CCTV cameras installed in common areas
in both units. Machine learning and deep learning techniques,
including Extra Trees, Gradient Boosting, Random Forest,
multilayer perceptron (MLP), and recurrent neural networks
(RNNs), are used to analyze biometric and skeletal data
extracted from both the wristband and the video cameras. We
achieved high accuracy in detecting AA from the Embrace-
Plus wristband through comprehensive data preprocessing,
feature extraction, the Extra Trees classification algorithm
for personalized models, and the MLP algorithm for the
general model. Additionally, AA detection was enhanced
by analyzing real-time video feeds with skeletal key points
and using RNN-based neural networks, particularly long
short-term memory (LSTM) and gated recurrent unit (GRU)
[16]. These networks, optimized for real-time processing,
facilitate timely interventions. The pilot study demonstrated
the system’s effectiveness through both the wristband and
video detection.

Related Work

The growing number of people living with dementia causes
significant challenges for health care systems and caregivers.
One of these challenges is to deal with symptoms of AA
that increase with the severity of dementia. Recent advance-
ments in multimodal sensing technologies, including cameras
and wearable wristbands, have shown promise in monitoring
and managing AA in people living with dementia [10,17,18].
Wearable devices, capable of capturing physiological signals
such as acceleration, heart rate, and skin conductance, have
demonstrated potential for real-time AA detection [19-21].
Recent advancements in wearable sensor technology and Al
have shown promise in addressing the early detection of AA
behavior when focusing on signal processing and machine
learning to extract features and classify AA events [22].

However, real-time video-based monitoring systems to
monitor AA behavior in dementia patients are an area of
interest for researchers today [10,17,23]. These systems use
cameras positioned in patients’ rooms or common areas to
consistently record and monitor patients’ behavioral data.
Some research [24,25] used video cameras to detect AA
from previously recorded videos at the Specialized Dementia
Unit, Toronto Rehabilitation Institute, Canada. Their system
focused on offline AA detection. Another work collected the
training dataset from healthy people who imitated agitated
hand movements [26]. Researchers have highlighted the
importance of real-time feedback, which allows for timely
interventions and reduces the severity and duration of AA
events. This can help improve the quality of life and reduce
the stress caused by agitated behaviors in both patients and
caregivers. Researchers have also considered privacy factors
and concerns while ensuring the accuracy of these systems.
The work done in studies by Mishra et al [24] and Marshall
[26] has proposed different masking methods for the people
in the video frames that allow for AA detection while keeping
the patients’ identities and features hidden.

Multimodal sensing, which combines data from multiple
sensors, types, and sources, has emerged as a promising
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approach to understanding AA in people living with dementia
[27,28]. It enhances the detection of early signs of AA and
the identification of relevant triggers [23,29]. Clinical trials
evaluating the use of multimodal sensing in the context
of dementia and AA behavior are crucial in this type of
research. These trials assess the feasibility and efficacy of
monitoring systems that combine various data sources to
inform clinical decision-making. The results of these trials
will provide valuable insights into the practical implications
of multimodal sensing in real-world health care settings. Most
existing studies on video systems and wearable sensors for
AA detection in real-time have been conducted in controlled
laboratory settings or residential care facilities with limited
datasets [18,30]. Research is needed to use more diverse and
general datasets gathered and applied in real hospital settings.
This is essential since the data from hospitals would be more
representative of people with severe dementia who are more
prone to AA. Research in such a real-world setting with data
gathered from real patients is vital for developing realistic and
applicable solutions and ensuring effective treatment and care
for people living with dementia [18,30].

Moreover, it is challenging to identify the actual start and
end times of AA episodes. This is because the AA events are
extracted from nurse notes, which are not accurate and prone
to human or individual error. Many AA episodes may also
be overlooked and mislabeled as nonagitation. In addition to
the datasets, there is a high demand for accurate and reliable
end-to-end real-time monitoring solutions to actively predict
and respond to AA events. There is also still a need for an
in-depth investigation of Al and its features in addition to
an in-depth investigation of preagitation patterns and signs
that could trigger AA in people living with dementia. These
investigations are necessary to indicate the usefulness of
preagitation signs and patterns in early prediction. Digital
biomarkers can help detect and predict AA early in real
time [31]. The investigation by Alam et al [32] shows the
correlation between motion biomarkers collected from the
accelerometer and the early AA signs, which is particularly
useful for personalized AA detection models.

This paper presents a unique system that combines video
analysis and wearable sensor data to predict AA in peo-
ple living with dementia. The video feeds are crucial for
identifying the precise start and end of each AA episode. This
precise timing enables us to incorporate data analysis from
both the wristband and video footage into our research. We
focus on Al and advanced feature engineering to improve the
detection accuracy of AA in people living with dementia. We
significantly enhance our chances of detecting AA by using
2 distinct yet cooperative models (one based on physiologi-
cal data and the other on video analysis). This integrated
approach also opens the doors to incorporating additional
predictive methods, such as audio-based AA detection. The
combined use of video-based systems and wearable wrist-
bands offers deeper insights into AA management. While
notable advancements have been achieved, further enhance-
ments are needed, especially in real-time accuracy and system
applicability. We are confident that our current research
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explores a vital area and will contribute new knowledge to
the field and lay a solid foundation for future advancements.

