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Abstract
Background: Frailty syndrome in older adults represents a significant public health concern, characterized by a reduction
in physiological reserves and an increased susceptibility to stressors. This can result in adverse health outcomes, including
falls, hospitalization, disability, and mortality. The early identification and management of frailty are essential for improving
quality of life and reducing health care costs. Conventional assessment techniques, including dual-energy X-ray absorptiometry
(DXA), bioelectrical impedance analysis (BIA), and muscle ultrasound (US), are efficacious but frequently constrained in
primary care settings by financial and accessibility limitations.
Objective: The aim of this study is to analyze the differences in anthropometric characteristics, physical function, nutritional
status, cognitive status, and body composition among older adults identified as frail, prefrail, or robust in primary care services
using the PowerFrail mobile app. Furthermore, the study assesses the predictive capacity of body composition variables
(whole-body phase angle [WBPhA] via BIA, US-measured rectus femoris muscle thickness, and DXA-derived lean mass) in
identifying frailty and evaluates their feasibility for implementation in primary care.
Methods: A descriptive cross-sectional study was conducted with 94 older adult participants aged between 70 and 80 years,
recruited through the Andalusian Health Service in Spain. Frailty status was classified using the PowerFrail App, which
integrates muscle power assessment and provides personalized physical activity recommendations. Body composition was
measured using WBPhA (BIA), muscle US, and DXA. Statistical analyses included 1-way ANOVA for group comparisons,
logistic regression to investigate associations, and receiver operating characteristic curve analysis to evaluate the predictive
accuracy of the body composition measures.
Results: Participants were categorized into frail (n=28), prefrail (n=33), and robust (n=33) groups. All body composition
measures exhibited high specificity in detecting frailty, with varying sensitivity. Unadjusted US showed the highest specificity
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but low sensitivity (10.7%). WBPhA and right leg lean mass (LeanM RL) demonstrated significant predictive capabilities,
especially when adjusted for age and sex, with area under the curve values ranging from 0.678 to 0.762. The adjusted LeanM
RL model showed a good balance between sensitivity (35.7%) and specificity (93.9%; P=.045), indicating its potential as a
reliable frailty predictor. These findings are consistent with previous research emphasizing the importance of muscle mass and
cellular health in frailty assessment.
Conclusions: Body composition variables, particularly WBPhA, LeanM RL, and US, are effective predictors of frailty
in older adults. The PowerFrail mobile app, combined with advanced body composition analysis, offers a practical and
noninvasive method for early frailty detection in primary care settings. Integrating such technological tools can enhance the
early identification and management of frailty, thereby improving health outcomes in the aging population.

JMIR Aging 2025;8:e67982; doi: 10.2196/67982
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Introduction
Frailty syndrome in older adults is a multifaceted clinical
condition characterized by decreased physiological reserves
and increased vulnerability to stressors, which elevates the
risk of adverse health outcomes such as falls, hospitaliza-
tion, disability, and mortality [1,2]. As the global population
ages, the prevalence of frailty is projected to rise, posing
significant challenges to health care systems worldwide [3].
Early identification and management of frailty are crucial for
enhancing quality of life, maintaining functional independ-
ence, and reducing health care costs associated with frailty-
related complications [4,5].

Primary care facilities are uniquely positioned to play a
pivotal role in the early detection and management of frailty
due to their accessibility and continuous engagement with
the aging population [6]. Implementing effective screening
tools within primary care can facilitate timely interventions,
thereby mitigating the progression of frailty and its asso-
ciated adverse outcomes [7]. However, the integration of
comprehensive frailty assessments into routine primary care
practice remains limited, often due to time constraints, lack
of standardized tools, and insufficient training among primary
care providers [8].

Body composition variables, particularly those related to
muscle mass and tissue quality, are essential in identify-
ing and predicting frailty syndrome [9]. Techniques such
as dual-energy X-ray absorptiometry (DXA), bioelectrical
impedance analysis (BIA), and muscle ultrasound (US) have
been extensively used to assess body composition and muscle
status in older adults [10]. The whole-body phase angle
(WBPhA), obtained through BIA, serves as an indicator
of cellular health and nutritional status, with lower values
associated with increased frailty and poorer clinical outcomes
[11,12]. Similarly, muscle US offers a noninvasive way to
assess muscle thickness and quality, aiding in the detection of
sarcopenia and frailty [13]. Although DXA is considered the
gold standard for measuring bone and muscle mass, its high
cost and limited accessibility in primary care facilities make it
necessary to explore alternative assessment methods [14].

In recent years, the advent of mobile health (mHealth)
apps has introduced innovative solutions for the assessment

and monitoring of complex geriatric syndromes, including
frailty. The PowerFrail app represents a pioneering effort
in this domain, being the first clinical and scientifically
validated app designed to assess muscle power and frailty
in older adults in a user-friendly manner [15,16]. This
app not only facilitates the screening process but also
provides individualized recommendations for improvement
and tailored physical activity regimens, thereby support-
ing personalized intervention strategies. The utilization of
validated mobile apps and new trends around artificial
intelligence in primary care hold significant promise for
enhancing the early detection and management of frailty,
offering advantages such as accessibility, ease of use, and the
ability to provide real-time feedback and recommendations
[17,18].

Moreover, integrating mHealth tools into primary care
can bridge gaps in health care delivery by enabling con-
tinuous monitoring and follow-up, which are critical for
managing chronic conditions and preventing the escalation of
frailty [18]. Previous studies have highlighted the effective-
ness of mobile apps in improving health outcomes among
older adults by facilitating timely interventions and enhanc-
ing patient engagement [19]. These findings underscore the
potential of mHealth solutions to complement traditional
assessment methods, providing a comprehensive approach to
frailty management in primary care settings.

From above, the main objective of this study is to
analyze the differences in variables related to anthropometric
characteristics, physical function, nutritional status, cognitive
status, and body composition in phenotypes of frail, prefrail,
and robust older adults identified in primary care services.
Frailty levels will be classified using the PowerFrail app.
Additionally, the second objective is to assess the predictive
capacity of body composition variables (US, bioimpedance,
and DXA) in identifying older adults with frailty and to
evaluate their implementation in primary care services. We
used the technological tools WBPhA, US for rectus femoris
muscle thickness, and DXA for bone mineral density and
lean mass assessment. Our results could demonstrate that
these parameters are useful predictors for the identification
of frailty, in line with previous findings, thus supporting the
potential integration of these tools into primary care practices
for the early detection and management of frailty, integrating
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for the first time mHealth technologies with advanced body
composition analysis systems.

Methods
Ethical Considerations
This was a descriptive cross-sectional study that evaluated
clinical, physiological, body composition, and psychometric
variables in a sample of older adult participants. Recruitment
and data collection took place between March and June
of 2023. Participants were recruited through advertisements
from the public Andalusian Health Service system, Spain.
Participants were recruited from primary care centers through
referrals by health care professionals. Recruitment was
conducted in collaboration with general practitioners, who
identified potential participants meeting the inclusion criteria.
The study adhered to the ethical principles of the Declaration
of Helsinki for medical research involving human subjects.
All participants provided written informed consent. This
study was approved by the Costa del Sol Institutional Ethics
Committee, under protocol number BON22, on December
23, 2022. All participants provided written informed consent
prior to their inclusion in the study. Participants’ privacy
and confidentiality were ensured throughout the study: all
data were anonymized prior to analysis, and identifying
information was stored securely and separately from the study
data. No identifiable images or information of participants
are included in this publication. Participants did not receive
compensation for their participation..
Participants
Inclusion criteria for the study were as follows:

• Individuals aged between 70 and 80 years, inclusive.
• Absence or presence of mild cognitive impairment as

determined by a Barthel index score [20] greater than
95.

• Sit-to-stand test score [21] between 2.5 and 3.6 for men
or between 1.9 and 3 for women.

• Signed informed consent.
Exclusion criteria were the following:

• Individuals younger than 70 years or older than 80
years.

