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Abstract
Background: Cognitive impairment, indicative of Alzheimer disease and other forms of dementia, significantly deteriorates
the quality of life of older adult populations and imposes considerable burdens on families and health care systems worldwide.
The early identification of individuals at risk for cognitive impairment through a convenient and rapid method is crucial for the
timely implementation of interventions.
Objective: The objective of this study was to explore the application of machine learning (ML) to integrate blood biomarkers,
life behaviors, and disease history to predict the decline in cognitive function.
Methods: This approach uses data from the Chinese Longitudinal Healthy Longevity Survey. A total of 2688 participants
aged 65 years or older from the 2008‐2009, 2011‐2012, and 2014 Chinese Longitudinal Healthy Longevity Survey waves were
included, with cognitive impairment defined as a Mini-Mental State Examination (MMSE) score below 18. The dataset was
divided into a training set (n=1331), an internal test set (n=333), and a prospective validation set (n=1024). Participants with
a baseline MMSE score of less than 18 were excluded from the cohort to ensure a more accurate assessment of cognitive
function. We developed ML models that integrate demographic information, health behaviors, disease history, and blood
biomarkers to predict cognitive function at the 3-year follow-up point, specifically identifying individuals who are at risk of
experiencing significant declines in cognitive function by that time. Specifically, the models aimed to identify individuals
who would experience a significant decline in their MMSE scores (less than 18) by the end of the follow-up period. The
performance of these models was evaluated using metrics including accuracy, sensitivity, and the area under the receiver
operating characteristic curve.
Results: All ML models outperformed the MMSE alone. The balanced random forest achieved the highest accuracy (88.5%
in the internal test set and 88.7% in the prospective validation set), albeit with a lower sensitivity, while logistic regression
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recorded the highest sensitivity. SHAP (Shapley Additive Explanations) analysis identified instrumental activities of daily
living, age, and baseline MMSE scores as the most influential predictors for cognitive impairment.
Conclusions: The incorporation of blood biomarkers, along with demographic, life behavior, and disease history into ML
models offers a convenient, rapid, and accurate approach for the early identification of older adult individuals at risk of
cognitive impairment. This method presents a valuable tool for health care professionals to facilitate timely interventions and
underscores the importance of integrating diverse data types in predictive health models.
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Introduction
Alzheimer disease (AD), the most prevalent form of
dementia, is a progressive condition primarily characterized
by memory loss [1]. It is estimated that approximately 50
million people worldwide are currently living with AD [2].
This condition not only deteriorates the quality of life for
older adult individuals but also imposes significant burdens
on families and health care systems, especially as the global
population continues to age [3-6]. Mild cognitive impairment
(MCI) is recognized as an intermediary stage between normal
aging and the more severe cognitive decline observed in
dementia. Early detection of MCI through diagnostic tools,
such as magnetic resonance imaging (MRI), can facilitate
timely interventions aimed at reducing the risk of progression
to AD [7]. However, cognitive impairment, which encom-
passes a broader spectrum of decline, including MCI, is
a critical concern that requires early identification. Predict-
ing cognitive impairment, including MCI and other forms
of decline, is essential for implementing preventive strat-
egies and improving long-term health outcomes. There-
fore, identifying individuals at potential risk for cognitive
impairment is crucial.

While MRI and cerebrospinal fluid biomarkers, such as
amyloid β, are significant indicators of AD [8], we aim
to develop an algorithm that allows for the precise iden-
tification of individuals at risk using a more convenient
and rapid approach, without relying on complex analyses
like MRI or cerebrospinal fluid biomarkers. Recent studies
have established a correlation between blood biomarkers
and various factors, including diseases such as hypertension,
diabetes, heart disease, and cerebrovascular disease, and
lifestyle behaviors such as smoking, physical activity, and
living conditions, with cognitive impairment [9,10]. High-
dimensional data analysis has proven effective in capturing
features that are crucial for identifying health issues [11,12].
Hence, the incorporation of these relevant factors into a
sophisticated model allows for a practical application both
in clinical settings and at home, enabling doctors or families
to use existing data to train and monitor patients or older adult
individuals, thereby identifying high-risk groups for further
treatment and intervention.