Methods

Ethical Considerations

The research commenced in 2019. This study was approved
by the Joint Research Ethics Board (JREB) at Ontario
Shores Centre for Mental Health Sciences and Ontario Tech
University (JREB Number: 21-011-B). Informed consent was
obtained from all participants’ substitute decision makers, as
the participants had advanced dementia and were unable to
provide consent themselves. Data collected by the cameras
were masked, with any identifiable objects in the video
frames blurred (a video demonstration was provided to the
research ethics board [REB] chair and privacy officer). All
information obtained from participants was kept confiden-
tial. Computer-based data were stored in password-protec-
ted databases, and paper-based files were kept in locked
cabinets. Access to all data were restricted to authorized study
personnel, who followed the confidentiality regulations of the
JREB. Participants were not compensated for their participa-
tion.

This study was approved by the JREB at Ontario
Shores Centre for Mental Health Sciences and Ontario Tech
University (JREB Number: 21-011-B). Informed consent was
obtained from all participants’ substitute decision-makers, as
the participants had advanced dementia and were unable to
provide consent themselves. Data collected by the cameras
were masked, with any identifiable objects in the video
frames blurred (a video demonstration was provided to the
REB chair and privacy officer). All information obtained
from participants was kept confidential. Computer-based data
were stored in password-protected databases, and paper-based
files were kept in locked cabinets. Access to all data was
restricted to authorized study personnel, who followed the
confidentiality regulations of the JREB. Participants were not
compensated for their participation.

Study Design

A significant challenge was presented using video cameras
to document the behaviors and activities of patients, staff,
and visitors in the public spaces of hospital inpatient units.
Consent was secured for these patients through substi-
tute decision makers considering their advanced dementia
condition. At admission, capacity assessments were per-
formed, and substitute decision makers were approached for
permission to involve patients in potential research. The
recording of video cameras was restricted to the common
areas where patients usually gather during the day, and audio
capture was turned off throughout the data collection period.

This study collected participant data using an EmbracePlus
wristband [15] and video cameras installed in the GDU and
the Geriatric Transitional Unit at the Ontario Shores Center
for Mental Health Sciences. A total of 10 participants were
recruited based on inclusion criteria, including being aged
60 years or older, a diagnosis of moderate to severe major
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neurocognitive disorder as determined by the Mini-Mental
State Examination [33], and the ability to ambulate independ-
ently with or without a walking aid. Additionally, participants
had to meet the agitation criteria defined by the Agitation
Definition Working Group of the International Psychogeriat-
ric Association [34], with a Functional Assessment Staging
Tool scale score between 6a and 6e [35]. Moreover, each
unit was equipped with a single AXIS M3077-PLVE Network
Camera [36], and one AXIS P3225-VE Mk II camera [37]
was installed in the hallway of the GDU to capture relevant
footage. Participants wore the EmbracePlus wristband for 24
to 72 hours on 3 separate occasions within a 6-week study
period. The wristband collected physiological parameters
such as heart rate, electrodermal activity, and skin tempera-
ture.

During data collection (Multimedia Appendix 1), clinical
staff, who are part of the research team of this study,
monitored participants for episodes of AA, noting the start
and end times of each event. CCTV cameras recorded footage
to provide precise timestamps and additional context, as there
can be a delay between observed behavior and recorded
notes. To maintain privacy, faces and identifiable features
in the video footage were blurred. Once an AA event is
identified by the staff in the video, the skeletal points of the
recruited participants are extracted and added to the dataset,
and all other skeletal points are discarded. The skeletal key
points were analyzed using deep learning models to classify
episodes of AA. Data from wearable sensors and clinical
notes were integrated and analyzed to identify physiologi-
cal and behavioral patterns preceding episodes of AA. The
collected data formed the basis for developing and evaluat-
ing our multimodal system for real-time AA detection. The
results demonstrate the system’s feasibility and effectiveness
in detecting and analyzing AA episodes.

Event Classification

The proposed system collects the biomarkers
the EmbracePlus wristband, which is

using
considered the
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state-of-the-art wearable device for continuous health
monitoring in the market today [15]. The device combines
digital biomarkers, robust sensors, and a user-friendly design
to continuously monitor participants with various health
conditions. It collects electrodermal data of detected slight
changes in skin conductance from the skin surface, and
the data of a photoplethysmogram that calculates the pulse
rate and pulse rate variability measurements, skin tempera-
ture, and raw accelerometry data for motion detection. The
collected signals are sent to the cloud-based EmbracePlus
Care platform [15] through a Bluetooth-connected gateway
(eg, a smartphone).