• Individuals with moderate or severe cognitive impair-
ment.

• Sit-to-stand test score [21] less than 2.5 or greater than
3.6 for men or less than 1.9 or greater than 3 for
women.

• Individuals living in institutions.
• Individuals with pacemakers or metal prostheses.

Variables and Procedure
The aim of this study was to identify differences in meas-
ured parameters to classify individuals into different states
of frailty within primary care. To identify different states of
frailty, the sit-to-stand test was used, and relative power was
calculated using the equations validated by Losa-Reyna et al
[16]. Using the cutoff points determined by Losa-Reyna et al
[22], participants were classified into 3 groups: frail, prefrail,

and robust. This test was performed in the health center’s
office.

After identifying the study subjects, a detailed evaluation
of the remaining variables was carried out in the Functional
Testing Laboratory of the Physical Education and Sports
Area of the University of Málaga. Participants came to
the laboratory fasting (a minimum of 3 hours) and without
having done any previous exercise, wearing comfortable
and light clothing without metal objects. The tests were
carried out between 9:30 AM and 2:00 PM. Once in the
laboratory, 2 qualified researchers administered the different
tests and assessments; body composition determinations were
performed fasting and in the early morning, and the rest of the
scheduled evaluations were carried out after breakfast.
Clinical and Demographic Variables
We collected the following clinical and demographic
variables:

• Age and sex: Recorded during the initial interview (age
in years; sex as male or female).

• Body mass index: Calculated by dividing weight
(measured in kilograms using a Digital Scale Extra
Large Seca Robusta 813) by height (measured in meters
using a stadiometer) squared (m²).

• Number of medications (drugs): Extracted from the
clinical history of the Diraya system (Andalusian
Health Service database), with the participants’ consent.

• Education level: Recorded during the initial interview.
Body Composition Variables
We collected the following body composition variables:

• Muscle architecture: Muscle thickness and pennation
angle of the rectus femoris muscle of the dominant leg
were measured using US (Logiq Book XP Ultrasound
System and 8L linear transducer). The rectus femoris
was examined with the participant in a supine position,
with the US operator standing on the ipsilateral side
of the participant. The evaluation protocol previously
described by Mateos-Angulo et al [23] was used.

• DXA: Lean mass of arms and legs, total lean body
mass, skeletal muscle index, and bone mineral density
were determined using a Hologic Horizon A DXA
scanner (Hologic Inc). Each subject was examined
by a certified technician. The distinction between
bone and soft tissue, the detection of edges, and
regional demarcations were performed using computer
algorithms with APEX Corporation Software (version
5.6.0.7). For each scan, patients were asked to remove
all materials that could attenuate the X-ray beam,
including jewelry. Due to the sensitivity of the soft
tissue analysis, the patient should only wear a paper
gown for the scan. There should be no pillow on
the scan, as the material would affect the soft tis-
sue measurement. The densitometer calibration was
checked daily with the standard calibration block
supplied by the manufacturer.

• BIA: Total body water, intracellular, extracellular
water, and phase angle (WBPhA) variables were
determined by multifrequency bioimpedance using the
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Inbody 770 model. Multifrequency segmental data were
obtained that accurately determined total body water,
intracellular and extracellular water, impedance (Xc and
R), and phase angle (Z) in the 5 body segments (right
arm, left arm, trunk, right leg, and left leg).

Cognitive and Nutritional Status
To assess cognitive and nutritional status, the following
questionnaires were administered digitally using the Google
Forms application.

• Cognitive capacity: Cognitive status was evaluated [24]
using the General Practitioner Assessment of Cognition,
score 0 to 8, a rapid, reliable, and specific test for the
detection of dementia in primary care. This instrument
is considered an efficient alternative to others, such as
the Mini-Mental State Examination, due to its rapid
administration and lack of bias related to gender,
education level, or mental health.

• Nutritional status screening: Nutritional status was
assessed using the Mini Nutritional Assessment (MNA)
[25], score 0 to 14, a widely used scale in the geriat-
ric population. The first part of this test serves as a
screening tool to detect the risk of malnutrition, with
a cutoff value of 10 points or less. It is a widely
used method in older adults and has been validated in
different clinical contexts.

Physical Function Evaluation
To evaluate the physical function of the participants, the Short
Physical Performance Battery (SPPB) was used, score 0 to 12
[26]. This battery includes three tests:

• Walking speed: Measured over a 4-meter distance,
expressed in meters per second. Given that gait speed

measurement is used as a tool for detecting frailty in
older adults from the general population due to its high
sensitivity, simplicity, and feasibility, we also used the
cutoff points for frailty and prefrailty related to gait
speed and sarcopenia in accordance with the consensus
document developed by Cruz-Jentoft et al [27]. In this
framework, values below 0.6 m/s are identified as frail,
between 0.6 and 1 m/s as prefrail, and above 1 m/s as
robust [27].

• Static balance: Assessed in 3 different positions.
• Sit-to-stand test: Evaluation of the time it takes for

participants to stand up and sit down from a chair 5
times.

In addition to the tests included in the SPPB, two tests were
performed:

• Mobile lower limb relative muscle power (RPOW): To
measure RPOW, participants performed 5 repetitions of
standing up from and sitting down onto a chair with a
height of 0.46 m, following the protocol validated by
Alcazar et al [15]. The test was performed using the
PowerFrail app (Figure 1), developed and validated by
Losa-Reyna et al [16], installed on a stable smartphone.

• Handgrip strength: Isometric handgrip strength,
expressed in kilograms, was measured using a
Takei Physical Fitness Test adjustable dynamometer,
following a standardized protocol, as indicated by
Roberts et al [28]. Participants performed the test in
an erect standing position, with shoulders adducted and
arms extended parallel to the body, without touching
their torso. Two attempts were made for each extremity,
and the maximum value was considered, regardless of
hand dominance.
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Figure 1. PowerFrail mobile app screenshots.

Sample Size Calculation
The sample size was estimated using an ANOVA model
for 3 independent groups (robust, prefrail, and frail). The
calculation was performed using the G*Power software. For
the sample size calculation, a power of 90% (1–β=.90), a
significance level of 5% (α=.05), and an effect size of 0.4
were used. The result was a total sample size of 84 partici-
pants. This size was obtained with a noncentrality parameter
(λ) of 13.44 and a critical F of 3.11, with 2 degrees of
freedom in the numerator and 81 in the denominator. To
avoid losses in the initial calculation, enough participants
were recruited to maintain the robustness of the study.
Finally, 94 subjects participated in the study, distributed
across 3 groups: robust, prefrail, and frail.

Statistical Analysis
To compare the differences on all variables between robust
participants and those with frailty and prefrailty, a 1-
way ANOVA was performed on the total sample. Logis-
tic regression analysis was performed to investigate the
relationship between body composition and frailty. WBPhA,
thickness US, and DXA lean muscle from the lower limbs
were entered into the regression model as independent
variables, as they were found to have significant differences
between the studied groups. Considering that age and sex
may influence the relationship between body composition
and frailty, these factors were introduced as a confounding
variable into an adjusted regression model, treating age as
a continuous covariate and sex as a categorical factor. The
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dependent variable was a binary indicator of frailty, coded as
1 for participants with frailty and 0 for robust participants and
those with prefrailty.

To extract values for body composition to identify the
presence of prefrailty or frailty, we conducted an analysis
using the receiver operating characteristic (ROC) curve. This
analysis was applied only to body composition that was
significant in the logistic regression analysis. In the ROC
analysis, the outcome variable was the presence or absence
of frailty. The test variable was the body composition that
was significantly associated with frailty. Youden index [29]
was calculated with the following formula: Youden index =
sensitivity + specificity – 1. The area under the curve (AUC),
sensitivity, and specificity were calculated to evaluate the
accuracy of the identified predictive models. The AUC could
distinguish between nonpredictive (AUC<0.5), less predictive

(0.5<AUC<0.7), moderately predictive (0.7<AUC<0.9), and
highly predictive (0.9<AUC<1) values, as well as perfect
prediction (AUC=1) [30].

