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Abstract

Background: Depression, characterized by persistent sadness and loss of interest in daily activities, greatly reduces quality of
life. Early detection is vital for effective treatment and intervention. While many studies use wearable devices to classify depression
based on physical activity, these often rely on intrusive methods. Additionally, most depression classification studies involve
large participant groups and use single-stage classifiers without explainability.

Objective: This study aims to assess the feasibility of classifying depression using nonintrusive Wi-Fi–based motion sensor
data using a novel machine learning model on a limited number of participants. We also conduct an explainability analysis to
interpret the model’s predictions and identify key features associated with depression classification.

Methods: In this study, we recruited adults aged 65 years and older through web-based and in-person methods, supported by
a McGill University health care facility directory. Participants provided consent, and we collected 6 months of activity and sleep
data via nonintrusive Wi-Fi–based sensors, along with Edmonton Frailty Scale and Geriatric Depression Scale data. For depression
classification, we proposed a HOPE (Home-Based Older Adults’ Depression Prediction) machine learning model with feature
selection, dimensionality reduction, and classification stages, evaluating various model combinations using accuracy, sensitivity,
precision, and F1-score. Shapely addictive explanations and local interpretable model-agnostic explanations were used to explain
the model’s predictions.

Results: A total of 6 participants were enrolled in this study; however, 2 participants withdrew later due to internet connectivity
issues. Among the 4 remaining participants, 3 participants were classified as not having depression, while 1 participant was
identified as having depression. The most accurate classification model, which combined sequential forward selection for feature
selection, principal component analysis for dimensionality reduction, and a decision tree for classification, achieved an accuracy
of 87.5%, sensitivity of 90%, and precision of 88.3%, effectively distinguishing individuals with and those without depression.
The explainability analysis revealed that the most influential features in depression classification, in order of importance, were
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“average sleep duration,” “total number of sleep interruptions,” “percentage of nights with sleep interruptions,” “average duration
of sleep interruptions,” and “Edmonton Frailty Scale.”

Conclusions: The findings from this preliminary study demonstrate the feasibility of using Wi-Fi–based motion sensors for
depression classification and highlight the effectiveness of our proposed HOPE machine learning model, even with a small sample
size. These results suggest the potential for further research with a larger cohort for more comprehensive validation. Additionally,
the nonintrusive data collection method and model architecture proposed in this study offer promising applications in remote
health monitoring, particularly for older adults who may face challenges in using wearable devices. Furthermore, the importance
of sleep patterns identified in our explainability analysis aligns with findings from previous research, emphasizing the need for
more in-depth studies on the role of sleep in mental health, as suggested in the explainable machine learning study.

(JMIR Aging 2025;8:e67715) doi: 10.2196/67715
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Introduction

Depression is a prevalent mental health disorder characterized
by emotional dysregulation, leading to persistent sadness, loss
of interest, and anhedonia [1-3]. The rising incidence of
depression among older adults has become a significant public
health issue [4-6]. Early detection of depression and
corresponding intervention are vital for improving mental health
outcomes and reducing the overall burden on individuals and
health care systems [7-9]. Traditional methods for assessing
depression include various approaches that typically require
in-person evaluations, specialized training in comprehensive
geriatric assessments, and reliance on clinical judgment and
questionnaires, which can be challenging and resource-intensive
[10-12]. These methods require older adults to visit clinical
settings frequently, increasing strain on health care facilities
and reducing data collection opportunities. Additionally, many
older adults prefer to remain in their homes and be remotely
monitored in that environment, highlighting the need for remote
care solutions in this demographic [13,14].

Physical activity and mobility are among the important factors
in evaluating depression, with strong correlations established
between these parameters and depression assessments [1,15].
The advent of the Internet of Things has enabled continuous
and remote monitoring of physical activity. Several studies have
used statistical methods to analyze the relationship between
physical activity, as measured by wearable devices, and
depression [16-21]. As the field of artificial intelligence (AI)
advances, machine learning models have emerged as promising
tools for depression classification using physical activity data
[22]. For instance, Adamczyk and Malawski [23] used data
from wearable actigraph watches in 3 classification models:
logistic regression (LR), support vector machine (SVM), and
random forest (RF) comparing automatic and manual feature
engineering for depression classification. Bai et al [24] used
phone use, sleep data, and step counts from 334 participants,
using 2 feature selection methods (L1-based feature selection)
and 6 machine learning models (decision tree [DT], k-nearest
neighbors, naive Bayes, LR, SVM, and RF) for mood
classification. Chikersal et al [25] analyzed data from
smartphones and fitness trackers of 138 college students to
identify those experiencing depressive symptoms, using nested
randomized LR for feature selection and AdaBoost with gradient