The first type of data we deal with is the raw data from
the accelerometer, heart rate, temperature, and electrodermal
signals. We follow several preprocessing steps to clean, filter,
and apply 1-minute window segmentation for the raw signals
[21,38]. We then extract features from the signals, as shown
in our previous work, from the statistical, time domain,
frequency domain, and time-frequency domain with around
150 features [21,38]. Lastly, we evaluate multiple classifica-
tion techniques, namely Random Forest, Extra Trees, and
Gradient Boosting, to classify AA events. The performance of
each model is evaluated using standard classification metrics
such as accuracy, precision, recall, area under the curve
(AUC), and Fq-score. Furthermore, we collect the digital
biomarkers that are preprocessed data derived from Empati-
ca’s algorithms and calculate them minute-by-minute. The
second type is the digital biomarkers, which include pulse rate
variability, respiratory rate, movement intensity, accelerom-
eter magnitude SD, steps, skin conductance level, wearing
detection, temperature, and sleep detection as shown in Table
1. Digital biomarkers can effectively and accurately oversee
human health from a distance, consistently, and without
causing disruption. This applies across a spectrum of health
conditions [15]. Figure 1 shows the classification workflow
from the EmbracePlus wristband using raw data and digital
biomarkers.

JMIR Aging 2025 | vol. 8 168156 | p. 4
(page number not for citation purposes)


https://aging.jmir.org/2025/1/e68156

JMIR AGING

Badawi et al

Table 1. The digital biomarker data description from the EmbracePlus wristband.

Digital biomarkers Definition

The algorithm uses the photoplethysmogram and accelerometer data for PR monitoring with

The algorithm analyzes the photoplethysmogram for intermittent PRV, using accelerometer

PR?

estimates on 10-second windows.
PRV®

signals with nonoverlapping windows.
RR® The algorithm processes

expressed in breaths per

Movement intensity
Sensor.

scLd

the photoplethysmogram and accelerometer data to calculate RR values
minute.

The algorithm calculates activity count, steps, and accelerometer SD from the accelerometer

SCL estimation from EmbracePlus electrodermal activity signal, output every 1 minute with

nonoverlapping windows.

Wearing detection The algorithm correlates
time.

Temperature

device status with the photoplethysmogram patterns, indicating wearing

The algorithm analyzes EmbracePlus data for continuous peripheral temperature estimation.

4PR: pulse rate.

PPRV: pulse rate variability.
°RR: respiratory rate.

dSCL: skin conductance level.

Figure 1. The workflow of the proposed classification system using the EmbracePlus wristband. EDA: electrodermal activity.
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The proposed work focuses on investigating the data from
people living with dementia using machine learning, 2 of
which were thoroughly investigated in our previous work
[21,38]. The results concluded the most important features for
this problem after performing feature engineering and proved
that personalized models on individual patients outperform
generic models. In this work, we report the results of the
personalized model on 10 different participants from the
Ontario Shores Mental Health Institute. We test our system
in real-time once we determine the optimal classification
system to predict AA events. In the real-time detection
phase, real-time raw data is transmitted from the wristband.
Following this, features are extracted from each 1-minute
window, and these specific features are fed into the cus-
tomized model to classify whether the data is considered
normal or indicative of AA. The outcomes are subsequently
transmitted to the backend system, and the health care
provider is notified if the patient is agitated.

Video-Based Analysis

In addition to collecting data on physiological biomarkers,
this study incorporates video analysis data for AA predic-
tion. This approach uses an extra cooperative model, which

https://aging.jmir.org/2025/1/e68156
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improves our overall AA detection system and allows us to
get the precise duration, including start and end times, of
the collected AA episodes. Moreover, once an AA episode
is detected, the cameras record a previously set preagitation,
making it easier to observe any visual preagitation signs.
We aim to provide real-time alerts to health care providers
for timely intervention. The setup includes 3 CCTV cameras
installed and a PC in the attending psychiatric office with
access to this footage. Our system operates in 2 phases: the
offline phase for manual labeling and model training, and
the real-time stage for running the model. To protect the
privacy of the participants and the staff present, we blur
all faces and run OpenPose (Carnegie Mellon University)
to capture the movement data of the participants [39-42].
OpenPose is an advanced real-time system for multiperson
2D pose estimation. It also helps to anonymize individuals in
video frames. OpenPose uses convolutional neural networks
to detect human body parts and map their skeletal structure
onto the image or video frame. This allows for a detailed
representation of movement data present in the collected
frames. The model is trained on features extracted from
skeletal point coordinates instead of the raw video frames.
This approach has been recently used by researchers for AA
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detection in people living with dementia and has proven to be
as successful in detecting AA while preserving the privacy of
the people present [24,26].