Results
The background information of the participants is shown in
Table 1. Of the 94 participants in this study, 28 were frail,
33 were prefrail, and 33 had a robust profile. The average
age for each frailty category was 76.5, 75.3, and 74.0 years,
respectively. The percentages of men and women with frailty
and prefrailty were 32% and 52% for men and 68% and
48% for women, respectively. All investigated variables were
significantly different among the frailty categories, except
BMI, MNA score, skeletal mass index, left arm lean mass,
right arm lean mass, and total body lean mass.

Table 1. Descriptive characteristics of the sample (n=94).
Frailtya Prefrailty Robust P valueb Post hoca

Particpants, n (%) 28 (30) 33 (35) 33 (35)   
Sex (female; male), n (%) 19 (68); 9 (32) 16 (48); 17 (52) 17 (52); 16 (48)   
Age (years), mean (SD) 76.46 (2.92) 75.34 (2.86) 73.99 (2.59) .004 F>R
BMI (kg/m2), mean (SD) 28.35 (5.34) 27.87 (4.73) 28.65 (5.27) .82
RPOWc (W/kg), mean (SD) 1.69 (0.54) 2.60 (0.32) 3.32 (0.46) <.001 F<P< R
MNAd (score, 0‐14), mean (SD) 13.00 (1.28) 12.94 (1.71) 13.30 (0.98) .52
GPCOGe (score, 0‐8), mean (SD) 5.46 (1.73) 6.60 (1.32) 7.15 (1.00) <.001 F<P,R
SPPBf (score, 0‐12), mean (SD) 8.07 (2.26) 10.79 (1.24) 11.75 (0.43) <.001 F<P< R
5STSg (s), mean (SD) 18.47 (6.44) 12.01 (1.40) 9.27 (1.31) <.001 F<P< R
WALK4mh (s), mean (SD) 5.92 (2.25) 4.07 (0.75) 3.92 (0.61) <.001 F<P< R
GS4mi (m/s), mean (SD) 0.74 (0.21) 1.01 (0.16) 1.04 (0.15) <.001 F<P,R
Handgrip max (kg), mean (SD) 19.24 (5.39) 25.48 (6.57) 26.25 (7.50) <.001 F<P,R
Number of drugsj, mean (SD) 6.89 (2.81) 4.73 (3.13) 3.09 (2.20) <.001 F>P> R
USk (cm), mean (SD) 0.92 (0.32) 1.02 (0.25) 1.16 (0.26) .004 F<R
WBPhAl (°), mean (SD) 4.36 (0.55) 4.63 (0.61) 4.95 (0.43) <.001 F<R
SMIm, mean (SD) 6.51 (1.04) 7.09 (1.08) 7.20 (1.33) .07
Left arm lean mass (g), mean (SD) 2088.24 (624.67) 2485.68 (720.65) 2408.92 (772.28) .08
Right arm lean mass (g), mean (SD) 2274.00 (597.82) 2624.04 (787.75) 2661.02 (915.64) .12
Left leg lean mass (g), mean (SD) 5975.11 (1494.27) 7147.72 (1794.43) 7158.07 (2192.25) .02 F<P,R
Right leg lean mass (g), mean (SD) 5982.38 (1573.34) 7368.42 (1823.40) 7314.78 (2040.34) .006 F<P,R
Total body lean mass (g), mean (SD) 42,130.41 (8174.96) 48,123.28 (11,063.12) 47,858.20 (12,130.27) .06

aF: frailty; P: prefrailty; R: robust.
bP value adjusted for comparing a family of 3.
cRPOW: relative muscle power.
dMNA: Mini Nutritional Assessment.
eGPCOG: General Practitioner Assessment of Cognition.
fSPPB: Short Physical Performance Battery.
g5STS: 5 sit-to-stand time.
hWALK4m: time to walk 4 meters.
iGS4m: gait speed over 4 meters at a normal pace.
jDrugs: number of daily medications.
kUS: ultrasound on rectus femoris.
lWBPhA: whole-body phase angle.
mSMI: skeletal muscle index.

The correlation analysis is presented through a heat map in
Figures 2-4. Starting with the primary variable identified as a
frailty criterion (RPOW), we initially analyzed the behavior

of this variable in relation to the other studied variables.
Additional correlation analyses were also explored, such as
examining the behavior and relationship of handgrip strength.
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In this regard, we conducted a first analysis on the entire
sample (Figure 2), then one each for women (Figure 3)
and men (Figure 4). In the entire sample (Figure 1), we
found strong positive and negative correlations between the
RPOW and all the variables, except MNA score, however,
these relationships changed for the women-only and men-
only samples. In the complete sample (Figure 2), the results
identified stronger correlations between SPPB and RPOW, 5
sit-to-stand time and RPOW, drugs and RPOW, GS4m and
RPOW, and handgrip and RPOW. Regarding the analysis of
the correlations separately for women and men (Figures 3
and 4), the results were as expected. Specifically, as observed

in the cited figures, there were relationships involving body
composition variables (BIA, DXA, and US) and expressions
of strength, such as lower limb power and, more markedly,
handgrip strength. The observed differences in correlations
between sexes are consistent with expectations, given the
complex biological, hormonal, and social interactions that
affect males and females differently during the aging process.
It is important to consider these factors when interpreting
the results and when designing interventions that address
frailty and functional decline in older adults effectively and
equitably.
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Figure 2. Simple correlation analysis results for the whole sample (n=94). Pearson correlations of all studied variable were carried out on the total
sample. 5STS: 5 sit-to-stand time; DRUGS: number of daily medications; GPCOG: General Practitioner Assessment of Cognition score; GS4m: gait
speed over 4 meters at a normal pace; HG: handgrip; LeanM LA: left arm lean mass; LeanM LL: left leg lean mass; LeanM RA: right arm lean
mass; LeanM RL: right leg lean mass; LeanM TB: total body lean mass; MNA: Mini Nutritional Assessment score; RPOW: relative muscle power;
SMI: skeletal muscle index; SPPB: Short Physical Performance Battery score; US: ultrasound on rectus femoris; WALK4m: time to walk 4 meters;
WBPhA: whole-body phase angle. *P<.05, **P<.01, ***P<.001.
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Figure 3. Simple correlation analysis results for women (n=52). Pearson correlations were conducted for all studied variables on the sample of
women. 5STS: 5 sit-to-stand time; DRUGS: number of daily medications; GPCOG: General Practitioner Assessment of Cognition score; GS4m: gait
speed over 4 meters at a normal pace; HG: handgrip; LeanM LA: left arm lean mass; LeanM LL: left leg lean mass; LeanM RA: right arm lean
mass; LeanM RL: right leg lean mass; LeanM TB: total body lean mass; MNA: Mini Nutritional Assessment score; RPOW: relative muscle power;
SMI: skeletal muscle index; SPPB: Short Physical Performance Battery score; US: ultrasound on rectus femoris; WALK4m: time to walk 4 meters;
WBPhA: whole-body phase angle. *P<.05, **P<.01, ***P<.001.
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Figure 4. Simple correlation analysis results for men (n=42). Pearson correlations were conducted for all studied variables on the sample of men
(n=42). 5STS: 5 sit-to-stand time; DRUGS: number of daily medications; GPCOG: General Practitioner Assessment of Cognition score; GS4m: gait
speed over 4 meters at a normal pace; HG: handgrip; LeanM LA: left arm lean mass; LeanM LL: left leg lean mass; LeanM RA: right arm lean
mass; LeanM RL: right leg lean mass; LeanM TB: total body lean mass; MNA: Mini Nutritional Assessment score; RPOW: relative muscle power;
SMI: skeletal muscle index; SPPB: Short Physical Performance Battery score; US: ultrasound on rectus femoris; WALK4m: time to walk 4 meters;
WBPhA: whole-body phase angle. *P<.05, **P<.01, ***P<.001.