boosting classifier. Dai et al [26] used heart rate, energy
expenditure, sleep, and other activity data from wearable Fitbit
devices for depression remission detection in 106 participants
within 2 intervention and control groups, using a multitask
learning algorithm comprising 2 dense layers with shared
parameters. Similarly, Griffiths et al [27] classified depression
using activity and sleep data from Fitbit devices of 24
participants through an RF model. Espino-Salinas et al [28]
used wrist-worn accelerometers to measure physical activity in
55 participants, applying a 2D-convolutional neural network
(CNN) and a deep neural network for depression classification.
Jakobsen et al [29] used RF, deep neural network, and CNN
algorithms for depression classification with wrist-worn
actigraph data from 55 participants. Jung et al [30] used gait
accelerometry data and a bidirectional long short-term memory
network–based classifier to assess depression in 45 older adults.
Other studies have also explored the use of wearable device
data combined with various classification methods, such as
1D-CNN [31], deep convolutional neuro-fuzzy [32], Ensemble
models [33], and extreme gradient boosting [34].

These recent studies highlight the integration of wearable
devices with machine learning algorithms as a promising
approach for continuous, remote, home-based monitoring and
early detection of depression. However, wearable device-based
approaches face challenges due to their intrusive nature [35].
Participants are required to wear sensors or devices, which may
lead to issues with compliance, comfort, and data accuracy,
especially over extended periods [36], particularly among older
adults [37]. These challenges can result in inaccurate data
collection [38]. Nonwearable methods, such as remote
monitoring through ambient sensors, offer potential solutions
to these issues [37,39,40]. These approaches can alleviate
concerns related to device adherence and physical discomfort,
providing a more seamless integration into daily life.
Additionally, our literature review indicates that most studies
on depression classification use a relatively large number of
participants and primarily use single-stage classifiers. Many
studies also focus on detailed aspects of physical activity data
(eg, body displacement, acceleration) using intrusive wearable
sensors, which, while effective, present challenges related to
user comfort and compliance. This reliance on wearable
technology underscores the need for exploring alternative, less
intrusive methods.
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Recently, Wi-Fi–based sensing in smart homes has emerged as
an alternative method for detecting and monitoring contextual
human activity and movement [41]. Wi-Fi–based technologies
are increasingly adopted due to their existing infrastructure in
homes and minimal additional setup costs [42]. These
technologies use signal metrics such as received signal strength
indicator (RSSI) and channel state information (CSI) to analyze
Wi-Fi signal characteristics, offering human activity
identification compared to invasive wearable sensors, image
analysis, or video-based systems [43]. Leveraging Wi-Fi–based
activity data with machine learning presents a viable approach
for different diseases, specifically depression classification,
which is the focus of this study.

Technological and AI-based methods for depression
classification predominantly rely on wearable sensors and are
often conducted on large participant groups and typically use
statistical techniques or single-stage machine learning classifiers.

Furthermore, these approaches often overlook the explainability
analysis of the models, which causes a lack of understanding
of the underlying decision-making processes and the
contribution of individual features to the model’s predictions.
To address these challenges, this feasibility study introduces a
novel 3-stage machine learning model that incorporates feature
selection, dimensionality reduction, and classification for
depression classification. This model is specifically designed
for a limited number of participants using low cost, easily
installable Wi-Fi data, which provides continuous insights into
human indoor activities. In addition to creating a model that
functions effectively with small sample sizes, this study
integrates explainable AI techniques to enhance the
interpretability of the model’s predictions. This approach ensures
that the insights derived from the model are transparent and
comprehensible, providing clarity on how specific features
contribute to the classification outcomes. Figure 1 illustrates a
schematic overview of our proposed framework.
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Figure 1. Structure of the automatic Wi-Fi–based depression classification framework. CSI: channel state information; DT: decision tree; EFS: Edmonton
Frailty Scale; GDS: Geriatric Depression Scale; LIME: local interpretable model-agnostic explanations; PCA: principal component analysis; RSSI:
received signal strength indicator; SFS: sequential forward selection; SHAP: Shapely addictive explanations.

Methods

Data Acquisition
We begin by outlining the data acquisition process for the
participants, followed by an in-depth explanation of our
proposed HOPE model.

Study Cohort
Our recruitment approach used both digital and in-person
strategies. Digital outreach was conducted through email
campaigns, social media platforms, and digital posters.
Prospective participants were provided with detailed information
about the study, and those who expressed interest received a
consent form. A member of the research team then coordinated
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the setup of the monitoring equipment. Participants were
compensated for their time and involvement with an e-gift card.