After this, we use a preprocessing phase to enhance the
generalizability of the model across various environments
and datasets. This phase involves the elimination of extra-
neous noise that could otherwise impede model perform-
ance. The model considers the variations in camera angles
and participant positioning within the frame, which can
significantly influence the coordinate data. We calculate
Euclidean distances and angle measurements between specific

Table 2. Description of the extracted features from the skeletal data.

Badawi et al

skeletal coordinates to determine movements. For example,
the measured distance between the torso and feet is use-
ful to identify potential kicking actions, which may indi-
cate AA in certain contexts. Table 2 summarizes all 47
features extracted from these distance and angle measure-
ments. Before training, a feature analysis step is introduced to
remove highly correlated features and reduce the dimension-
ality of the model. This process reduced the features to 39
features. We tested the system on the same 10 participants
whose wearable sensor data was used earlier.

Feature Description

eu_l-eu_l14 Euclidean distances between different key point pairs; eu 1 represents
the Euclidean distance between key point 1 and the previous position
of key point 1

eu_l 3-eu_1_14 Euclidean distances between key point 1 and various other key points

por_2_l-por_14_1
ang_1_2-ang_1_14

POR® values between key points 2-14 and key point 1
Angles between key point 1 and key points 2-14

4POR: point of reference.

The offline and real-time (online) stages of the system are
detailed in Figure 2. In the offline stage, we preprocess and
extract features from skeletal data, which are then labeled
using nurse notes from patient medical records. Access to the
collected videos is restricted to the computer in the psychiat-
ric office, and they are retained only until the AA episodes
are accurately labeled with their start and end times. Once the
dataset is finalized, all videos are securely discarded. Using
this dataset, we train a deep learning model to differenti-
ate between AA and nonagitation events. Our focus is on
capturing a range of behaviors, from violent or aggressive
actions to repetitive motions such as pacing or chair rocking.
Hence, we use models that consider sequences of actions,

https://aging.jmir.org/2025/1/e68156

such as RNN-based neural networks, to effectively recognize
these sequences of actions. We specifically use and compare
the results of the GRU and LSTM models. Both are adept at
analyzing sequences of actions. The LSTM model is designed
to capture long-term dependencies within sequences. The
sophisticated cell structure of LSTM cells makes it highly
effective in maintaining context over long intervals. However,
the GRU model uses a simpler architecture that aims to
achieve results comparable to LSTM models but with lower
computational costs. Both models used in our research are
composed of a single LSTM or GRU cell, followed by a fully
connected sigmoid layer for the binary classification of AA
episodes.
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Figure 2. The system architecture of the video-based detection system.

Data preparation

Pose estimation

l

CCTV camera

Feature extraction

In the real-time stage, we deploy our offline-trained model to
classify AA in real-time. The model first processes real-time
video data from hospital cameras. Video frames are analyzed
using OpenPose, extracting features similar to those in the
offline stage. We use a fixed-size window to input frame
sequences into the classifier. Upon detecting AA, the system
records the event, including a 5-minute buffer before and after
the incident to capture the entire context. This approach helps
identify potential triggers and patterns that lead to AA. The
psychiatrist reviews these detected events for accuracy and
confirms AA events, which are then added to our training
dataset with appropriate labels. The model is then retrained
in the offline stage with the added data. The primary goal of
retraining the model is to continuously adapt and improve the
model with newly detected data.

Results

Overview

A pilot study was conducted to validate the effectiveness and
feasibility of the proposed system at Ontario Shores Mental
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Feed detected data for retraining

1
1
1
1
1
1
1
1
1
1

O
Train deep learning
model

Training dataset

Trained deep learning Detected agitation
classifier events

Health Hospital. This initial investigation aimed to provide
valuable insights into the system’s functionality, usability,
and overall potential before the implementation on a larger
population. Details of the enrolled participants and the data
collected can be found in Table 3. Upon enrollment, the
participants wore the EmbracePlus wristband for 24 to 72
hours. We turned on the cameras installed in the unit during
the data collection days to record the participants’ activities.
Lastly, we assigned a nurse to observe the participant and
provide a detailed report of behavior, AA events, and any
abnormal behavior. During the 3 days, we collected 6 AA
events, ranging from 2 to 23 minutes per AA event, with a
total of 20-32 minutes of AA labels and 560-581 minutes of
normal labels for each participant. The following sections will
present the results from the EmbracePlus wristband and video
cameras in detail.

JMIR Aging 2025 | vol. 8 | 68156 | p. 7
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Table 3. Overview of the demographic of the participants and the total collected data.

Participant Gender Age Recruitment date Total collected data (hours)
1 Female 83 August 2023 5421
2 Female 63 January 2024 48.13
3 Female 77 March 2024 453
4 Female 78 March 2024 96.4
5 Female 79 March 2024 994
6 Male 79 May 2024 46.7
7 Male 67 August 2024 36

8 Male 68 August 2024 355
9 Male 85 September 2024 95.5
10 Male 86 September 2024 54.6

Performance Evaluation
The EmbracePlus Wristband Raw Data

This study uses raw data obtained from 4 wristband signals
and personalized models, which achieved superior accuracy
in AA detection from people living with dementia in previous
research [21,38]. Subsequently, we conducted a comparative
Table 4. Comparative performance metrics using raw data.

analysis of multiple machine learning and deep learning
algorithms for AA detection, including Random Forest, Extra
Trees, Gradient Boosting, and MLP. We trained and tested
a personalized model for every participant and reported the
evaluation results in Table 4. The dataset for each participant
was randomly split into 70% for training and 30% for testing.