In recent years, machine learning (ML), a branch of
artificial intelligence, has been increasingly used for the
prediction of disease outcome [13,14]. Unlike traditional
methods that rely heavily on statistical significance, ML

leverages algorithms to process existing factors and develop
optimized models [15]. While there has been significant
research into understanding the pathogenesis and influenc-
ing factors of MCI through ML, most of these studies
have primarily focused on imaging techniques such as MRI
[16]. Although MRI is a powerful diagnostic tool, its high
cost and the inconvenience it poses limit its practicality for
widespread use. In contrast, cognitive function assessments,
such as the Mini-Mental State Examination (MMSE), offer a
more accessible and feasible option for large-scale population
screenings [17,18].

In this study, we used follow-up data from the Chinese
Longitudinal Healthy Longevity Survey (CLHLS) collected
during the years 2008‐2009, 2011‐2012 and 2014, encom-
passing a total of 2688 participants. Cognitive impairment
was classified based on the MMSE scores, with a cutoff
point set at 18, to determine cognitive status after 3 years.
We included routine blood indices, lifestyle behaviors, and
disease history from the baseline data in the ML model
for training, aiming to predict the occurrence of cognitive
impairment.

Methods
Study Participants
The cohort for this study is selected from CLHLS, which
is a comprehensive longitudinal survey co-orchestrated by
Peking University and the China Aging Science Research
Center [19,20]. The survey targets Chinese seniors aged
65 years or older and includes detailed information about
their living conditions, socioeconomic status, and health
profiles [21]. The CLHLS initiates its baseline survey
in 1998 and subsequently conducts follow-up surveys at
regular intervals, with the relevant cohorts for this study
being those from 2008‐2009, 2011‐2012, and 2014. The
CLHLS study maintains ethical standards with approval
from the Research Ethics Committee of Peking University
(IRB00001052-13074), and all participants or their legal
proxies provide written informed consent.

The initial samples from these specified years consist of
8418, 6066, and 3441 participants, respectively. Baseline
subjects were screened by MMSE, and cognitive impair-
ment was defined as an MMSE score <18 points [22]. The
participants without missing data on MMSE scores at baseline
and follow-up while with biomarker data were included in
this study. This results in a narrowed-down research sample,
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with 602 participants from the 2008‐2009 cohort, 1263 from
2011‐2012, and 1116 from 2014, leaving a final sample size
of 2688 subjects. Among the remaining participants, those
from the 2008‐2009 and 2011‐2012 waves (n=1664) were
further divided into a training set (n=1331) and an internal
test set (n=333). The 1024 participants from the 2014 wave
were used as a prospective validation set.
Predictors
Demographic predictors include age, gender, and BMI,
calculated as weight in kilograms divided by height in meters
squared (kg/m2). Data on life behaviors and disease history
are collected from the CLHLS questionnaire. Life behav-
iors account for living status (living alone or not), current
smoking and drinking habits, exercise practices, marital
status, and overall activity ability and mental health. Activity
ability is assessed through activities of daily living (ADL)
and instrumental activities of daily living (IADL). ADL
was assessed by 6 indicators, including bathing, dressing,
toileting, indoor transfer, continence, and eating. If all 6 items
can be completely self-care, it means that daily life activities
can take care of themselves. If one or more items cannot be
completely self-care, it means the daily life activities cannot
take care of themselves completely (0=normal, 1=disabil-
ity) [23,24]. IADL was assessed by 8 indicators, including
visiting neighbors, going shopping, cooking a meal, washing
clothing, walking continuously for 1 km at a time, lifting
a weight of 5 kg, continuously crouching and standing up
3 times, and taking public transportation. If 8 items can
be completed independently, such as the evaluation method
of ADL, it means the instrumental daily life activities can
be completed by themselves (0=normal or 1=disability)
[23,25,26].

The development of the model in this study encompasses
3 categories of predictors derived from the baseline survey
data: biomarkers, life behaviors, and disease history. The
set of biomarkers comprises both routine blood examination
indices and plasma biochemical examination indices. Routine
blood indices include white blood cell count, red blood cell
count, hemoglobin, erythrocyte hematocrit, erythrocyte mean
corpuscular volume, erythrocyte mean corpuscular hemoglo-
bin, erythrocyte mean corpuscular hemoglobin concentration,
platelet count, plateletcrit, mean platelet volume, lymphocyte
count, percentage of lymphocytes, and platelet distribution
width. The plasma biochemical indices include high-density
lipoprotein cholesterol (HDL), uric acid, plasma creatinine,
glucose, triglyceride, total cholesterol (CHO), high-sensitivity
c-reactive protein, malondialdehyde (MDA), and superoxide
dismutase activity.