Participants in this study were required to be aged 65 years or
older, capable of communicating in English or French, and have
access to an internet connection at home. Exclusion criteria
were as follows: (1) individuals with mental or physical
conditions that would impede their ability to participate in the
study and its 6-month follow-up, such as gait or balance
disorders, active mental health issues, or the use of mobility
aids such as canes; and (2) individuals with current substance
use disorder, including alcohol or drugs, due to their potential
impact on physical mobility. However, individuals with a history
of substance use disorder who were no longer consuming were
considered eligible.

Experimental Protocol
This study used a nonintrusive Wi-Fi–based motion sensor
system to facilitate remote monitoring of human activity.
Initially, we collected demographic information (ie, age and
gender) from the participants. Subsequently, Wi-Fi data were
acquired through our remote monitoring technology [44]. This
device, installed at the network access point, detects Wi-Fi
signals in environments conducive to passive sensing, including
private residences and public spaces where Wi-Fi is prevalent
[45]. In such indoor settings, Wi-Fi signals exhibit stability in
the absence of individuals but fluctuate significantly with the
presence and movement of people [45]. These signal variations
correspond to distinct patterns associated with human
movements and activities, thus providing valuable data for
activity monitoring [46]. The collected data were subsequently
transferred to secure cloud storage via an internet connection.
Our team has developed advanced signal processing and
AI-based algorithms to process raw Wi-Fi RSSI and CSI
measurements. These algorithms standardize signal variations
and translate RSSI and CSI fluctuations into a detailed set of
contextual information related to human activity [45]. This
information encompasses daily activity duration, bedtime,
wake-up time, total sleep duration, and sleep interruption
information. In addition to using Wi-Fi–based activity data,
frailty and depression statuses were also assessed using validated
assessment tools. The Edmonton Frailty Scale (EFS), which
measures multiple dimensions of frailty [47-49], and the 15-item
Geriatric Depression Scale (GDS) [50] were administered at
the end of the experiment.

Analytical Framework
The methodical steps of our proposed model are detailed in the
following subsections. During the development, implementation,

and reporting, we adhered to the Minimum Information About
Clinical Artificial Intelligence Modeling (MI-CLAIM)
guidelines [51], following best practices designed to promote
transparency and reproducibility of our AI model.

Data Preparation and Feature Extraction
To prepare the contextual human activity data as input for
depression classification, obtained from our Wi-Fi signal
analysis software, we designed a preprocessing stage. This
process involves handling missing values and outliers to ensure
the integrity of the data [52,53]. To enhance analytical depth
and improve model performance, we implemented feature
engineering on contextual human activity data. This process
involves extracting a variety of new features, such as the mean
and SD of bedtime and wake-up times, mean and SD of sleep
duration (in hours), total count and mean of sleep interruptions,
total duration and mean duration of sleep interruptions (in
hours), longest continuous sleep duration (in hours), percentage
of nights with sleep disturbances, and metrics related to daily
activity, including the mean and SD of total daily activity and
hourly activity durations, as well as peak activity hour. These
derived features, combined with EFS data, were incorporated
into our 3-stage machine learning classification model. The
depression status, determined using the GDS, was used to label
the samples for classification purposes.

HOPE Model Development
The proposed HOPE Model was designed for depression
classification in older adults using nonintrusive Wi-Fi–based
motion sensor data. Due to the limited number of participants,
it is necessary to provide an efficient pipeline for preprocessing,
feature extraction, and classification. The limited number of
participants and high dimensionality of features required a
tailored multistage machine learning pipeline to maximize
classification accuracy. Furthermore, ensuring that our
depression classification model is explainable to clinicians is
important, as highlighted in our previous works [54,55]. To
address this, we incorporated explainable machine learning
techniques such as Shapley additive explanations (SHAP) and
local interpretable model-agnostic explanations (LIME). To
achieve these goals, our proposed HOPE model was structured
into 3 stages of machine learning architecture: feature selection,
dimensionality reduction, and classification followed by post
hoc explainability analysis using SHAP and LIME. Each stage
plays a critical role in refining the data and ensuring that the
final classification is both accurate and interpretable. Table 1
provides details on the various techniques used and evaluated
at each stage.
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Table 1. Methods used at each phase of our 3-stage architecture.