Participant Extra Trees Gradient Boosting Random Forest MLP?

Accb AUC® Recall Acc AUC Recall Acc AUC Recall Acc AUC Recall
1 0.984 0.994 0.994 0.97 0.98 0.98 0.984 0.994 0.994 0.97 0.98 0.98
2 0904 0984 0.96 0.88 0.96 0.93 0.88 0.96 0.94 0.88 0.96 0.974
3 0999 0994 0999 098 0.994 0.99 0.98 0.994 0.98 0999 0994 0.994
4 0919 0994 0979 089 0.97 0.96 0.88 0.97 0.99 0.89 0.96 0.98
5 0999 0994 0999 098 0.994 0.98 0.98 0.994 0.98 0.95 0.90 0.96
6 0999  0.99d 0999 098 0.994 0.98 0.98 0.994 0.98 0999 0.99d 0.994
7 0929  0.98d 0.97 0.89 0.96 0.96 0.89 0.97 0.96 0.90 0.96 0.994
8 0919 0984 0.97 091 0.96 0.96 0.88 0.97 0.95 0.89 0.96 0.98
9 0999 0994 0999 098 0.994 0.98 0.98 0.994 0.98 0999 0994 0.994
10 0999 0994 0999 098 0.994 0.99 0.98 0.994 0.98 0994 0.99d 0.994
All 0.85 0.94 093 0.98 0.96 0.90 0.93 0.95 0.65 0999 0984 0.984

MLP: multilayer perceptron.

bAcc: accuracy.

€AUC: area under the curve.

dBold text indicates the best results for each participant in each metric.

The Extra Trees model outperformed the rest of the models
for most of the participants, followed by the MLP model,
which achieved similar results for 4 of the 10 participants.
For example, the Extra Trees model achieved an accuracy
of 98.67%, an AUC of 99.1%, and a recall of 99.76% for
participant #1. It achieved the highest accuracy and AUC for
participant #2 of 90% and 98%, respectively. For participants,
#3, #6, #9, and #10, both the Extra Trees and MLP models
achieved 99% across all evaluation metrics. These results
underscore the efficacy of the chosen features, preprocessing
methodologies, and up-sampling techniques. When tested on
all 10 participants together, the Extra Trees model achieved a
lower accuracy of 85%. The Gradient Boosting and Random
Forest achieved higher accuracies in comparison with 98%
and 93%, respectively. The Random Forest model, however,

https://aging . jmir.org/2025/1/e68156

performed very poorly in other evaluation matrices, with
a recall of 67% for the general model. The MLP model
achieved a slightly higher accuracy than Gradient Boosting
of 99% and even a higher AUC and recall of 98%, performing
very similarly to the personalized models. This highlights the
potential for a general model when enough data are collected.

Table 5 presents a summary of the statistical analysis of
model performance metrics across all models. As expected,
Extra Trees is the top-performing model for participant-level
predictions, with the highest mean accuracy of 0.95 and a
95% CI of 0.928-0.986. This indicates consistent performance
across the evaluation set. Pairwise statistical tests further
confirmed the superior accuracy of Extra Trees compared to
Gradient Boosting (P=.001), Random Forest (P=.006), and
MLP (P=.002). Although MLP demonstrated a comparable
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mean accuracy of 0.94 and even outperformed Extra Trees
in the general model setting, it exhibited a broader CI
(0.909-0.979) and a similar SD (0.04). In terms of other
metrics, Extra Trees also achieved the highest mean AUC
of 098 and a narrow CI of 0.970-0.990. MLP and Gradi-
ent Boosting delivered competitive results in AUC 0.97 and
recall 0.96. These findings suggest that while MLP performed

Badawi et al

well in the general model, Extra Trees consistently outper-
formed other models in the personalized model evaluations.
This consistency identifies Extra Trees as the most reliable
model for this multimodal system. Additionally, the observed
trends highlight the importance of focusing on personalized
models to consider individual variations.

Table 5. Statistical analysis of model performance metrics across all models.

Metric Extra Trees Gradient Boosting Random Forest MLP?
Mean accuracy 0.95° 0.94 0.94 0.94

SD (Acc) 0.04 0.04 0.05 0.04

95% CI (Acc) 0.928-0.986 0.912-0.976 0.905-0.977 0.909-0.979
Paired P value —d 0.001 0.006 0.002

(vs Extra Trees)

Mean AUC® 0.98" 097 0.96 0.97

SD (AUC) 0.01 0.01 0.01 0.01

95% CI (AUC) 0.970-0.990 0.960-0.980 0.950-0.970 0.960-0.980

AMLP: multilayer perceptron.

bBold text indicates the best result for each metric.
€Acc: accuracy.

dNot applicable.