The logistic regression analyses presented in Table 2
demonstrate the predictive capacity of various diagnostic
factors for frailty in older adults. The Nagelkerke R² values
indicate the proportion of variance in frailty status explained
by each model, both before and after adjusting for age and
sex. The initial model for US shows that US measurements of
the rectus femoris explained 10.1% of the variance in frailty
(Nagelkerke R²=0.101; P=.009). After adjusting for age
and sex, the explained variance increases to 20.6% (adjus-
ted Nagelkerke R²=0.206; P=.002), indicating a stronger
association when these factors are considered. WBPhA

exhibited a significant association with frailty, explaining
16.4% of the variance in the unadjusted model (Nagelkerke
R²=0.164; P=.001). The adjusted model further enhanced the
explained variance to 24.5% (adjusted Nagelkerke R²=0.245;
P<.001), underscoring its robustness as a predictive factor.
Both left leg lean mass and right leg lean mass (LeanM
RL) were significant predictors of frailty. The unadjusted
models explained 12.4% (P=.003) and 16.4% (P<.001) of
the variance, respectively. After adjustment, the explained
variance increased to 21.5% for the left leg (P=.001) and
24.6% for the right leg (P<.001).
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Table 2. Results of the logistic regression analyses (n=94).
Nagelkerke R2 P value Adjusted Nagelkerke R2a P value

Ultrasound on rectus femoris 0.101 .009 0.206 .002
WBPhAb 0.164 .001 0.245 <.001
Lean mass, left leg 0.124 .003 0.215 .001
Lean mass, right leg 0.164 <.001 0.246 <.001

aAdjusted Nagelkerke R2 included age as a covariable and sex as a factor.
bWBPhA: whole-body phase angle.

The ROC analyses indicated that all evaluated measures
demonstrated a high degree of specificity in detecting frailty
in older adults. It is notable that unadjusted muscle US
demonstrated a high level of specificity, although sensitiv-
ity was relatively low. The WBPhA and LeanM RL also
exhibited significant predictive capabilities, with AUC and
P values indicating good discrimination. When adjusting for
sex and age, there was a notable improvement in sensitivity,
particularly in the case of LeanM RL, which maintained
statistical significance (P=.045). These findings suggest that
the lean mass of the right leg, adjusted for demographic
factors, may be a promising indicator for predicting frailty in
this population. On the other hand, it is worth noting that the
adjusted WBPhA presented the highest Youden index value
(0.417), which suggests that it may be the most effective
measure in terms of balancing sensitivity and specificity for
predicting frailty. Similarly, the adjusted LeanM RL also had
a high Youden index (0.296), which establishes it as another
promising measure.

Discussion
Principal Findings
This study provides significant evidence on the predictive
capacity of body composition variables and their relationship
with frailty syndrome in older adults. Technology tools such
as BIA, WBPhA, US of the anterior rectus quadriceps muscle
thickness, and DXA, were used in this study. The older adult
frailty status was calculated using the PowerFrail mobile app
[15] (Figure 1). This app is the first scientifically based app
that allows the assessment of the muscle power and frailty of
older adults in a simple way. Our results showed that these
parameters are useful predictors for identifying frailty, in line
with previous findings.

This study found several significant correlations between
variables related to body composition, physical performance,
and cognitive status in female participants, but these were not
the same as the values observed in their male counterparts.
This may be because women experience more functional
limitations than men during the aging process [31]. Women
tend to suffer a greater decline in physical function with age,
which has been attributed to hormonal changes, particularly
the decrease in estrogen levels during menopause [32].
Menopause is associated with changes in body composition
characterized by an increase in body fat and a progressive
decrease in muscle mass and strength [33]. These alterations
can lead to a higher prevalence of sarcopenia and frailty in
older women compared to men.

Based on these postmenopausal changes, muscle and
fat composition might be more closely related to physical
performance in women, which we observed in our correla-
tion results from Figures 2-4. Specifically, the associations
between body composition measures (evaluated through BIA,
DXA, and US) and expressions of strength, such as lower
limb power from the mobile app and handgrip strength, were
more pronounced in women. This suggests that changes in
muscle quality and quantity may have a greater impact on the
physical function of older women.

Although previous research has indicated that muscle
quality contributes to physical capacity in older adults, the
effect of sex differences on this association has not been
thoroughly investigated [34]. Some studies have suggested
that muscle quality independently predicts physical function
in older men but not in women [35]. However, our findings
differ, as we observed significant correlations in women.
Unlike previous studies, we included analyses of physical
function status, which may explain the different results. The
underlying mechanisms of these sex-specific differences still
need to be investigated and clarified.

Contributing factors may include differences in muscle
structure composition, hormonal influences, and neuromus-
cular activation patterns between men and women [36].
Additionally, the accuracy and sensitivity of measurement
techniques, such as BIA and US, may vary between sexes
due to differences in body fat distribution and hydration status
[37]. Further research is needed to explore these factors and
understand how they influence the relationship between body
composition and physical function in older adults.

The connection between body composition and frailty
indicators has been the focus of extensive research. How-
ever, to our knowledge, no studies have simultaneously
compared DXA, BIA, and US, specifically for the identifica-
tion of frailty syndrome in a primary care setting. Our study
addresses this gap by evaluating the predictive capacities
of these 3 modalities, offering a comprehensive analysis
that can inform clinical practice regarding the most suitable
and practical tools for frailty assessment in older adults.
Although previous studies have compared two modalities,
our inclusion of a third (US) provides a broader perspec-
tive on body composition assessment tools available for
primary care settings. For instance, research has demonstra-
ted that muscle US is an emerging tool for diagnosing
sarcopenia, with studies summarizing its diagnostic accuracy
[38]. Additionally, studies have evaluated the reliability and
validity of sarcopenia diagnosis using BIA compared with
the gold standard, DXA, assessing the predictive accuracy
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of BIA for diagnosis [39,40]. However, these studies did
not include US in their comparisons. Rossini-Venturini et al
[41] highlighted that the anthropometric prediction equations
developed in their study provide a reliable, practical, and
low-cost instrument to assess the components that change the
most during the aging process, corroborating our findings.
This perspective emphasizes the significance of considering
diverse elements of body composition in the evaluation of
health among older adults. Although some studies have
recognized muscle mass, assessed via DXA or BIA, as a
critical element in forecasting frailty [42,43], our analysis
demonstrated that lower extremity lean mass (left left lean
mass and LeanM RL) did reveal a direct relationship in the
models. The present results are in line with findings that
indicate muscle mass reduction alone does not suffice to
predict frailty without factoring in physical performance [44].
In fact, physical performance, which can be measured through
functional tests such as gait speed or grip strength, is vital for
evaluating frailty status among older adults [45].

There has been a growing acknowledgment in recent
literature regarding the significance of assessing both the
quantity and quality of muscle. Xu et al [46] demonstrated
that body composition, encompassing both muscle mass and
quality, is significantly associated with frailty in older adult
inpatients. The current literature suggests that it is not enough
to analyze the quantity of muscle mass in absolute terms;
quality is equally important. Quality can be assessed through
methods such as US and BIA, which provide insights into
muscle integrity and performance in terms of its functional
capacity. In this context, analyzing muscle quality through US
could effectively complement DXA, which has traditionally
been considered the gold standard in the assessment of body

composition. Although DXA provides valuable information
on lean mass and fat mass, it does not provide details on
muscle distribution and quality, critical for understanding
frailty in older adults [47].

Moreover, our findings indicated that muscle strength
and gait speed are important indicators of frailty, corroborat-
ing the work of Tsukasaki et al [48], who found a strong
association between muscle strength, gait speed, and cross-
sectional muscle area determined by midthigh computed
tomography. These findings reinforce the idea that compre-
hensive evaluations of muscle function should be integra-
ted into frailty assessments. Therefore, muscle composition
emerges as a potential public health assessment by enabling
the clinical quantification of muscle mass and an estimation
of physical function in the older adult population [49].