Explainability analysisClassificationDimensionality reductionFeature selection

SHAPd [59]NBc [58]PCAb [57]CFSa [56]

LIMEh [63]LRg [62]FAf [61]SFSe [60]

—lkNNk [66]LDAj [65]MIi [64]

—SVMn [69]kPCAm [68]SelectKBest [67]

—Decision tree [71]—RFEo [70]

—RFp [72]——

—GBMq [73]——

—XGboost [74]——

—LightGBM [75]——

—Voting classifier [76]——

—Bagging classifier [77]——

—AdaBoost [78]——

aCFS: correlation-based selection.
bPCA: principal component analysis.
cNB: naive Bayes.
dSHAP: Shapley addictive explanations.
eSFS: sequential forward selection.
fFA: factor analysis.
gLR: logistic regression.
hLIME: local interpretable model-agnostic explanations.
iMI: mutual information.
jLDA: linear discriminant analysis.
kkNN: k-nearest neighbor.
lNot applicable.
mkPCA: kernel principal component analysis.
nSVM: support vector machine.
oRFE: recursive feature elimination.
pRF: random forest.
qGBM: gradient boosting machine.

Feature selection is performed to reduce the dimensionality of
the dataset by identifying the most relevant features for
depression classification, enhancing both the speed and accuracy
of the classification model [79]. The reduced subset of features
serves as input for the subsequent dimensionality reduction
stage. The validity of the chosen selected features is investigated
using correlation analysis in the Results section. Dimensionality
reduction techniques are applied to further refine the feature set
compared to the initial feature selection stage [80] and to
minimize overfitting. The dimensionally reduced features from
the second stage were then processed in the third stage, which
focused on classification. In this stage, the classification model
processes the features derived from the earlier stages to
categorize samples into 2 target classes: “participants with
depression” and “participants without depression.” The
classification algorithm leverages the patterns identified in the
features, such as sleep duration and interruptions, to make
predictions. The classification task involved assigning a
probability score to each sample, determining the likelihood of

belonging to either class based on the relationships in the feature
set. A decision boundary was then established to assign the final
class label for each sample. The classification process was
systematically evaluated to ensure robustness and reliability,
focusing on separating the 2 groups effectively even with the
small dataset. The machine learning classification pipeline was
designed to minimize the risk of overfitting by using techniques
such as feature selection and dimensionality reduction, ensuring
that the most informative and relevant features were used for
prediction. To conclude, we used explainable AI techniques to
interpret the model’s predictions, focusing on identifying the
most influential features and their impact on classification
outcomes.

Following the training and evaluation of all potential
combinations for each stage, the architecture using sequential
forward selection (SFS) for feature selection, principal
component analysis (PCA) for dimensionality reduction, and
DT for classification emerged as the most effective
configuration. This SFS-PCA-DT framework (Figure 1)
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demonstrated superior performance compared to other
combinations.

Our proposed model is supported by different considerations.
The SFS algorithm incrementally selects features to improve
classification performance and is particularly suited for datasets
with a smaller number of participants [81]. Unlike filter
methods, SFS acts as a wrapper technique that pairs with a
machine learning classification algorithm, providing greater
stability in performance [81]. The method starts with no selected
features and progressively adds them based on their ability to
enhance cross-validation outcomes. In the second stage, PCA
serves as a highly effective tool for reducing the dimensionality
of data in an unsupervised manner [82]. It converts the initial
set of features into a reduced number of uncorrelated
components, maintaining the bulk of the data’s variance. This
reduction is important for preventing overfitting, especially with
limited sample sizes. As a classification algorithm, DT
algorithm, known for its strength in binary classification tasks,
effectively uses the streamlined feature set generated in earlier
stages. It models data by learning simple decision rules inferred
from the input features, creating a tree-like structure. Each
internal node in the tree represents a decision based on a feature,
each branch represents an outcome of the decision, and each
leaf node represents a class label [83]. The integration of SFS,
PCA, and DT results in an efficient model that aligns with
established methodologies and theoretical principles in the field.
In this study, comprising only 4 participants, the training and
validation procedure were carefully designed to minimize
overfitting and to achieve reliable model generalization. To this
end, we used a 4-fold cross-validation strategy. Each fold
consisted of 3 participants for training and 1 participant for
testing, ensuring that every participant contributed to both
training and testing in separate iterations. This approach was
repeated 10 times with different random seeds to account for
variations in the training process, further enhancing the
robustness of the performance metrics. During the training
phase, a range of hyperparameter optimization techniques,
including random search [84], Bayesian optimization [85], and
Hyperband [86] was performed for each component of the
3-stage pipeline. For example, the DT classifier’s maximum
depth, minimum sample split, and criterion parameters are tuned
using Bayesian optimization within predefined search spaces.
Similarly, for PCA, the optimal number of components is
optimized to maximize variance retention while preventing
overfitting. The SFS algorithm was guided by internal
cross-validation within the training set to identify the most
predictive subset of features.

Evaluation Metrics
To validate the effectiveness of our depression classification
method, we used 4 evaluation metrics: accuracy [87], sensitivity
[87], precision [87], and F1-score. Accuracy provides a
comprehensive measure of the model’s overall performance.
Sensitivity helps ensure that the model accurately identifies as
many true cases of depression as possible, minimizing the risk
of missing individuals who actually have the condition [88]. To
further validate the stability of the model, we present the training
and test accuracies against the hyperparameter variations,
demonstrating the model convergence.