Mental health evaluation incorporates 7 questions, with
4 positively framed inquiries (regarding optimism, neat-
ness, decision-making, and happiness relative to youth)
and 3 negatively framed ones (concerning fear, loneliness,
and feelings of decreased self-worth with age). Respon-
ses are scored on a scale, with higher scores correlat-
ing with poorer mental health. Disease history captures
the presence or absence of hypertension, diabetes, heart
disease, stroke, cancer, and arthritis. These multifaceted

predictors collectively contribute to the ML model, provid-
ing a comprehensive profile for the assessment of cognitive
impairment risk.
Data Preprocessing and Model
Configuration
The data preprocessing phase involved addressing missing
values and mitigating class imbalance to ensure a robust
foundation for model training. Missing values in the dataset
were imputed using the mean of the respective columns,
which ensured completeness and preserved the statistical
properties of the data [27]. In order to address the issue of
class imbalance, the SMOTE (Synthetic Minority Over-Sam-
pling Technique) was applied to the training set. SMOTE
effectively generated synthetic samples for the minority class,
enhancing the model’s ability to learn from the imbalanced
data distribution [28].

The selection of ML models was driven by a desire to
compare different algorithms’ performance and assess their
robustness in dealing with imbalanced datasets. We chose 5
widely used algorithms: random forest (RF) [29], Extreme
Gradient Boosting (XGBoost) [30], logistic regression [31],
support vector machines (SVM) [32], and balanced random
forest (BRF) [33]. These models were selected for their
varied approaches to classification and their effectiveness
in handling different types of data. RF and XGBoost are
ensemble models that excel in handling high-dimensional
data and capturing nonlinear relationships. Logistic regression
and SVM are classic algorithms for binary classification, with
SVM known for its ability to handle high-dimensional spaces
effectively. The addition of BRF was made specifically to
address the class imbalance issue in the RF model. The main
difference between RF and BRF is how they handle class
imbalance.

Each model was configured as follows:
• XGBoost (XGBClassifier): a learning rate of 0.03 and

a maximum depth of 4 were chosen for the XGBoost
model, with class weights incorporated to address class
imbalance.

• Logistic regression: configured with a maximum of
1000 iterations and class weights set to “balanced” to
account for class imbalance.

• SVM: probability estimation was enabled and class
weights were balanced to ensure fairness across
experiments.

• BRF: class weights were set to “balanced” to address
the class imbalance within the dataset.

Outcomes
The assessment of cognitive function among participants was
conducted using the MMSE, administered at both base-
line and during follow-up sessions. The MMSE encom-
passes evaluations across various cognitive domains including
orientation, registration, attention and calculation, recall, and
language abilities, with a maximum achievable score of 30
points. In this study, the primary outcome for the ML model
is the determination of cognitive impairment, defined as an
MMSE score of less than 18 points at follow-up.
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Model Construction, Evaluation, and
Interpretation
The construction of each model followed a systematic
approach to ensure rigorous evaluation and validation.
Initially, the CLHLS 2008‐2009 and CLHLS 2011‐2012
datasets were merged. From this combined dataset,
1331/1664 (80%) of the data was randomly allocated
as the training set, while the remaining 333/1664 (20%)
was reserved as an internal test set for model evalua-
tion. And then, the CLHLS 2014 dataset was used as a
prospective validation set, with the model training based
exclusively on the merged data from CLHLS 2008‐2009
and CLHLS 2011‐2012. Standard performance metrics—
including accuracy, sensitivity, specificity, and the area under
the receiver operating characteristic curve—were calcula-
ted to assess model effectiveness. All statistical analyses
are conducted using Python (version 3.8; Python Software
Foundation)

SHAP (Shapley Additive Explanations) [34] is a method
for interpreting the output of ML models by assigning a
contribution value to each feature, allowing us to understand
the impact of individual predictors on a model’s decision. In
our study, SHAP was used to explain the predictive model for
cognitive impairment in older adult individuals. SHAP values
decompose the model’s prediction into individual contribu-
tions from each feature, making it possible to attribute
the output to the various risk factors in a transparent and
interpretable manner.
Ethical Considerations
The CLHLS was approved by the Duke University Insti-
tutional Review Board (Pro00062871) and the Peking
University Biomedical Ethics Committee (IRB00001052–
13074). All participants provided written informed consent.

The data used in this study were deidentified to protect
participant privacy and confidentiality. No compensation
wasprovided to participants.