Our findings demonstrated that all measures exhibited high
specificity but varying sensitivity in detecting frailty (Table
3). Our ROC analysis showed moderate predictive ability for
WBPhA, US thickness, and lean mass of legs from DXA,
with an AUC between 0.678 and 0.749. This aligns with
the results from previous studies [50,51], which emphasized
that models combining body composition measurements with
physical performance tests can improve the predictive ability
of frailty. Unadjusted US showed perfect specificity but
low sensitivity (10.7%), indicating it is highly effective at
correctly identifying nonfrail individuals but less capable
of detecting those who are frail. This aligns with previous
studies suggesting that muscle US, while precise in measuring
muscle thickness, may have limitations in sensitivity due to
operator dependency and variability [52].

Table 3. Results of receiver operating characteristic analysis (n=94)
Sensitivity Specificity Youden indexa AUCb P value

USc 0.107 1.000 0.107 0.678 .02
US (adjusted)d 0.321 0.939 0.260 0.732 .24
WBPhAe 0.240 0.952 0.192 0.704 .003
WBPhA (adjusted)d 0.480 0.937 0.417 0.762 .09
LeanM LLf 0.107 0.985 0.092 0.683 .009
LeanM LL (adjusted)d 0.250 0.924 0.174 0.741 .17
LeanM RLg 0.286 0.939 0.225 0.703 .003
LeanM RL (adjusted)d 0.357 0.939 0.296 0.749 .045

aYouden index = sensitivity + specificity – 1.
bAUC: area under the curve.
cUS: ultrasound on rectus femoris.
dModel adjusted by sex and age.
eWBPhA: whole-body phase angle.
fLeanM LL: left leg lean mass.
gLeanM RL: right leg lean mass.

Adjusting the US measure for age and sex increased
sensitivity to 32.1% but reduced specificity to 93.9%, and the
adjusted model did not reach statistical significance (P=.24).
This suggests that while adjustments improve sensitivity, they
may not be sufficient to make US a standalone diagnostic
tool for frailty in primary care settings. The WBPhA showed

an unadjusted sensitivity of 24% and specificity of 95.2%,
with an AUC of 0.704 (P=.003). After adjusting for age
and sex, sensitivity improved to 48%, specificity slightly
decreased to 93.7%, and AUC increased to 0.762, although
the P value was nonsignificant (P=.09). These results suggest
that WBPhA, particularly when adjusted for sex and age
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factors, has potential as a screening tool for frailty. Previ-
ous research has shown that lower phase angle values are
associated with decreased muscle function, poor nutritional
status, and higher frailty risk [12,53]. The noninvasive nature
and ease of use of BIA make WBPhA a practical option
for primary care, although standardization of measurement
protocols is necessary.

LeanM RL emerged as a significant predictor when
adjusted for age and sex (P=.045), with sensitivity and
specificity of 35.7% and 93.9%, respectively, and an AUC of
0.749. This indicates that the adjusted LeanM RL model had
a good balance between sensitivity and specificity and may
be valuable in predicting frailty. The importance of lower
limb muscle mass in frailty assessment is well-documented.
For instance, [54] reported that decreased appendicular lean
mass is associated with physical disability and increased risk
of adverse outcomes in older adults. However, the use of
DXA in primary care is limited due to cost, accessibility, and
exposure to low-dose radiation.

In comparison, the unadjusted left leg lean mass showed
similar specificity (98.5%) but low sensitivity (10.7%),
and the adjusted model did not achieve statistical signifi-
cance. This suggests that while lean mass measurements
are informative, the right leg may provide more predictive
value than the left in this context, possibly due to domi-
nance or functional differences, although further research
is needed to confirm this observation. Overall, our results
indicated that LeanM RL, adjusted for age and sex, may be
the most effective measure among those studied for predict-
ing frailty. This is significant because identifying reliable,
accessible markers for frailty is crucial for early intervention.
Given the limitations of DXA in primary care, exploring
alternative methods to estimate lean mass, such as predic-
tive equations or portable devices, could enhance feasibility.
The high specificity observed across all measures suggests
they are effective in ruling out frailty in individuals with-
out frailty. However, the variable sensitivity underscores
the need for multicomponent assessment tools. The Compre-
hensive Geriatric Assessment remains the gold standard for
frailty evaluation but is resource-intensive [55]. Incorporating
measures like WBPhA and simplified lean mass assessments
could enhance screening efficiency in primary care.
Limitations, Clinical Implications, and
Future Directions
Limitations of the study include the sample size and
homogeneity in some variables, such as BMI and arm
lean mass (left arm and right arm), which could have

affected the accuracy of the predictive results. Heterogene-
ity in these measurements has been reported in previous
research [56], suggesting that variability in body composi-
tion could influence frailty prediction. There is potential for
the integration of advanced body composition analysis tools
and mobile technology into primary care services for the
early identification and management of frailty syndrome in
older adults. Methods such as WBPhA, US of the rectus
femoris muscle, and DXA analysis proved to be effective
predictors of frailty, offering high specificity in detection.
The implementation of the PowerFrail mobile app enables
rapid and personalized assessments, optimizing preventive
interventions. These tools not only improve the accuracy
of clinical evaluations but also reduce costs associated with
frailty-related complications, promoting healthier aging and
alleviating the burden on public health care systems. In
addition, while this study incorporated a range of assess-
ment tools, it is essential for future research to concentrate
on validating these measures in larger and more diverse
cohorts to ensure their wider applicability. The cross-sec-
tional design of this study further restricts the ability to infer
causal relationships between body composition variables and
frailty. Longitudinal investigations could provide valuable
information on how variations in body composition affect
the progression of frailty over time. Understanding these
dynamics could facilitate developing more effective and
personalized interventions for the older adult population.
Finally, future studies should explore the integration of
these mHealth technologies with advanced body composition
analysis systems to optimize early detection and management
of frailty.
Conclusions
The findings of this study reinforce the utility of various
body composition evaluations, such as WBPhA, LeanM RL
measured by DXA, and quadriceps thickness assessed by
US, as effective indicators for predicting frailty in older
adults, aligning with previous research. However, our results
highlight the necessity of not relying exclusively on muscle
mass as a predictor of frailty. It is essential to incorporate
assessments of muscle function and physical performance
into clinical evaluations to enhance the accuracy of identi-
fying individuals susceptible to frailty. The combination of
tools such as WBPhA, bioimpedance, and US, along with
the PowerFrail app, could provide a more complete and
accurate assessment of the health status of older adults,
allowing effective preventive interventions to be implemented
in primary care services.

Acknowledgments
This study received funding from the Call for Biomedical Research and Innovation Projects from the Biomedical Research
Institute of Cádiz, Andalusian Health System Grant (PP11-004-2023); PUENTE Project Call for the Enhancement of Proposals
from the State Plan of the University (PR2022-018); and Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI
2020; DOC_01412) from the Andalusian Government.
Conflicts of Interest
None declared.

JMIR AGING Ortiz-Navarro et al

https://aging.jmir.org/2025/1/e67982 JMIR Aging 2025 | vol. 8 | e67982 | p. 13
(page number not for citation purposes)

https://aging.jmir.org/2025/1/e67982


References
1. Bandeen-Roche K, Xue QL, Ferrucci L, et al. Phenotype of frailty: characterization in the women’s health and aging

studies. J Gerontol A Biol Sci Med Sci. Mar 2006;61(3):262-266. [doi: 10.1093/gerona/61.3.262] [Medline: 16567375]
2. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci.