Ethical Considerations
The study received approval from McGill University’s
Institutional Ethics Committee (A06-B18-21A), allowing data
collection and analysis for this project. Written informed consent
was collected from all participants prior to their involvement
in the study. All collected data were anonymized immediately
after collection, with no personally identifiable information
retained to ensure participant confidentiality. Participants
received a $20 e-gift card as compensation for their time. At
every stage of the research, we adhered to the ethical principles
outlined in the Declaration of Helsinki [89] and the Tri-Council
Policy Statement [90].

Results

Clinical Study Insights
Six community-dwelling older adults residing in Montreal,
Canada, were recruited for this study between May 2022 and
September 2022. However, 2 participants withdrew due to
internet connectivity issues, resulting in the use of data from
the remaining 4 participants for the analysis. The EFS results
indicated that 2 participants exhibited moderate frailty (scores
ranging from 6 to 11), while the other 2 participants were
classified as nonfrail (scores of 5 or below). GDS results
suggested that 1 participant had depressive symptoms
(score=10), while the other 3 participants did not (score
range=0-4).

Some of the participants’ demographic and clinical
characteristics are detailed in Table 2. Over a 6-month period,
the activities of each participant were continuously monitored
at 15-minute intervals using Wi-Fi motion sensors. Following
the identification of potential input features derived from Wi-Fi
signals and questionnaire data, we designed and developed a
3-stage architecture as outlined in the methodology section. To
support future research and ensure the reproducibility of our
findings, the code for our model is openly accessible on our
lab’s GitHub repository [91].

Table 2. Demographic and clinical characteristics of the participants of this study.

Participant with depression (n=1)Participant without depression (n=3)

1/01/2Sex (female/male), n/n

65.50 (0.00)67.05 (3.70)Age (years), mean (SD)

7.00 (0.00)3.34 (3.21)Edmonton frailty scale, mean (SD)

10.00 (0.00)4.00 (1.00)Geriatric depression scale, mean (SD)
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We assessed a total of 240 model configurations, which resulted
from the combination of 5 feature selection methods, 4
dimensionality reduction techniques, and 12 classifiers. Each
configuration was trained 10 times to account for variations in
performance metrics, ensuring the robustness of our findings.
To mitigate the overfitting risk, we used k-fold cross-validation
[92]. We experimented with different initial feature sets to
optimize model performance, and among the various
hyperparameter tuning methods, Bayesian optimization
consistently yielded superior results.

Model Performance and Validation
This section presents the outcomes of our classification model
evaluation. Table 3 summarizes the top-performing
configurations among the 240 model variations that we tested.

The SFS-PCA-DT model, which integrates SFS, PCA, and DT,
emerged as the leading performer across multiple metrics. Its
relatively high accuracy indicates the model’s ability to
distinguish between individuals with and without depression.
The model’s high sensitivity ensures that individuals with
depression are correctly identified. This is critical in clinical
settings, where depression, particularly among older adults,
often goes unrecognized despite its severe impact on cognitive
function [93-96], quality of life [97,98], and mortality risk
[99,100]. Ensuring high sensitivity reduces the likelihood of
missed diagnoses, which is important for timely and effective
treatment. However, the relatively high standard deviation in
both accuracy and sensitivity suggests that the model’s
performance may vary, indicating occasional instances of less
reliable predictions.

Table 3. Average classification performance of the top 5 architectures.

F1-score (%)Precision (%)Sensitivity (%)Accuracy (%)Model

86.00 (14.74)88.34 (18.34)90.00 (20.00)87.50 (12.50)SFSa – PCAb – DTc

81.67 (18.93)90.00 (20.00)83.34 (25.82)85.00 (16.58)SFS + FAd + DT

80.00 (20.82)83.34 (25.82)85.00 (22.91)82.50 (19.53)SFS + PCA + LRe

80.00 (20.82)75.00 (22.42)90.00 (20.00)82.50 (19.53)SFS + PCA + SVMf

76.00 (13.06)78.34 (22.42)85.00 (22.91)80.00 (10.00)MIg + PCA + LR

aSFS: sequential forward selection.
bPCA: principal component analysis.
cDT: decision tree.
dFA: factor analysis.
eLR: logistic regression.
fSVM: support vector machine.
gMI: mutual information.