®AUC: area under the curve.

Furthermore, we studied the importance of different features
for every participant (Multimedia Appendix 2). For partici-
pant #1, the top 10 features contributing to accurate AA
classification using the Extra Trees model revealed that 5
were from electrodermal activity, 3 from the accelerome-
ter, 1 from heart rate, and 1 from temperature. Notably,
the electrodermal tonic mean was the most critical feature,
suggesting a strong link between AA episodes and fluctua-
tions in electrodermal activity, which is commonly associated
with emotional arousal. For participant #2, the most important
features were primarily the accelerometer and temperature
signals. Features related to energy, root mean square, and
variability in acceleration played a key role in AA clas-
sification. Additionally, temperature fluctuations were also
significant, suggesting that both movement patterns and body
temperature changes could indicate agitation onset in this
participant.

For participant #3, the temperature-related features were
the most dominant in identifying AA episodes. The maxi-
mum temperature value, temperature root mean square, and

https://aging . jmir.org/2025/1/e68156

energy were among the top contributors, highlighting a
strong correlation between changes in body temperature and
agitation. These findings emphasize the individual varia-
bility in AA predictors, reinforcing the necessity of per-
sonalized models for accurate classification. While some
participants exhibit agitation-related physiological changes in
electrodermal activity, others may show significant patterns
in movement or temperature variations, underscoring the
importance of a multimodal feature selection approach.

As the electrodermal tonic mean was the top feature to
classify AA for participant #1, we investigated the AA labels.
Figure 3 shows the tonic mean values of participant #1
from the electrodermal signal during labeled AA events from
the camera and nurse notes (highlighted in red). This event
occurred during the second day and lasted for 23 minutes
from 5:55 PM to 6:17 PM. This observation suggests that
the patient’s AA was related to the electrodermal signal
connected to the emotions. We also observed an apparent
change to the data before the actual AA occurred, which we
manually marked as preagitation labels (highlighted in blue).
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Figure 3. The EmbracePlus wristband raw data with agitation and preagitation annotation: the tonic mean plot for participant #1.
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For participant #2, the acceleration features were the top PM and 1:38 PM using the accelerometer data. Moreover, a

features in identifying the AA event. Figure 4 shows one
of the AA events for this participant occurring between 1:24

change in the pattern of the signal 8 minutes before the event
is manually labeled as preagitation.

Figure 4. The EmbracePlus wristband raw data with agitation and preagitation annotation: the accelerometer plot for participant #2.

Preagitation Agitation
0.06 A x ‘ °
0.05 A
D L] L]
A 0.04 ® s
" pe e o
g . 3
L
= .
£ 0031 ° ° .
i) .
|9
g : . T ¢ '
0.02 4 o
(] b .
L
L] L] ° L
0.01 A ®
L
° L
L]
un o ~ «© (=] o - ~ m <t wn o ~ o o o - ~ m < un o ~ «© a o - ~ m < wn o ~ o o
o o o o o — — — — — — — — - - ~N ~N ~ ~ ~N ~N ~N ~N ~N ~ m m m m m m m m m m
m m m mM m mM M mM MM M ™M M ™M M M M M ™M M ™M M ™M M M M M ™M M ™M M mM M M ™M™ ™M
- - - -~ -~ -~ -~ -~ -~ —~ —~ —~ —~ - -~ -~ -~ - - -~ -~ -~ Ll Ll Ll -~ -~ -~ —~ -~ —~ —~ - - -
Time
For participant #3, the most dominant features were the manually labeled as preagitation. These observations suggest

temperature features, so an example of the temperature
readings for an AA event is shown in Figure 5. Just as before,
a change in the pattern before the observed AA event is
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the potential for detecting preagitation patterns from raw data,
enabling the prediction of AA before it occurs.
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Figure 5. The EmbracePlus wristband raw data with agitation and preagitation annotation: the temperature plot for participant #3. max: maximum.
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The Wristband EmbracePlus Digital
Biomarkers

We explored all the digital biomarkers offered by Embra-
cePlus. Taking the first 3 participants as an example, we
observed that pulse rate, activity counts, and activity class
were the leading indicators for AA detection for the first 3
participants. In Figures 6-8 , the same AA events discussed

in the previous subsection for the 3 participants are illustrated,
and the values during labeled AA events from the camera and
nurse notes are highlighted in red. Additionally, we observed
a noticeable change in the data before the onset of AA,
manually designated as preagitation labels and highlighted in
gray. The manual labeling of the preagitation was done after
reviewing all the signals for the participants and noting the
same change across multiple patterns.