Mar 2001;56(3):M146-56. [doi: 10.1093/gerona/56.3.m146] [Medline: 11253156]
3. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. Mar 2,

2013;381(9868):752-762. [doi: 10.1016/S0140-6736(12)62167-9] [Medline: 23395245]
4. Rockwood K, Mitnitski A. Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr

Med. Feb 2011;27(1):17-26. [doi: 10.1016/j.cger.2010.08.008] [Medline: 21093719]
5. Galán-Mercant A, Cuesta-Vargas AI. Detección precoz de la fragilidad, tecnología aplicada al movimiento humano para

la prevención de la discapacidad [Article in Spanish]. Fisioterapia. May 2017;39(3):135-136. [doi: 10.1016/j.ft.2016.10.
002]

6. Puts MTE, Toubasi S, Andrew MK, et al. Interventions to prevent or reduce the level of frailty in community-dwelling
older adults: a scoping review of the literature and international policies. Age Ageing. May 1, 2017;46(3):383-392. [doi:
10.1093/ageing/afw247] [Medline: 28064173]

7. Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening,
diagnosis and management. J Nutr Health Aging. 2018;22(10):1148-1161. [doi: 10.1007/s12603-018-1139-9] [Medline:
30498820]

8. Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences
and future perspectives. J Nutr Health Aging. 2008;12(7):433-450. [doi: 10.1007/BF02982704] [Medline: 18615225]

9. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing.
Jul 1, 2010;39(4):412-423. [doi: 10.1093/ageing/afq034]

10. Beaudart C, McCloskey E, Bruyère O, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr.
Oct 5, 2016;16(1):170. [doi: 10.1186/s12877-016-0349-4] [Medline: 27716195]

11. Norman K, Pichard C, Lochs H, Pirlich M. Prognostic impact of disease-related malnutrition. Clin Nutr. Feb
2008;27(1):5-15. [doi: 10.1016/j.clnu.2007.10.007] [Medline: 18061312]

12. Matias CN, Nunes CL, Francisco S, et al. Phase angle predicts physical function in older adults. Arch Gerontol Geriatr.
2020;90:104151. [doi: 10.1016/j.archger.2020.104151] [Medline: 32563736]

13. Gupta M, Lehl SS, Lamba AS. Ultrasonography for assessment of sarcopenia: a primer. J Midlife Health.
2022;13(4):269-277. [doi: 10.4103/jmh.jmh_234_22] [Medline: 37324795]

14. Buckinx F, Landi F, Cesari M, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J
Cachexia Sarcopenia Muscle. Apr 2018;9(2):269-278. [doi: 10.1002/jcsm.12268] [Medline: 29349935]

15. Alcazar J, Losa-Reyna J, Rodriguez-Lopez C, et al. The sit-to-stand muscle power test: an easy, inexpensive and portable
procedure to assess muscle power in older people. Exp Gerontol. Oct 2, 2018;112:38-43. [doi: 10.1016/j.exger.2018.08.
006] [Medline: 30179662]

16. Losa-Reyna J, Alcazar J, Rodríguez-Gómez I, et al. Low relative mechanical power in older adults: an operational
definition and algorithm for its application in the clinical setting. Exp Gerontol. Dec 2020;142:111141. [doi: 10.1016/j.
exger.2020.111141] [Medline: 33127413]

17. Velazquez-Diaz D, Arco JE, Ortiz A, et al. Use of artificial intelligence in the identification and diagnosis of frailty
syndrome in older adults: scoping review. J Med Internet Res. Oct 20, 2023;25:e47346. [doi: 10.2196/47346] [Medline:
37862082]

18. Liu N, Yin J, Tan SSL, Ngiam KY, Teo HH. Mobile health applications for older adults: a systematic review of interface
and persuasive feature design. J Am Med Inform Assoc. Oct 12, 2021;28(11):2483-2501. [doi: 10.1093/jamia/ocab151]
[Medline: 34472601]

19. Soto-Bagaria L, Eis S, Pérez LM, et al. Mobile applications to prescribe physical exercise in frail older adults: review of
the available tools in app stores. Age Ageing. Dec 1, 2023;52(12):afad227. [doi: 10.1093/ageing/afad227] [Medline:
38157286]

20. Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med J. Feb 1965;14:61-65. [Medline:
14258950]

21. Bohannon RW. Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills. Feb
1995;80(1):163-166. [doi: 10.2466/pms.1995.80.1.163] [Medline: 7624188]

22. Losa-Reyna J, Baltasar-Fernandez I, Alcazar J, et al. Effect of a short multicomponent exercise intervention focused on
muscle power in frail and pre frail elderly: a pilot trial. Exp Gerontol. Jan 2019;115:114-121. [doi: 10.1016/j.exger.2018.
11.022] [Medline: 30528641]

JMIR AGING Ortiz-Navarro et al

https://aging.jmir.org/2025/1/e67982 JMIR Aging 2025 | vol. 8 | e67982 | p. 14
(page number not for citation purposes)

https://doi.org/10.1093/gerona/61.3.262
http://www.ncbi.nlm.nih.gov/pubmed/16567375
https://doi.org/10.1093/gerona/56.3.m146
http://www.ncbi.nlm.nih.gov/pubmed/11253156
https://doi.org/10.1016/S0140-6736(12)62167-9
http://www.ncbi.nlm.nih.gov/pubmed/23395245
https://doi.org/10.1016/j.cger.2010.08.008
http://www.ncbi.nlm.nih.gov/pubmed/21093719
https://doi.org/10.1016/j.ft.2016.10.002
https://doi.org/10.1016/j.ft.2016.10.002
https://doi.org/10.1093/ageing/afw247
http://www.ncbi.nlm.nih.gov/pubmed/28064173
https://doi.org/10.1007/s12603-018-1139-9
http://www.ncbi.nlm.nih.gov/pubmed/30498820
https://doi.org/10.1007/BF02982704
http://www.ncbi.nlm.nih.gov/pubmed/18615225
https://doi.org/10.1093/ageing/afq034
https://doi.org/10.1186/s12877-016-0349-4
http://www.ncbi.nlm.nih.gov/pubmed/27716195
https://doi.org/10.1016/j.clnu.2007.10.007
http://www.ncbi.nlm.nih.gov/pubmed/18061312
https://doi.org/10.1016/j.archger.2020.104151
http://www.ncbi.nlm.nih.gov/pubmed/32563736
https://doi.org/10.4103/jmh.jmh_234_22
http://www.ncbi.nlm.nih.gov/pubmed/37324795
https://doi.org/10.1002/jcsm.12268
http://www.ncbi.nlm.nih.gov/pubmed/29349935
https://doi.org/10.1016/j.exger.2018.08.006
https://doi.org/10.1016/j.exger.2018.08.006
http://www.ncbi.nlm.nih.gov/pubmed/30179662
https://doi.org/10.1016/j.exger.2020.111141
https://doi.org/10.1016/j.exger.2020.111141
http://www.ncbi.nlm.nih.gov/pubmed/33127413
https://doi.org/10.2196/47346
http://www.ncbi.nlm.nih.gov/pubmed/37862082
https://doi.org/10.1093/jamia/ocab151
http://www.ncbi.nlm.nih.gov/pubmed/34472601
https://doi.org/10.1093/ageing/afad227
http://www.ncbi.nlm.nih.gov/pubmed/38157286
http://www.ncbi.nlm.nih.gov/pubmed/14258950
https://doi.org/10.2466/pms.1995.80.1.163
http://www.ncbi.nlm.nih.gov/pubmed/7624188
https://doi.org/10.1016/j.exger.2018.11.022
https://doi.org/10.1016/j.exger.2018.11.022
http://www.ncbi.nlm.nih.gov/pubmed/30528641
https://aging.jmir.org/2025/1/e67982


23. Mateos-Angulo A, Galán-Mercant A, Cuesta-Vargas AI. Muscle thickness contribution to sit-to-stand ability in
institutionalized older adults. Aging Clin Exp Res. Aug 2020;32(8):1477-1483. [doi: 10.1007/s40520-019-01328-x]
[Medline: 31463929]

24. Villarejo A, Puertas-Martín V. Utilidad de los test breves en el cribado de demencia [Article in Spanish]. Neurología.
Sep 2011;26(7):425-433. [doi: 10.1016/j.nrl.2010.12.002]