Results
Participant Characteristics
Table 1 summarizes the baseline characteristics of the 2688
participants included in this study, stratified into 3 subsets:
the training set (n=1331), the internal test set (n=333), and
the prospective validation set (n=1024). Overall, the mean
age was 79.73 (SD 10.97) years and slightly over half of
the participants were male (53.24%). The mean BMI was
21.81 (SD 3.8 kg/m2). Most participants lived with others
(79.49%), did not smoke (77.79%), or drink (80.96%) at
present, and had normal ADL (95.02%). Additionally, more
than half (55.28%) showed abnormal mental health status,
while 51.45% were married and living with a spouse. Several
biochemical indicators were measured. The mean white blood
cell count was 5.85 (SD 1.74×109)/L, red blood cell count
was 4.64 (SD 1.68×1012)/L, and hemoglobin was 131.56 (SD
30.20) g/L. Participants had a mean HDL level of 1.31 (SD
0.38) mmol/L, and other biomarkers (eg, uric acid, creati-
nine, glucose, triglycerides, CHO, high-sensitivity c-reactive
protein, MDA, and superoxide dismutase) were also assessed.
Regarding disease history, hypertension was most preva-
lent (27.18%), followed by arthritis (11.31%), heart disease
(8.01%), stroke (6.29%), and diabetes (2.75%). Cancer was
reported by 0.42% of participants. Detailed distributions of
these characteristics across the training, internal test, and
prospective validation sets are presented in Table 1. A
detailed flow diagram of participant inclusion and exclusion
is provided in Figure 1.

Table 1. Characteristics of study subjects at baseline.
Predictors

Overall (n=2688) Train set (n=1331)
Internal test set
(n=333)

Prospective validation
set (n=1024)

Demographics and life behaviors
Age, year, mean (SD) 79.73 (10.97) 80.24 (11.43) 79.69 (11.6) 79.73 (10.07)
Gender, n (%)

Male 1431 (53.24) 685 (51.47) 173 (51.95) 573 (55.96)
Female 1257 (46.76) 646 (48.53) 160 (48.05) 451 (44.04)

BMI, kg/m2, mean (SD) 21.81 (3.8) 21.51 (3.86) 21.32 (3.67) 22.31 (3.64)
Living alone, n (%)

Yes 543 (20.51) 267 (20.37) 62 (18.9) 214 (21.21)
No 2105 (79.49) 1044 (79.63) 266 (81.1) 795 (78.79)

Smoke at present, n (%)
Yes 593 (22.21) 317 (23.94) 72 (21.82) 204 (20.08)
No 2077 (77.79) 1007 (76.06) 258 (78.18) 812 (79.92)

Drink at present, n (%)
Yes 509 (19.04) 265 (19.98) 57 (17.17) 187 (18.42)
No 2164 (80.96) 1061 (80.02) 275 (82.83) 828 (81.58)
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Predictors

Overall (n=2688) Train set (n=1331)
Internal test set
(n=333)

Prospective validation
set (n=1024)

Exercise at present, n (%)
Yes 2134 (81.08) 1056 (81.23) 267 (81.65) 811 (80.7)
No 498 (18.92) 244 (18.77) 60 (18.35) 194 (19.3)

ADLa, n (%)
Normal 2479 (95.02) 1232 (93.97) 313 (95.72) 934 (96.19)
Disability 130 (4.98) 79 (6.03) 14 (4.28) 37 (3.81)

IADLb, n (%)
Normal 1593 (59.53) 742 (55.87) 198 (59.64) 653 (64.27)
Disability 1083 (40.47) 586 (44.13) 134 (40.36) 363 (35.73)

Marital status, n (%)
Married and living with spouse 1370 (51.45) 654 (49.32) 165 (49.55) 551 (54.88)
Others 1293 (48.55) 672 (50.68) 168 (20.45) 453 (45.12)

Mental health, n (%)
Normal 1122 (44.72) 542 (43.78) 139 (44.84) 441 (45.89)
Abnormal 1387 (55.28) 696 (56.22) 171 (55.16) 520 (54.11)

