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Abstract
Background: Previous research has shown that in-lab motor skill acquisition (supervised by an experimenter) is sensitive to
biomarkers of Alzheimer disease (AD). However, remote unsupervised screening of AD risk through a skill-based task via the
web has the potential to sample a wider and more diverse pool of individuals at scale.
Objective: The purpose of this study was to examine a web-based motor skill game (“Super G”) and its sensitivity to risk
factors of AD (eg, age, sex, APOE ε4 carrier status, and verbal learning deficits).
Methods: Emails were sent to 662 previous MindCrowd participants who had agreed to be contacted for future research and
have their APOE ε4 carrier status recorded and those who were at least 45 years of age or older. Participants who chose to
participate were redirected to the Super G site where they completed the Super G task using their personal computer remotely
and unsupervised. Once completed, different Super G variables were derived. Linear and logistic multivariable regression was
used to examine the relationship between available AD risk factors (age, sex, APOE ε4 carrier status, and verbal learning) and
distinct Super G performance metrics.
Results: Fifty-four participants (~8% response rate) from the MindCrowd web-based cohort (mean age of 62.39 years; 39
females; and 23 APOE ε4 carriers) completed 75 trials of Super G. Results show that Super G performance was significantly
associated with each of the targeted risk factors. Specifically, slower Super G response time was associated with being an
APOE ε4 carrier (odds ratio 0.12, 95% CI 0.02-0.44; P=.006), greater Super G time in target (TinT) was associated with being
male (odds ratio 32.03, 95% CI 3.74-1192,61; P=.01), and lower Super G TinT was associated with greater age (β −3.97, 95%
CI −6.64 to −1.30; P=.005). Furthermore, a sex-by-TinT interaction demonstrated a differential relationship between Super G
TinT and verbal learning depending on sex (βmale:TinT 6.77, 95% CI 0.34-13.19; P=.04).
Conclusions: This experiment demonstrated that this web-based game, Super G, has the potential to be a skill-based digital
biomarker for screening of AD risk on a large scale with relatively limited resources.
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Introduction
Since the number of cases of Alzheimer disease (AD) is
expected to double in the next 2 decades [1], there is an
urgent need for widespread screening of older adults for
their individual AD risk profile, which has implications for
clinical care and research. Current options, such as positron
emission tomography for measuring tau and beta amyloid
pathology, tend to be expensive and invasive and require
advanced imaging facilities [2]. Blood-based biomarkers may
make screening for AD more affordable and less invasive, but
their validity and standardization are still being established
at this time [3,4]. Cognitive screening tests can indicate
deficits, but these largely rely upon in-person administration
from a trained clinician and may have reduced sensitivity
in identifying individuals at high risk of AD in the earliest
stages [5]. Thus, it is important to identify measures that are
sensitive to AD risk and yet can also be delivered accurately,
easily, and directly to patients and prospective participants in
clinical trials and research studies.

Digital biomarkers have great potential to meet the need
for accessible and remote testing of AD risk. Broadly
speaking, digital biomarkers are measurable indicators of
health or disease collected from a digital device or through
digital means. Some digital biomarkers of AD include
finger tapping [5,6], repeated cognitive assessment on a
Wi-Fi–enabled device [7], recorded speech [8], and digital
clock drawing [9], which have all been shown to be sen-
sitive to cognitive impairment. These measures have also
been associated with disease status, differentiating between
cognitively intact versus mild cognitive impairment (MCI)
and MCI versus dementia to some degree. However, these
examples have overall low sensitivity to risk factors of
AD, such as age [10], sex [11], apolipoprotein-E (APOE)
ε4 carrier status [12,13], and brain amyloid [9]. Consider-
ing this, another potential digital biomarker of AD could
be motor skill. Motor skill acquisition is the within-session
improvement in a motor skill as a function of practice [14].
Previous in-lab studies have associated motor skill deficits
with APOE carrier status, hippocampal atrophy, functional
decline, and amyloid deposition among people diagnosed
with amnestic MCI [15-18]. This task can also be collected
remotely [19,20], which would allow for a wider and more
diverse sample of individuals at potential risk for AD and can
more easily facilitate longitudinal testing as desired.

This study developed a web-based tool for assessing motor
skill performance called Super G [21], which can be reliably
played unsupervised on the web [20] regardless of device
type and without downloading any app. Specifically, the
objective of this study was to examine whether Super G
performance was individually related to known risk factors
of AD (eg, age, sex, APOE ε4 carrier status, and verbal
learning). Based on prior motor skill studies in AD, it was
hypothesized that Super G performance would be negatively
associated with each risk factor.