25. Muñoz Díaz B, Molina-Recio G, Romero-Saldaña M, et al. Validation (in Spanish) of the Mini Nutritional Assessment
survey to assess the nutritional status of patients over 65 years of age. Fam Pract. Mar 20, 2019;36(2):172-178. [doi: 10.
1093/fampra/cmy051] [Medline: 29873713]

26. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function:
association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. Mar
1994;49(2):M85-94. [doi: 10.1093/geronj/49.2.m85] [Medline: 8126356]

27. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age
Ageing. Jan 1, 2019;48(1):16-31. [doi: 10.1093/ageing/afy169] [Medline: 30312372]

28. Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological
studies: towards a standardised approach. Age Ageing. Jul 2011;40(4):423-429. [doi: 10.1093/ageing/afr051] [Medline:
21624928]

29. Martínez-Camblor P, Pardo-Fernández JC. The Youden index in the generalized receiver operating characteristic curve
context. Int J Biostat. Apr 3, 2019;15(1). [doi: 10.1515/ijb-2018-0060] [Medline: 30943172]

30. Swets JA. Measuring the accuracy of diagnostic systems. Science. Jun 3, 1988;240(4857):1285-1293. [doi: 10.1126/
science.3287615] [Medline: 3287615]

31. Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors of skeletal muscle mass in
healthy, older men and women. J Gerontol A Biol Sci Med Sci. Dec 2002;57(12):M772-7. [doi: 10.1093/gerona/57.12.
m772] [Medline: 12456735]

32. Maltais ML, Desroches J, Dionne IJ. Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal
Interact. 2009;9(4):186-197. [Medline: 19949277]

33. Sipilä S, Narici M, Kjaer M, et al. Sex hormones and skeletal muscle weakness. Biogerontology. Jun
2013;14(3):231-245. [doi: 10.1007/s10522-013-9425-8] [Medline: 23636830]

34. Barbat-Artigas S, Rolland Y, Vellas B, Aubertin-Leheudre M. Muscle quantity is not synonymous with muscle quality. J
Am Med Dir Assoc. Nov 2013;14(11):852. [doi: 10.1016/j.jamda.2013.06.003] [Medline: 23896368]

35. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the
health, aging and body composition study. J Gerontol A Biol Sci Med Sci. Oct 2006;61(10):1059-1064. [doi: 10.1093/
gerona/61.10.1059] [Medline: 17077199]

36. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. Aug 2008;63(8):829-834. [doi: 10.
1093/gerona/63.8.829] [Medline: 18772470]

37. Kyle UG, Genton L, Slosman DO, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98
years. Nutrition. 2001;17(7-8):534-541. [doi: 10.1016/s0899-9007(01)00555-x] [Medline: 11448570]

38. Fu H, Wang L, Zhang W, Lu J, Yang M. Diagnostic test accuracy of ultrasound for sarcopenia diagnosis: a systematic
review and meta-analysis. J Cachexia Sarcopenia Muscle. Feb 2023;14(1):57-70. [doi: 10.1002/jcsm.13149] [Medline:
36513380]

39. Lee JH, Kim HJ, Han S, Park SJ, Sim M, Lee KH. Reliability and agreement assessment of sarcopenia diagnosis through
comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry. Diagnostics (Basel). Apr 25,
2024;14(9):899. [doi: 10.3390/diagnostics14090899] [Medline: 38732314]

40. Lee SY, Ahn S, Kim YJ, et al. Comparison between dual-energy X-ray absorptiometry and bioelectrical impedance
analyses for accuracy in measuring whole body muscle mass and appendicular skeletal muscle mass. Nutrients. Jun 7,
2018;10(6):738. [doi: 10.3390/nu10060738] [Medline: 29880741]

41. Rossini-Venturini AC, Veras L, Abdalla PP, et al. Multicompartment body composition analysis in older adults: a cross-
sectional study. BMC Geriatr. Feb 9, 2023;23(1):87. [doi: 10.1186/s12877-023-03752-1] [Medline: 36759773]

42. Kołodziej M, Sebastjan A, Ignasiak Z. Appendicular skeletal muscle mass and quality estimated by bioelectrical
impedance analysis in the assessment of frailty syndrome risk in older individuals. Aging Clin Exp Res. Sep
2022;34(9):2081-2088. [doi: 10.1007/s40520-021-01879-y] [Medline: 34118025]

43. Kołodziej M, Kozieł S, Ignasiak Z. The use of the bioelectrical impedance phase angle to assess the risk of sarcopenia in
people aged 50 and above in Poland. Int J Environ Res Public Health. Apr 13, 2022;19(8):4687. [doi: 10.3390/
ijerph19084687] [Medline: 35457554]

JMIR AGING Ortiz-Navarro et al

https://aging.jmir.org/2025/1/e67982 JMIR Aging 2025 | vol. 8 | e67982 | p. 15
(page number not for citation purposes)

https://doi.org/10.1007/s40520-019-01328-x
http://www.ncbi.nlm.nih.gov/pubmed/31463929
https://doi.org/10.1016/j.nrl.2010.12.002
https://doi.org/10.1093/fampra/cmy051
https://doi.org/10.1093/fampra/cmy051
http://www.ncbi.nlm.nih.gov/pubmed/29873713
https://doi.org/10.1093/geronj/49.2.m85
http://www.ncbi.nlm.nih.gov/pubmed/8126356
https://doi.org/10.1093/ageing/afy169
http://www.ncbi.nlm.nih.gov/pubmed/30312372
https://doi.org/10.1093/ageing/afr051
http://www.ncbi.nlm.nih.gov/pubmed/21624928
https://doi.org/10.1515/ijb-2018-0060
http://www.ncbi.nlm.nih.gov/pubmed/30943172
https://doi.org/10.1126/science.3287615
https://doi.org/10.1126/science.3287615
http://www.ncbi.nlm.nih.gov/pubmed/3287615
https://doi.org/10.1093/gerona/57.12.m772
https://doi.org/10.1093/gerona/57.12.m772
http://www.ncbi.nlm.nih.gov/pubmed/12456735
http://www.ncbi.nlm.nih.gov/pubmed/19949277
https://doi.org/10.1007/s10522-013-9425-8
http://www.ncbi.nlm.nih.gov/pubmed/23636830
https://doi.org/10.1016/j.jamda.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23896368
https://doi.org/10.1093/gerona/61.10.1059
https://doi.org/10.1093/gerona/61.10.1059
http://www.ncbi.nlm.nih.gov/pubmed/17077199
https://doi.org/10.1093/gerona/63.8.829
https://doi.org/10.1093/gerona/63.8.829
http://www.ncbi.nlm.nih.gov/pubmed/18772470
https://doi.org/10.1016/s0899-9007(01)00555-x
http://www.ncbi.nlm.nih.gov/pubmed/11448570
https://doi.org/10.1002/jcsm.13149
http://www.ncbi.nlm.nih.gov/pubmed/36513380
https://doi.org/10.3390/diagnostics14090899
http://www.ncbi.nlm.nih.gov/pubmed/38732314
https://doi.org/10.3390/nu10060738
http://www.ncbi.nlm.nih.gov/pubmed/29880741
https://doi.org/10.1186/s12877-023-03752-1
http://www.ncbi.nlm.nih.gov/pubmed/36759773
https://doi.org/10.1007/s40520-021-01879-y
http://www.ncbi.nlm.nih.gov/pubmed/34118025
https://doi.org/10.3390/ijerph19084687
https://doi.org/10.3390/ijerph19084687
http://www.ncbi.nlm.nih.gov/pubmed/35457554
https://aging.jmir.org/2025/1/e67982


44. Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of
human frailty and its modulation by physical activity. Physiol Rev. Apr 1, 2023;103(2):1137-1191. [doi: 10.1152/
physrev.00037.2021] [Medline: 36239451]

45. Jiménez-García JD, Ortega-Gómez S, Martínez-Amat A, Álvarez-Salvago F. Associations of balance, strength, and gait
speed with cognitive function in older individuals over 60 years: a cross-sectional study. Appl Sci (Basel).
2024;14(4):1500. [doi: 10.3390/app14041500]