Biomarkers, mean (SD)
WBCc, 109/L 5.85 (1.74) 5.63 (1.76) 5.64 (1.89) 6.19 (1.61)
RBCd, 1012/L 4.64 (1.68) 4.82 (2.11) 4.98 (1.9) 4.3 (0.56)
HGBe, g/L 131.56 (30.2) 129.98 (26.56) 132.23 (22.69) 133.36 (36)
HCTf, % 36.31 (15.05) 33.77 (18.01) 34.25 (18.1) 40.07 (7.23)
MCVg, fL 93.95 (10.24) 93.51 (12.24) 92.94 (9.76) 94.81 (7.03)
MCHh, pg 29.46 (7.24) 28.38 (5.25) 28.16 (5.75) 31.24 (9.22)
MCHCi, g/L 312.18 (42.25) 304.34 (48.89) 301.38 (54.41) 325.58 (18.74)
PLTj, 109/L 207.32 (99.24) 216.44 (109.67) 213.75 (111.53) 193.65 (77.22)
PCTk, % 0.27 (3.29) 0.33 (4.42) 0.2 (0.1) 0.18 (0.06)
MPVl, fL 9.54 (5.14) 9.43 (2.87) 9.97 (6.53) 9.55 (6.65)
LYMPHm, 109/L 14.56 (15.81) 23.13 (15.58) 21.28 (15.48) 2.03 (1.25)
LYM%n, % 19.55 (16.81) 10.49 (14.48) 11.59 (15.01) 33.06 (9.32)
PDWo, fL 15.47 (4.37) 14.86 (2.38) 14.87 (1.99) 16.44 (6.27)
HDLp, mmol/L 1.31 (0.38) 1.26 (0.37) 1.24 (0.38) 1.41 (0.37)
UAq, umol/L 291 (85.39) 285.55 (85.47) 288.51 (87.31) 298.83 (84.13)
CREr, mmol/L 81.36 (24.19) 82.49 (25.97) 81.68 (22.2) 79.81 (22.28)
GLUs, mmol/L 5.06 (2.05) 4.83 (2.29) 4.85 (1.87) 5.42 (1.71)
TGu, mmol/L 1.29 (0.95) 1.22 (0.95) 1.44 (1.24) 1.34 (0.82)
CHOu, mmol/L 4.34 (1.17) 4.06 (1.18) 3.94 (1.22) 4.84 (0.95)
CRPHSv, mg/L 4.17 (18.46) 5.46 (23.21) 6.15 (29.35) 2.49 (5.29)
MDAw, nmol/ml 5.64 (3.4) 5.43 (2.76) 5.2 (2.63) 5.93 (4.04)
SODx, IU/mL 55.53 (10.33) 55.53 (11.9) 53.34 (11.61) 56.04 (8.13)

Disease history, n (%)
Hypertension

Yes 716 (27.18) 316 (24.09) 88 (26.91) 312 (31.36)
No 1918 (72.82) 996 (75.91) 239 (73.09) 683 (68.64)

Diabetes
Yes 73 (2.75) 31 (2.34) 11 (3.33) 31 (3.11)
No 2577 (97.25) 1292 (97.66) 319 (96.67) 966 (96.89)

Heart disease
Yes 212 (8.01) 91 (6.9) 28 (8.54) 93 (9.29)

 

JMIR AGING Ren et al

https://aging.jmir.org/2025/1/e67437 JMIR Aging 2025 | vol. 8 | e67437 | p. 5
(page number not for citation purposes)

https://aging.jmir.org/2025/1/e67437


 
Predictors

Overall (n=2688) Train set (n=1331)
Internal test set
(n=333)

Prospective validation
set (n=1024)

No 2436 (91.99) 1228 (93.1) 300 (91.46) 908 (90.71)
Stroke

Yes 167 (6.29) 77 (5.82) 20 (6.08) 70 (6.97)
No 2490 (93.71) 1247 (94.18) 309 (93.92) 934 (93.03)

Cancer
Yes 11 (0.42) 3 (0.23) 1 (0.3) 7 (0.73)
No 2588 (99.58) 1301 (99.77) 329 (99.7) 958 (99.27)

Arthritis
Yes 300 (11.31) 183 (13.86) 55 (16.72) 62 (6.18)
No 2352 (88.69) 1137 (86.14) 274 (83.28) 941 (93.82)

aADL: activities of daily living.
bIADL: instrumental activities of daily living.
cWBC: white blood cell count.
dRBC: red blood cell count.
eHGB: hemoglobin.
fHCT: erythrocyte hematocrit.
gMCV: erythrocyte mean corpuscular volume.
hMCH: erythrocyte mean corpuscular hemoglobin.
iMCHC: erythrocyte mean corpuscular hemoglobin concentration.
jPLT: platelet count.
kPCT: plateletocrit.
lMPV: mean platelet volume.
mLYMPH: lymphocyte count.
nLYM%: percentage of lymphocytes.
oPDW: platelet distribution width.
pHDL: high-density lipoprotein cholesterol.
qUA: urea acid.
rCRE: plasma creatine.
sGLU: glucose.
tTG: triglyceride.
uCHO: total cholesterol.
vCRPHS: high-sensitivity c-reactive protein.
wMDA: malondialdehyde.
xSOD: superoxide dismutase activity.
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Figure 1. Flow diagram of the subject selection. CLHLS: Chinese Longitudinal Healthy Longevity Survey; MMSE: Mini-Mental State Examination.