Table 3 illustrates that SFS is frequently featured among the
highest-performing models, including the top model with
87.50% accuracy, and 3 other strong contenders. Mutual
information also proves effective, appearing in 1 model with
80.00% accuracy, indicating that both SFS and mutual
information are potent feature selection techniques for
depression classification with limited samples. PCA seems to
be the preferred method for dimensionality reduction, being
used in 4 of the top 5 models. Among classifiers, DT stands
out, featuring in the top 2 models with 87.50% and 85.00%
accuracy. Other classifiers, such as LR and SVM, also perform
well, each appearing in models with an accuracy exceeding
80%. The results highlight interesting tradeoffs, such as the SFS
+ PCA + SVM model, which, while slightly lower in accuracy
(82.50%), maintains a high sensitivity (90.00%). This supports

the practice of evaluating models using multiple metrics,
especially in situations where the application involves clinical
diagnoses, where accurately identifying true positives is crucial.

Figure 2 displays the averaged confusion matrix for the
top-performing SFS – PCA – DT model used to classify
depression status. Due to the constraint of having only 4
samples, we used a 4-fold cross-validation strategy, with each
fold being tested 10 times to ensure a thorough evaluation. The
model showed promising results, accurately classifying 86%
of individuals without depression as not having depression and
89% of individuals with depression as having depression. The
average false positive rate, where individuals without depression
were incorrectly classified as having it, was 14%, while the
average false negative rate, where individuals with depression
were incorrectly classified as not having it, was 11%.
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Figure 2. Confusion matrix for the top-performing model (SFS – PCA – DT). DT: decision tree; PCA: principal component analysis; SFS: sequential
forward selection.

To validate the convergence of the proposed algorithm, we
analyzed the relationship between tree depth and accuracy on
both the training and test datasets. Figure 3 demonstrates the
training and test accuracy of the best performing model (SFS
– PCA – DT) as a function of tree depth. The training accuracy
increases consistently with tree depth, stabilizing at its

maximum, reflecting that the model can fully capture the
training data as depth increases. The test accuracy improves
initially with increasing tree depth but stabilizes beyond a depth
of 3. These observations confirm that the proposed algorithm
achieves convergence in terms of performance tradeoffs between
model complexity and generalization.

Figure 3. Training and test accuracy as a function of tree depth, demonstrating convergence of our proposed model.

Feature Selection and Analysis
In our 3-stage classification model, we implement a combination
of feature selection and dimensionality reduction techniques to
improve the efficacy of our machine learning approach [80].
The features selected by SFS included “average sleep duration,”
“total number of sleep interruptions,” “percentage of nights
with sleep interruptions,” “average duration of sleep

interruptions,” and “EFS.” Correlation analysis of these features
revealed notable associations with depression status. Such
analysis helps identify how variations in these features might
be related to changes in depression, providing valuable insights
for clinicians and researchers to develop more effective
diagnostic tools and treatments.
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Figure 4 illustrates a strong negative correlation between
depression and average sleep duration. Conversely, depression
was positively correlated with the total number of sleep
interruptions, percentage of nights with sleep interruptions,
average duration of sleep interruptions, and EFS. Blue cells
indicate negative correlation values, while red cells represent
positive correlations. Darker colors signify stronger correlations.
The high correlation values highlight the significance of these
factors in understanding and potentially classifying older adults

with depression, aligning with findings from previous studies
[101-105]. For example, Vallance et al [106] demonstrated that
engaging in daily activities can alleviate the adverse effects of
depression among older adults. Furthermore, several studies
have highlighted a connection between depression and frailty
[107,108]. Vaughan et al [109] showed that the prevalence of
both depression and frailty among individuals aged 55 years
and older exceeds 10%. These findings confirm the association
between depression and the features incorporated in our model.

Figure 4. Correlation matrix heatmap between depression and selected features by sequential forward selection.

Comparative Analysis With Baseline Models
In this section, we evaluate the performance of our proposed
3-stage architecture for depression classification, which
leverages Wi-Fi–based contextual human activity data, against
baseline models previously outlined in the introduction.
Although direct comparisons are inherently difficult due to
differences in data acquisition methods (wearable devices),
feature sets, and sample sizes, this analysis serves to

contextualize the effectiveness of our approach for our case
study with a limited number of participants.

For the baseline models, we selected the most current
classification architectures used in the literature for depression
classification. To ensure a fair comparison, each baseline model
was trained and tested using the same feature set applied in our
experiment. The resulting performance metrics for each baseline
model are presented in Table 4. Despite the challenges
associated with our smaller sample size, the comparison offers
valuable insights into the relative efficacy of our method.

JMIR Aging 2025 | vol. 8 | e67715 | p. 10https://aging.jmir.org/2025/1/e67715
(page number not for citation purposes)

Nejadshamsi et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Average performance across different baseline machine learning models.