46. Xu L, Zhang J, Shen S, et al. Association between body composition and frailty in elder inpatients. Clin Interv Aging.
2020;15:313-320. [doi: 10.2147/CIA.S243211] [Medline: 32184580]

47. Oba H, Matsui Y, Arai H, et al. Evaluation of muscle quality and quantity for the assessment of sarcopenia using mid-
thigh computed tomography: a cohort study. BMC Geriatr. Apr 13, 2021;21(1):239. [doi: 10.1186/s12877-021-02187-w]
[Medline: 33849469]

48. Tsukasaki K, Matsui Y, Arai H, et al. Association of muscle strength and gait speed with cross-sectional muscle area
determined by mid-thigh computed tomography - a comparison with skeletal muscle mass measured by dual-energy X-
ray absorptiometry. J Frailty Aging. 2020;9(2):82-89. [doi: 10.14283/jfa.2020.16] [Medline: 32259181]

49. Alarcón-Rivera M, Cornejo-Mella C, Cáceres-Aravena C, Concha-Cisternas Y, Fernández-Valero P, Guzmán-Muñoz E.
Relationship between appendicular muscular mass index and physical function in older people. AIMS Public Health.
2024;11(1):130-140. [doi: 10.3934/publichealth.2024006] [Medline: 38617413]

50. Masanés F, Rojano I Luque X, Salvà A, et al. Cut-off points for muscle mass - not grip strength or gait speed - determine
variations in sarcopenia prevalence. J Nutr Health Aging. 2017;21(7):825-829. [doi: 10.1007/s12603-016-0844-5]
[Medline: 28717813]

51. Bahat G, Tufan A, Tufan F, et al. Cut-off points to identify sarcopenia according to European Working Group on
Sarcopenia in Older People (EWGSOP) definition. Clin Nutr. Dec 2016;35(6):1557-1563. [doi: 10.1016/j.clnu.2016.02.
002] [Medline: 26922142]

52. Pillen S, Tak RO, Zwarts MJ, et al. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity.
Ultrasound Med Biol. Mar 2009;35(3):443-446. [doi: 10.1016/j.ultrasmedbio.2008.09.016] [Medline: 19081667]

53. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis--clinical
relevance and applicability of impedance parameters. Clin Nutr. Dec 2012;31(6):854-861. [doi: 10.1016/j.clnu.2012.05.
008] [Medline: 22698802]

54. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference
recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. May 2014;69(5):547-558. [doi: 10.1093/gerona/
glu010] [Medline: 24737557]

55. Ellis G, Gardner M, Tsiachristas A, et al. Comprehensive geriatric assessment for older adults admitted to hospital.
Cochrane Database Syst Rev. Sep 12, 2017;9(9). [doi: 10.1002/14651858.CD006211.pub3] [Medline: 28898390]

56. Cesari M, Gambassi G, van Kan GA, Vellas B. The frailty phenotype and the frailty index: different instruments for
different purposes. Age Ageing. Jan 2014;43(1):10-12. [doi: 10.1093/ageing/aft160] [Medline: 24132852]

Abbreviations
AUC: area under the curve
BIA: bioelectrical impedance analysis
DXA: dual-energy X-ray absorptiometry
GS4m: gait speed over 4 meters at a normal pace
LeanM RL: right leg lean mass
mHealth: mobile health
MNA: Mini Nutritional Assessment
ROC: receiver operating characteristic
RPOW: relative muscle power
SPPB: Short Physical Performance Battery
US: ultrasound
WBPhA: whole-body phase angle

Edited by Mark Antoniou; peer-reviewed by Cristina Garcia-Munoz, Esteban Obrero GaitÁn, Mohammed Nader Shalaby;
submitted 29.10.2024; final revised version received 08.01.2025; accepted 10.02.2025; published 15.05.2025

Please cite as:
Ortiz-Navarro B, Losa-Reyna J, Mihaiescu-Ion V, Garcia-Romero J, Carrillo de Albornoz-Gil M, Galán-Mercant A

JMIR AGING Ortiz-Navarro et al

https://aging.jmir.org/2025/1/e67982 JMIR Aging 2025 | vol. 8 | e67982 | p. 16
(page number not for citation purposes)

https://doi.org/10.1152/physrev.00037.2021
https://doi.org/10.1152/physrev.00037.2021
http://www.ncbi.nlm.nih.gov/pubmed/36239451
https://doi.org/10.3390/app14041500
https://doi.org/10.2147/CIA.S243211
http://www.ncbi.nlm.nih.gov/pubmed/32184580
https://doi.org/10.1186/s12877-021-02187-w
http://www.ncbi.nlm.nih.gov/pubmed/33849469
https://doi.org/10.14283/jfa.2020.16
http://www.ncbi.nlm.nih.gov/pubmed/32259181
https://doi.org/10.3934/publichealth.2024006
http://www.ncbi.nlm.nih.gov/pubmed/38617413
https://doi.org/10.1007/s12603-016-0844-5
http://www.ncbi.nlm.nih.gov/pubmed/28717813
https://doi.org/10.1016/j.clnu.2016.02.002
https://doi.org/10.1016/j.clnu.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/26922142
https://doi.org/10.1016/j.ultrasmedbio.2008.09.016
http://www.ncbi.nlm.nih.gov/pubmed/19081667
https://doi.org/10.1016/j.clnu.2012.05.008
https://doi.org/10.1016/j.clnu.2012.05.008
http://www.ncbi.nlm.nih.gov/pubmed/22698802
https://doi.org/10.1093/gerona/glu010
https://doi.org/10.1093/gerona/glu010
http://www.ncbi.nlm.nih.gov/pubmed/24737557
https://doi.org/10.1002/14651858.CD006211.pub3
http://www.ncbi.nlm.nih.gov/pubmed/28898390
https://doi.org/10.1093/ageing/aft160
http://www.ncbi.nlm.nih.gov/pubmed/24132852
https://aging.jmir.org/2025/1/e67982


Identification of Target Body Composition Parameters by Dual-Energy X-Ray Absorptiometry, Bioelectrical Impedance,
and Ultrasonography to Detect Older Adults With Frailty and Prefrailty Status Using a Mobile App in Primary Care
Services: Descriptive Cross-Sectional Study
JMIR Aging 2025;8:e67982
URL: https://aging.jmir.org/2025/1/e67982
doi: 10.2196/67982

© Beatriz Ortiz-Navarro, José Losa-Reyna, Veronica Mihaiescu-Ion, Jerónimo Garcia-Romero, Margarita Carrillo de
Albornoz-Gil, Alejandro Galán-Mercant. Originally published in JMIR Aging (https://aging.jmir.org), 15.05.2025. This
is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work, first published in JMIR Aging, is properly cited. The complete bibliographic information, a link to the original
publication on https://aging.jmir.org, as well as this copyright and license information must be included.

JMIR AGING Ortiz-Navarro et al

https://aging.jmir.org/2025/1/e67982 JMIR Aging 2025 | vol. 8 | e67982 | p. 17
(page number not for citation purposes)

https://aging.jmir.org/2025/1/e67982
https://doi.org/10.2196/67982
https://aging.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://aging.jmir.org
https://aging.jmir.org/2025/1/e67982

	Identification of Target Body Composition Parameters by Dual-Energy X-Ray Absorptiometry, Bioelectrical Impedance, and Ultrasonography to Detect Older Adults With Frailty and Prefrailty Status Using a Mobile App in Primary Care Services: Descriptive Cross-Sectional Study
	Introduction
	Methods
	Ethical Considerations
	Participants
	Variables and Procedure
	Clinical and Demographic Variables
	Body Composition Variables
	Cognitive and Nutritional Status
	Physical Function Evaluation
	Sample Size Calculation
	Statistical Analysis

	Results
	Discussion
	Principal Findings
	Limitations, Clinical Implications, and Future Directions
	Conclusions