Methods
Study Design
This was a cross-sectional descriptive study that examined
within-session performance characteristics from a web-based
motor skill task (Super G) and their association with AD risk
factors among adults recruited from the MindCrowd study.
Participants
Participants were recruited in May of 2021 through Mind-
Crowd, a web-based research study launched in 2013 to
crowdsource demographic, medical history, lifestyle, and
cognitive data to identify risk factors of AD [22,23]. Emails
were sent through MindCrowd to a subset of 662 individu-
als who met our inclusion or exclusion criteria and were
older than 45 years, who had previously provided a dried
blood spot or saliva sample for APOE genotyping (see section
“AD Risk Factors and Other Participant Characteristics From
MindCrowd” for details) and had provided consent to be
contacted for future studies. A hyperlink was included in the
email that directed individuals to the Super G game website,
on which participants digitally provided consent (approved by
the Arizona State University institutional review board study
no. 13081). Of the 662 individuals emailed, 54 participants
(age: mean 62.39, SD 7.4 years; female: n=39) appropriately
registered and completed all 75 trials of the game, equating
to an 8.1% response rate. The mean (SD) time between
MindCrowd data collection (specifically verbal learning, see
section “AD Risk Factors and Other Participant Character-
istics From MindCrowd” for details) and Super G data
collection was 5.9 (1.4) years.
Super G
The Super G game was developed in Unity 5.3.1 and is
hosted on Hostinger. Thus, participants were not required to
download an app or program to their device. Super G was
developed as a gamified version of a seminal motor skill
paradigm [24] and has been validated against the original
version [21]. The goal of Super G is to help an astronaut
explore as many planets as possible within the game’s solar
system. There are 16 planets to visit but only 75 attempts
to reach them all. Participants use the left and right arrow
keys on their keyboard to move the astronaut onto a planet.
However, the game uses a rate control mechanism that may
not be immediately apparent to participants [21]. Specifically,
pressing the right arrow key applies a constant positive force
to move the astronaut toward the planet, while pressing the
left arrow key applies an equal negative force away from the
planet. Since the virtual environment lacks gravity or drag,
any force applied will result in a constant velocity until a
negative force is applied to slow it down. Thus, participants
must learn to apply negative force at the right time and for the
right duration to land the astronaut on each planet.

Each trial in Super G begins with the astronaut positioned
on the left side of the screen on the initial start planet.
The target planet is located on the opposite side of the
screen to the right (Figure 1A). The trial lasts 4.5 seconds,
but the astronaut cannot leave the start planet until 1.5
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seconds have elapsed, as indicated by the disappearance of
the blue atmosphere around the start planet (Figure 1B). If the
astronaut leaves too early, the trial resets and the astronaut is
returned to the initial position on the start planet. Once the
blue atmosphere disappears, the participant has 3 seconds to
land the astronaut on the target planet. To achieve a success-
ful landing, the astronaut must stay within the boundary of the
target planet for 1 continuous second. If successful, a reward
tone plays, and fireworks erupt from the target planet (Figure
1C). After a successful landing, Super G repositions at the
start position, and the previously landed planet becomes the
start planet, with a new target planet appearing in its place
(Figure 1D). In the event of a failed landing, the planets for
the next trial remain the same, and astronaut reappears at
the start position. All 75 trials are completed within a single
session for a total session length of approximately 6 minutes.

Cursor position and key press data from each trial of Super
G were collected at 100 Hz, along with high scores, time
and date of each trial. From these data, four performance
variables were calculated. First, scaling ratio (SR) represents
the ratio of negative force (duration of left button press)
applied to Super G over positive force (duration of right
button press), where values equal to 1 indicate equal scaling
of forces. Second, time of reversal (TR) is a measure of how
well participants execute the timing of their movements by
identifying when the left arrow key press occurs during the
trial, where higher values are reversals that occur later in the

trial. Successful trials require equal scaling of forces (ie, SR
close to or equal to 1) and a reversal timed at the midway
point of the trial, although we note that there can be trade-offs
between the SR and TR to still allow for some degree of
success in the task. Third, total time in the target (TinT)
planet is the time that the cursor stayed within the target
planet, with higher values representing better performance.
Fourth, response time (RT) is a measure of how soon the
cursor left the home planet after the disappearance of the start
planet’s atmosphere, and lower values equate to a faster RT.

Although these performance metrics do strongly correlate
with one another, each represents distinct phases of individual
motor skill acquisition, as it is possible to have a fast RT
with a low TinT if either timing of cursor reversal or scaling
of forces is not well executed. Overall, average TinT across
all 75 trials is the primary measure of performance since
it directly represents the task goal and performance of the
task as it relates to execution of SR and TR. Average RT
across all 75 trials was considered as a secondary measure
of performance because it represents the earlier stage of skill
acquisition as participants first need to anticipate when to exit
the start planet prior to execution of their acquired movement
strategy. Average TinT and RT across the 75 trials are used
as the Super G metrics of individual performance due to
our prior work [21], which demonstrated that average TinT
and RT well describe individual within-session change in
performance and delayed retention.