F1-score (%)Precision (%)Sensitivity (%)Accuracy (%)Model architecture

N/Ab5.005.0012.50RFa [23,27]

N/A10.0010.0015.00SVMc [23]

N/A13.3415.0022.50LRd [23]

N/A10.0010.0025.00XGBoost [34]

N/A18.3435.0032.50L1-based feature selection + DTe [24]

N/A13.3415.0022.50L1-based feature selection + RF [24]

N/A13.3415.0022.50L1-based feature selection + kNNf [24]

N/A15.0025.0030.00L1-based feature selection + NBg [24]

N/A25.0045.0037.50L1-based feature selection + LR [24]

N/A10.0010.0025.00L1-based feature selection + SVM [24]

N/A55.0073.3355.00Randomized LR + AdaBoost [25]

86.0088.3490.0087.50HOPE modelh

aRF: random forest.
bN/A: data not applicable.
cSVM: support vector machine.
dLR: logistic regression.
eDT: decision tree.
fkNN: k-nearest neighbor.
gNB: naive Bayes.
hBest performed proposed model.

As shown in Table 4, traditional single-stage machine learning
classifiers such as RF, LR, and SVM demonstrate relatively
lower performance, with accuracy ranging from 12.50% to
22.50%. Among these, LR achieves relatively higher accuracy.
XGBoost exhibits better performance than the traditional
models. Incorporating feature selection techniques further
improves the performance of these models. Specifically,
combining L1-based feature selection with various classifiers
results in modest performance gains, while the randomized LR
combined with AdaBoost achieves a significant improvement,
reaching 55.00% accuracy and 73.33% sensitivity. Our proposed
3-stage architectures significantly surpass all other baseline
models across all metrics. While most baseline models struggle
with sensitivity and precision, often scoring below 15%, our
best proposed model demonstrates substantial enhancements in
these metrics with 90.00% sensitivity and 88.34% precision,
indicating a superior capability to correctly identify positive
cases and reduce false positives.

Model Explainability
To enhance our understanding of the decision-making processes
within our proposed model, we used SHAP [50] and LIME [54]
for model interpretability analysis. These model-agnostic
methods can be applied across various machine learning models,
providing valuable insights into our model’s predictive behavior.

By integrating these interpretability techniques, we aim to
improve the transparency and potential clinical relevance of our
depression classification framework. These methods help us
identify which features most significantly influence the model’s
predictions, particularly in the context of depression
classification.

SHAP Analysis
The SHAP waterfall plot (Figure 5) illustrates the relative
importance of features for depression classification, with red
and blue colors representing positive and negative contributions,
respectively. Among the features, “the percentage of nights with
sleep interruptions” is the most impactful, positively correlating
with depression risk, indicating that frequent sleep disturbances
are a strong predictor of depression. Conversely, the average
sleep duration exhibits a substantial negative impact on
depression prediction, suggesting that longer sleep durations
are associated with a reduced likelihood of depression.
Sleep-related variables continue to play a pivotal role in the
model’s predictions; both the total number of sleep interruptions
and the average duration of these interruptions contribute
positively to depression risk, further underscoring the
importance of uninterrupted sleep in depression diagnosis.
Although the frailty scale is included in the model, its influence
is relatively minor compared to sleep-related features.
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Figure 5. SHAP analysis. SHAP: Shapley additive explanations.

LIME Analysis
The LIME plot (Figure 6) provides a complementary view of
feature importance, with green and red colors indicating positive
and negative influences, respectively. Consistent with the SHAP
results, LIME identifies “the percentage of nights with sleep
interruptions” as the most critical feature in the classification
of depression of our proposed model. Similarly, the average

sleep duration is shown to have a significant negative impact
on depression classification, in line with SHAP findings. The
total number of sleep interruptions also ranks highly with a
positive influence on depression risk, again aligning with SHAP
results. A notable difference between the 2 methods is the
relatively lower impact of the frailty scale in the LIME analysis,
which requires further investigations.

Figure 6. LIME analysis. LIME: local interpretable model-agnostic explanations.

Discussion

Our research uses Wi-Fi–based motion sensors to extract daily
activities, which are then used in our proposed machine learning
method for depression classification.