Figure 6. The activity counts from the digital biomarkers data for participant #2.
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Figure 7. The pulse rate from the digital biomarkers data for participant #3.
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Figure 8. The activity class from the digital biomarkers data for participant #1.
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Figure 1 illustrates the activity class for participant #1,
extracted from the accelerometer signal, revealing that the
participant was in motion rather than stationary during AA
and preagitation episodes, indicating body movement during
these events. Figure 6 displays the total activity counts
for participant #2 from the accelerometer signal. While the
normal activity count for the participant ranged between
0-100 during AA and preagitation events, it surged to 50-140,
signifying heightened activity levels during AA. Finally,
Figure 7 presents the pulse rate derived from the heart rate
signal for participant #3. Although the participant’s average
pulse rate ranged from 55-80 (SD 12.4) bpm, it increased to
90-110 (SD 11.6) bpm during AA and preagitation events.

https://aging . jmir.org/2025/1/e68156

Across the raw and digital biomarkers data, we observed that
the preagitation occurred from 3:20 PM to 3:27 PM. This
indicates that signs of AA behavior occurred approximately
7 minutes before the actual event, suggesting the potential to
predict and prevent AA events.

Performance of Video-Based Detection

We preprocessed our videos using OpenPose and performed
feature extraction as described in the methodology section.
As AA behaviors are repetitive in nature, we selected
RNN models to capture the sequential patterns of these
events. Features were extracted from 30-second windows.

JMIR Aging 2025 | vol. 8 | e68156 | p. 12
(page number not for citation purposes)


https://aging.jmir.org/2025/1/e68156

JMIR AGING

The window moves 1 second at a time to capture different
variations of AA behaviors from the skeletal points. For the
classification task, we tested 2 different network structures,
which are LSTM and GRU.

In the feature analysis step, we focused on reducing the
model’s dimensionality without compromising its perform-
ance. Initially, 47 features were extracted based on skele-
tal movements, including Euclidean distances and angles
between key body parts. It is evident from the figures that
more features are highly correlated in agitation events than in
nonagitation events. This had a strong effect on the feature
reduction as only the highly correlated features in both
datasets were removed. We investigated the correlation of the
features more deeply and tested the model on fewer features

Table 6. Video results comparison.
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based on a correlation threshold. Setting the correlation
threshold to 0.8 reduced the number of features to 39 features.
The number of features based on the correlation threshold
did not change even when the threshold was set to as low
as 0.5 due to the huge difference in correlation between both
types of events. Both datasets are randomly split into 70%
for training and 30% for testing. The training was conducted
on a Lambda server equipped with an RTX A6000 GPU, and
each model was trained for 100 epochs with a batch size of
256. We used the Adam optimizer to efficiently handle sparse
gradients and used a sigmoid activation function for binary
classification (AA vs nonagitation). We report the results of
all the tests on the testing set in Table 6.

Number of

Model features Accuracy AUC? F1-score Recall Time (s)
LSTMP 47 0.94 0.98 0.97 0.96 16.1
LSTM 39 0.94 0.98 0.98 0.97 14.7¢
GRUY 47 0.95¢ 0.98¢ 0.98¢ 0.97 30.2
GRU 39 0.95¢ 0.99¢ 0.98° 0.98° 29.8
4AUC: area under the curve.

PLSTM: long short-term memory.

®Bold text indicates the shortest inference time.

dGRU: gated recurrent unit.

®Bold text indicates the best result for each metric.

We compared metrics such as accuracy, AUC, and F-score. Discussion

We also compared the response time, an essential factor in

real-time applications, of all models. As observed in the table, Princioal Findinas

the reduction in the number of features did not affect the P 9

performance of the models. The LSTM model, in both cases,
achieved an accuracy of 94% and an AUC of 98%. The GRU
model reached 95% accuracy and 99% AUC. Although the
performance of both models is similar, the response time of
the GRU model is double that of the LSTM. The response
time for the LSTM was 15.9 seconds when all the features
were used in training and was almost one second faster with
fewer features. The GRU models, however, had a response
time of 30.1 seconds for 47 features and 29.7 seconds for 39
features. The results show that the GRU model is superior
across all evaluation metrics, albeit for the response time,
where it lags behind the LSTM model by a huge margin.
As we aim to detect AA as early as possible, the swifter
response time can allow for timely interventions by health
care providers in case of any AA event. The high AUC values
of both models signify a strong ability to minimize the rate
of false positives. This is crucial to ensure the reliability
of the model in detecting real AA with lower false alarms,
causing less overhead for health care providers. The faster
response time posits the LSTM model as possibly the more
advantageous model for real-time deployment.

https://aging . jmir.org/2025/1/e68156

The successful implementation of the system within the
hospital setting, considering privacy and the positive feedback
from patients and health care professionals, highlights the
system’s viability in a real-world clinical environment. The
system used in this study integrated physiological data
from the EmbracePlus wristband and video footage from
CCTV cameras, allowing for a comprehensive and multi-
modal approach to AA detection. The EmbracePlus wrist-
band system demonstrates promising results in detecting and
classifying AA and preagitation events in individuals with
severe dementia. The AA detection results are reflected in
the video detection system, and the preagitation labels can
be added to the system from EmbracePlus. The following
discussion highlights key findings and their implications,
followed by suggestions for future work.