Model Performance
The performance of the ML models in predicting follow-up
cognitive impairment was evaluated using 5 algorithms—
RF, XGBoost, logistic regression, SVM, and BRF—on both
the internal test set and prospective validation set. Each
model’s accuracy, sensitivity, and area under the receiver

operating characteristic curve were assessed. The detailed
results are presented in Table 2 and visually depicted in
Figure 2. Additionally, we used the MMSE as an input
for ML prediction. After testing several ML models, the
overall performance remained suboptimal. For illustration, we
selected 1 representative result, as shown in Table 2.

Table 2. The prediction results for MLa models.
Internal test Prospective validation
Accuracy (95% CI) Sensitivity (95% CI) AUCb (95% CI) Accuracy (95% CI) Sensitivity (95% CI) AUC (95% CI)

RFc 0.828 (0.806-0.854) 0.688 (0.633-0.742) 0.81 (0.769-0.852) 0.813 (0.79-0.84) 0.684 (0.63-0.739) 0.806 (0.767-0.848)
XGBoostd 0.849 (0.825-0.87) 0.674 (0.621-0.728) 0.811 (0.769-0.851) 0.836 (0.812-0.857) 0.682 (0.629-0.733) 0.808 (0.768-0.848)
Logistic
regression

0.778 (0.751-0.803) 0.715 (0.66-0.761) 0.803 (0.753-0.847) 0.771 (0.744-0.795) 0.745 (0.696-0.789) 0.804 (0.753-0.847)

SVMe 0.69 (0.661-0.719) 0.681 (0.629-0.731) 0.777 (0.725-0.827) 0.672 (0.643-0.701) 0.676 (0.623-0.725) 0.777 (0.726-0.826)
Balanced
RF
classifier

0.885 (0.866-0.903) 0.58 (0.54-0.626) 0.809 (0.765-0.849) 0.887 (0.867-0.905) 0.616 (0.572-0.664) 0.811 (0.767-0.849)

MMSEf N/Ag N/A 0.571 (0.485-0.653) N/A N/A 0.558 (0.494-0.62)
aML: machine learning.
bAUC: area under the curve.
cRF: random forest.
dXGBoost: Extreme Gradient Boosting.
eSVM: support vector machines.
fMMSE: Mini-Mental State Examination.
gN/A: not applicable.
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Figure 2. ROC curves with AUC values for machine learning models: (A) internal test set and (B) prospective validation set. AUC: area under the
curve; ROC: receiver operating characteristic; SVM: support vector machines; XGBoost: Extreme Gradient Boosting.

In the internal test set, the BRF achieved the highest accuracy
at 88.5% but had lower sensitivity at 58%. RF and XGBoost
provided balanced results with accuracies of 82.8% and
84.9% and sensitivities of 68.8% and 67.4%, respectively.
Logistic regression yielded a moderate accuracy of 77.8% but
the highest sensitivity at 71.5%, while SVM had the lowest
performance with 69% accuracy and 68.1% sensitivity.
Similar patterns were observed in the prospective validation
set, with BRF at 88.7% accuracy, logistic regression reaching
74.5% sensitivity, and SVM again showing the lowest overall
performance. Additionally, the performance of all ML models
was superior to that of the MMSE.

Figure 3 offers a detailed exposition of the XGBoost for
cognitive impairment in older adult individuals, featuring
the 20 most influential risk predictors. The model prioritizes
IADL, age, and baseline MMSE scores as the top determi-
nants, with marital status, living alone, and hypertension also
providing significant predictive value. Other important factors
include biological markers such as MDA and HDL, along-
side lifestyle factors such as current exercise, smoking, and
drinking habits.

Figure 3A illustrates the distribution of SHAP values for
these predictors, indicating their impact on the XGBoost’s
output. In this plot, each dot represents a single instance of a
feature in the dataset, and the horizontal axis shows the SHAP
value of that feature. The SHAP value indicates the contribu-
tion of each feature to the model’s prediction, with positive
values suggesting that the feature increases the likelihood
of cognitive impairment, and negative values indicating a

decrease. The color of the dots, ranging from blue to red,
represents the feature’s value, with blue corresponding to
lower values and red indicating higher values of the predic-
tor. This color scheme helps highlight how different values
of each predictor influence the model’s outcome. A high
SHAP value for a given feature corresponds to a high level
of importance in the predictive model. Figure 3B features a
bar plot that quantifies the average impact of each predictor,
measured by the mean absolute SHAP value. The length of
each bar represents the average contribution of a feature to
the model’s output across all data points. Here, the most
important features in the model—such as IADL, age, and
MMSE score at baseline—are easily identified, as they have
the longest bars, indicating that they have the highest average
impact on the model’s predictions.