Our study findings confirm the feasibility of using Wi-Fi–based
motion sensors for depression classification among older adults.
Our proposed HOPE (Home-Based Older Adults’ Depression
Prediction) model achieved an accuracy of 87.5%, sensitivity
of 90%, and precision of 88.3%. The most influential features
identified were sleep-related metrics, such as average sleep
duration and sleep interruptions, highlighting the importance
of sleep patterns in depression classification. These findings

suggest that Wi-Fi–based monitoring offers a nonintrusive and
effective alternative to conventional wearable technologies for
depression assessment. These conventional methods, while
effective, often present challenges in terms of participant
compliance, particularly among older adults, due to their
burdensome and sometimes uncomfortable nature. In contrast,
our Wi-Fi–based approach is nonintrusive and allows for
continuous monitoring without requiring participants to wear
or interact with any devices. This can significantly enhance
participant compliance and the integrity of the data collected
over extended periods. Compared to other nonintrusive
monitoring technologies, such as camera-based methods, our
Wi-Fi–based approach has distinct advantages. Wi-Fi
infrastructure is prevalent in most homes and does not pose
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privacy risks, making it a cost-effective and scalable solution
for continuous health monitoring. Furthermore, unlike previous
studies that rely on microlevel body displacement and
accelerometer data, our study emphasizes macrolevel physical
activity features like sleep patterns and overall activity levels
shift is crucial as it highlights the potential of using broader,
more easily obtainable metrics to assess depression status. Our
findings demonstrate that these macrolevel features are not only
feasible but also effective measures for depression classification,
broadening the scope of nonintrusive monitoring technologies
in mental health research. The next steps can be extracting more
detailed types of human activity using nonintrusive Wi-Fi data
and expanding more on using this type of data acquisition for
depression classification.

Additionally, our proposed model demonstrates relatively high
performance compared to other classification models presented
in existing depression classification studies, even with a limited
sample size. Many studies using physical activity data from
wearable devices often benefit from larger datasets and
frequently use single-stage classifiers or deep neural networks.
These models generally show strong performance with abundant
data; however, their effectiveness diminishes when applied to
smaller datasets, such as the one in this feasibility study. To
address the limitations imposed by our smaller sample size, we
designed a 3-stage machine learning classification architecture,
which combines feature selection, dimensionality reduction,
and classification into a multistep process. This approach allows
for the extraction of the most relevant features while minimizing
noise, thereby improving classification performance. Despite
the small sample size, our model consistently outperformed
conventional single-stage classifiers, highlighting the strength
of both the machine learning architecture and the selected human
activity features—particularly sleep patterns and activity
levels—used for depression classification. This also underscores
the adaptability of our model to different data scales, making
it a more versatile option for future research where data
availability might be limited. While this model shows promising
results, however, caution is needed in interpreting these results.
Future work should aim to enhance its robustness and
generalizability by expanding the dataset. Collecting
Wi-Fi–based physical activity data from a larger and more
diverse sample would not only improve the model’s statistical
power but also allow for a more comprehensive evaluation of
its performance across different population groups, such as
varying age ranges and health conditions. This would be

particularly valuable in developing a scalable solution for
real-world applications. Additionally, the integration of
advanced machine learning techniques, such as deep neural
networks or hybrid models combining traditional classifiers
with deep learning components, could further enhance
classification accuracy.

Our study is distinctive not only in its methodological approach
but also in its emphasis on model explainability, a crucial aspect
often overlooked in prior research on depression classification.
Explainability is essential in health care applications, where
understanding the factors driving a model’s decision is critical
for clinical adoption and trust. By using SHAP and LIME, we
were able to dissect the decision-making process of our model
and pinpoint the most influential features for classifying
depression. Both explainability analyses converge on the
identification of sleep interruption features as key predictors in
the depression classification of our proposed model. Among
these, the “percentage of nights with sleep interruptions,”
“average sleep duration,” and “total number of sleep
interruptions” emerged as the primary driving factors. These
findings align with existing literature that highlights the strong
correlation between sleep disturbances and depression. However,
our approach goes a step further by quantifying the impact of
these features on the classification outcomes, providing a more
nuanced understanding of their role. These findings suggest that
future tools for depression assessment may benefit from a
stronger focus on sleep quality and patterns and further
investigations are required in this regard.

The integration of sensors and AI is transforming health care,
yet the application of these technologies in depression
classification remains underdeveloped and lacks extensive
investigation. This study aimed to create an automated machine
learning system for the continuous, remote monitoring and
assessment of daily physical activity among older adults in a
home setting, with the goal of distinguishing between individuals
with and without depression.

In summary, although there were some challenges, our results
suggest that using Wi-Fi–based data to capture contextual human
activities is a promising and efficient method for classifying
depression. The model we developed, leveraging data from
Wi-Fi motion sensors, showed strong potential in accurately
identifying early signs of depression and paving the way for
more advanced and accessible mental health monitoring
technologies among community dwelling older adults..
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MI-CLAIM: Minimum Information About Clinical Artificial Intelligence Modeling
PCA: principal component analysis
RF: random forest
RSSI: received signal strength indicator
SFS: sequential forward selection
SHAP: Shapely addictive explanations
SVM: support vector machine
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