The EmbracePlus wristband, which leverages both raw
data and digital biomarkers, demonstrated its efficacy in
discerning patterns associated with AA and preagitation.
The personalized Extra Trees model emerged as the top-per-
forming algorithm for the raw data, achieving high perform-
ance. Furthermore, features such as electrodermal tonic mean,
accelerometer activity class, and pulse rate highlighted the
significance of identifying AA. Furthermore, the outcomes of
our analysis are promising and demonstrate the potential of
predicting AA in dementia care settings in real time. We were

JMIR Aging 2025 | vol. 8 | e68156 | p. 13
(page number not for citation purposes)


https://aging.jmir.org/2025/1/e68156

JMIR AGING

able to predict preagitation events from all participants at
least 6 minutes before the actual AA event. The identification
of preagitation patterns in the data suggests that physiolog-
ical changes precede observable AA behavior. Being the
first to explore these patterns in individuals with severe
dementia from the EmbracePlus wristband, this study lays
the groundwork for a deeper understanding of the dynamics
and physiological signatures of AA behaviors. The newfound
ability to identify preagitation patterns offers a potential
window for early intervention and preventive measures.

Moreover, the video detection system, incorporating
CCTV footage and advanced pose estimation techniques,
was used along with the EmbracePlus wristband for AA
detection. The privacy preservation technique, which follows
the REB protocols in the hospital, does not exploit the
patient’s personal features or body image without affecting
the performance of the proposed model. The LSTM neural
network and the GRU networks exhibited robust performan-
ces. The high AUC of both models is particularly crucial
in the context of health care to minimize the risk of false
negatives and ensure that true AA events are accurately
identified. During the real-time deployment stage, the model
adapts and continuously improves based on the collected data.
The labeled preagitation labels collected from the wristband
can be fed into the training set of the video detection system
to provide insight into detecting preagitation from the video
footage. The outcomes of our analysis are promising and
demonstrate the potential of both LSTM and GRU neural
networks in detecting AA in dementia care settings in real
time.

Future Work

For future work, we will focus on expanding our dataset by
recruiting more participants from the hospital. We aim to
validate the system over the long term, assessing its stability,
generalizability, and adaptability to health care and home care
environments. This step is crucial for building a database with
a substantial number of AA and preagitation events, which
is essential for developing a high-performance detection
system using machine learning. Once our detection system
is established, we plan to automate the real-time system that
is capable of predicting AA. This involves receiving data in
real time, classifying the data, and sending notifications to
the health care providers if an AA event occurs. Additionally,
we plan to improve the real-time AA detection of the video
system. We also plan to use the preagitation labels from the
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EmbracePlus wristband to help our video detection model
predict AA before they happen. During the initial stages of
this study, health care providers will review and confirm all
collected AA events. Their feedback is crucial in refining
and enhancing the model’s performance and should aid in
identifying any limitations or challenges. Once the model is
reliable, it will automatically detect and predict AA with no
human intervention.

Conclusions

This study represents a notable step forward in developing
an AA and preagitation detection system for individuals
with severe dementia. It uses a comprehensive approach
by integrating psychological biomarker sensing and video
detection systems. The results demonstrate the feasibility and
efficacy of monitoring systems that combine various data
sources for AA detection. This study recruited 10 partici-
pants from the Ontario Shores Center for Mental Health
Sciences Institute. We used the EmbracePlus wristband
for continuous health monitoring and video footage from
CCTV cameras for real-time observation of AA events. In
the preliminary data analysis, the features extracted from
the raw data of the EmbracePlus wristband demonstrated
exceptional performance in detecting AA events, with the
Extra Trees model emerging as the top-performing algorithm
for all the personalized models and MLP outperforming the
rest of the models for the general model and achieving an
accuracy of 98%. Exploring the digital biomarkers further
strengthened the system’s classification of AA, preagitation,
and normal events. Pulse rate, activity class, and activity
counts have emerged as critical indicators for detecting AA.
This study revealed the potential for detecting preagitation
patterns, showcasing a 6-minute lead time before actual
AA events. This early detection capability holds promise
for timely intervention and preventive measures. In addi-
tion to the EmbracePlus wristband, the video-based detec-
tion demonstrated promising results in detecting AA using
GRU, achieving a 95% accuracy rate and a robust AUC
of 98%. The data analysis’ promising results highlight the
potential of the multimodal approach to enhance patient
care and safety by predicting AA events. This research will
provide new directions for researchers interested in technol-
ogies for dementia care and provide challenging proposi-
tions in detecting and monitoring, modeling, and evaluating
patient-specific interventions for people living with dementia
demonstrating NPS.
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