Figure 3C illustrates a specific case study, showing how
the SHAP values for a particular individual (in this case, an
adult aged 98 years) contribute to the XGBoost’s predic-
tion of cognitive impairment. Each feature is shown with
its value (eg, hypertension=1), and the arrows indicate how
these values shift the model’s prediction. Features such as
hypertension and living alone appear to have a red color,
indicating they push the prediction toward a higher risk of
cognitive impairment. Similarly, age (with a value of 98) and
IADL further emphasize the risk in this individual’s profile.
The interaction of these predictors is visualized through
their SHAP values, which collectively guide the prediction
model’s decision, offering an individualized risk profile for
this person.
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Figure 3. Explanation of the interpretability of the XGBoost (Extreme Gradient Boosting) model (the best-performing model) for predicting older
adult mortality. (A) and (B) show the top 20 risk predictors for prediction of cognitive impairment subjects, and (C) shows the SHAP plots of a
subject. ADL: activities of daily living; CHO: total cholesterol; CRE: plasma creatine; GLU: glucose; HDL: high-density lipoprotein cholesterol;
IADL: instrumental activities of daily living; MCH: erythrocyte mean corpuscular hemoglobin; MCV: erythrocyte mean corpuscular volume; MDA:
malondialdehyde; MMSE: Mini-Mental State Examination; MPV: mean platelet volume; PDW: platelet distribution width; PLT: platelet count;
SHAP: Shapley Additive Explanations; UA: uric acid.

Discussion
Principal Findings
This study uses the capabilities of ML to integrate a diverse
set of 39 predictors for forecasting the decline in cognitive
function over a 3-year period, yielding significant findings
that resonate with the existing body of literature. Our ML
model underscores the importance of IADL, age, baseline
MMSE scores, marital status, living arrangements, hyper-
tension, arthritis, and general lifestyle habits as pivotal
factors influencing cognitive function. These determinants
are consistent with findings from prior research, thereby
affirming the reliability and relevance of our analytical
approach [12,22].

Consistent with prior studies, advanced age has been
identified as a significant risk factor for cognitive impair-
ment [35,36]. The risk of MCI in the older adults aged 65
years or older is as high as 10%‐20% [37]. The limitation
of older adult individuals’ ability to perform activities, as
assessed by ADL and IADL, restricts their range of activi-
ties, diminishes social interactions, and consequently reduces

the cerebral stimulation necessary for maintaining cognitive
functions [38,39]. Furthermore, the impact of living condi-
tions on cognitive health is evidenced by the predictive
value of marital status and living alone [22,40-42]. Older
adult individuals residing with a spouse typically exhibit
healthier brain functions due to increased communication and
maintenance of a normal life.

Additionally, this study underscores the detrimental effects
of unhealthy lifestyle behaviors such as smoking and drinking
on cognitive function [43-45], as well as the risk of cognitive
impairment caused by pre-existing health conditions [46-49].
For instance, an Indian study highlighted that older smokers
were 24% more likely to experience cognitive impairment
compared to nonsmokers [50]. Similarly, Sabia et al [45]
reported that abstaining from alcohol or consuming more than
14 units per week in middle age escalates the risk of AD.
Moreover, recent research suggests that up to 3% of dementia
cases could be averted by enhancing physical activity levels
[51,52]. Concerning health conditions, a community-based
cohort study illustrated that hypertension is associated with
an increased risk of both all-cause MCI and nonamnestic
MCI, with hazard ratios of 1.4 and 1.7, respectively, after
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age and sex adjustments [49]. Additionally, Appenzeller et
al [53] found that patients with rheumatoid arthritis exhibi-
ted a significantly higher incidence of cognitive impairment
compared to healthy controls.

In this study, in addition to age, lifestyle behaviors, and
disease history—which can be evaluated through question-
naires or scales—biomarkers were specifically included in
the ML model to enhance the predictive accuracy of clinical
risk assessments for cognitive decline. Prior research has
indicated that count elevated levels of specific biomark-
ers, including MDA, HDL, platelets, mean platelet volume,
platelet distribution width, mean corpuscular hemoglobin,
CHO, lymphocyte percentage, and plasma creatinine, are
associated with an increased risk of cognitive decline [54-65].
For clinicians, integrating a patient’s lifestyle behaviors with
blood biochemical markers can aid in the assessment of
cognitive function. For communities, these indicators can
help identify residents who may be at high risk. For family
members, this model enables the evaluation of older adult
relatives who may be reluctant to acknowledge their cognitive
decline, thereby facilitating timely medical intervention. The
model developed in this study is versatile and offers valuable
insights for the identification of cognitive impairment across
various settings.

The ML model developed in this study has the potential
to significantly improve clinical practice and primary care by
providing a rapid, efficient, and accessible tool for identifying
individuals at risk of cognitive decline. Traditional methods
for cognitive function assessment, such as imaging techniques
such as MRI, can be time-consuming and resource-intensive,
especially in resource-limited settings. By leveraging routine
data such as blood biomarkers, demographic information, and
lifestyle factors, this model offers a cost-effective approach
to identify individuals who may require further clinical
evaluation or early intervention. In primary care settings,
where health care professionals often manage large volumes
of patients, the model can serve as a valuable screening tool
to detect early cognitive decline and facilitate referrals for
specialized care. Furthermore, by integrating this model into
electronic health records, health care providers can make
timely and informed decisions, improving patient outcomes
through proactive management. In essence, the model has
the potential to transform early detection and intervention
strategies, shifting the focus toward preventative care and
better allocation of health care resources.

Compared to previous studies using ML for cognitive
impairment prediction, our study offers several distinct
contributions. For example, while studies such as those by
Hu et al [22] and Gao et al [66] have successfully devel-
oped ML models to predict cognitive impairment among
Chinese community-dwelling older adult individuals, they
often focused on a more limited set of predictors—typically
emphasizing demographic factors and neuropsychological
assessments. In contrast, our study integrates a comprehen-
sive set of 39 predictors, including both routine blood
biomarkers (eg, MDA and HDL) and detailed lifestyle and
disease history data. This broader approach not only enhances

predictive accuracy but also provides a rapid, cost-effective
tool that can be easily applied in community and clinical
settings. Moreover, while some previous work [67,68] has
primarily relied on imaging data or traditional statistical
methods, our use of advanced ensemble ML techniques (such
as BRF and XGBoost) combined with SHAP-based inter-
pretability offers a clearer understanding of individual risk
factors. This interpretability is crucial for clinicians to tailor
early intervention strategies. In summary, our study advances
the field by delivering a more inclusive and interpretable
model that effectively tracks cognitive decline over 3 years,
thereby addressing gaps in existing research and offering
tangible benefits for early detection and intervention.

Nevertheless, this study presents certain limitations that
warrant consideration. Primarily, the dependence on MMSE
scores as the sole measure of cognitive impairment may not
fully represent the broad spectrum of cognitive health, as the
MMSE mainly evaluates specific cognitive domains and does
not address emotional or psychological aspects. Furthermore,
there is potential bias due to the generally younger age and
better overall function of this study’s participants compared
to those who were lost to follow-up, which could skew
the results. However, the representation of the dataset at a
national level does provide a measure of balance, helping to
partially offset these biases.
Conclusions
In conclusion, this study validates the efficacy of a ML
model integrating demographic data, lifestyle factors, and
biomarkers to predict cognitive impairment in older adults. It
underscores the significance of traditional risk factors such as
age and daily functional abilities while highlighting the role
of solitary living conditions and unhealthy habits in cognitive
decline. By including a broad spectrum of biomarkers, the
model enriches the predictive framework, offering clinicians,
communities, and families a valuable tool for early identifica-
tion and intervention in cognitive impairment, which could
have far-reaching implications for public health and the
well-being of the aging population.
Limitations
While the CLHLS is a large-scale longitudinal study that
primarily focuses on individuals aged 65 years and older,
to assess the health status and longevity of the older adult
population in China, it is important to acknowledge the
limitations of the dataset concerning its representativeness.
The CLHLS sample is designed to represent the health
conditions of the older adult population in China, but it may
not fully capture the global demographics of AD or other
forms of dementia. Specifically, older adult populations in
other countries or regions may differ by genetic background,
lifestyle factors, and health risks, which could influence the
development and progression of cognitive impairment. Future
studies incorporating diverse, multinational cohorts would be
beneficial in enhancing the generalizability and robustness of
cognitive decline prediction models.
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