Figure 1. Each panel represents the different phases a participant may experience during Super G play. (A) The astronaut, Super G, spawns on the
start planet at the beginning of each trial. There is a blue atmosphere around the planet that signals to the participant that Super G cannot leave yet.
(B) Once the blue atmosphere disappears, then Super G can leave the start planet and attempt to land on the target planet. (C) If Super G successfully
stays within the target planet boundary for 1 continuous second, then a reward tone plays and fireworks erupt from the planet. (D) Subsequent trials
then render the previous target planet as the new start planet and a new target planet is put in place.
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AD Risk Factors and Other Participant
Characteristics From MindCrowd
Super G data were harmonized with MindCrowd through
merging of hashed email addresses linked to MindCrowd data
and used as the login for the Super G game. Super G variables
were then merged with participant age, sex, level of educa-
tion, verbal learning (measured via paired associates learning
[PAL]) score [25], simple visual reaction time (svRT), and
APOE genotype data, which were available in MindCrowd.
The PAL is a verbal learning task that measures the abil-
ity to remember the associations between different word
pairs. Specifically, participants are visually presented with
12 word pairs, with each word pair presented separately and
at 2-second intervals. Participants were then presented with
the first word of each pair and then used their keyboard to
type the missing word. This procedure was repeated for 2
additional trials. The maximum score on the PAL is 36 (12
words across 3 trials). The svRT task measured the median
reaction time across 6 trials, in which participants had to press
any keyboard button as soon as a target stimulus appeared
on their screen, with reaction time for each trial recorded in
milliseconds. Median svRT was used due to the skewness
of the distribution of reaction time in each participant’s
individual data (skewness svRT median 1.2 vs skewness
svRT mean 4.1). The svRT test was used in this study as a
control variable only. Participants were classified as APOE ε4
carriers or noncarriers. Carriers were defined as individuals
who had either 1 or 2 copies of the ε4 allele, and noncar-
riers were defined as individuals with 0 copies of the ε4
allele. This was based on prior genotyping from biospecimen
collection via self-administered saliva or dried blood spot kits
that were mailed to the participants by MindCrowd and then
processed by the Translational Genomics Research Institute.
Details regarding biospecimen collection and genotyping can
be found here [26]. Complete visualization of APOE ε4
carrier status with svRT, PAL, and age can be viewed in
Figure S1 in Multimedia Appendix 1.
Statistical Analysis
Wilcoxon rank sum tests were used due to a difference in
sample sizes between APOE ε4 carriers (n=23) and noncarri-
ers (n=31), since uneven sample sizes may lead to inaccurate
and disproportionate estimates of variance of each group and
violate assumptions of parametric testing. This determined
whether there were differences in age, PAL score, svRT,
and Super G performance between the 2 groups. Chi-square
tests were used to determine whether there was a difference
in proportion based on sex, race, education, and ethnicity
between carriers and noncarriers. To provide broader context
of the verbal learning (PAL) and reaction time (svRT)
of this sample, percentile scores were calculated for each
participant adjusted for their age, sex, and level of educa-
tion. This allowed for better contextualization of the relative
performance on each measure between carriers and noncarri-
ers relative to the entire MindCrowd cohort (ie, if participants
in this study are under- or overperformers compared with
what would be expected to a random sample across the entire
cohort).

Separate linear and logistic multivariable regression
analyses, depending on outcome variable type, were used to
test the relationship between Super G performance and the
dependent variables, that is, AD risk factors. Specifically,
different models were constructed to identify which Super
performance metrics are related to specific AD risk factors,
while controlling for possible confounding effects of the other
AD risk factors and participant characteristics. Multivaria-
ble logistic regression was used for the dependent variable
of APOE ε4 carrier status (where carriers were coded as
“true” and noncarriers as “false”), along with the primary
and secondary measures of Super G performance (TinT and
RT), and control variables of age, sex, PAL score, hour of
day Super G played, level of education, and svRT. This
approach controlled for the other factors and was repeated
with sex as the dependent variable (whereby male was coded
as “true” and female as “false”) while switching APOE ε4
carrier status to a control variable. Multivariable regression
was used when the dependent variable was PAL score, with
a primary independent variable of mean Super G performance
(TinT, RT, SR, or TR), and control variables of age, sex,
APOE ε4 carrier status, hour of day Super G played, level
of education, and svRT. The same approach was repeated
with age as the dependent variable while switching PAL score
to a control variable. In addition, to control for the poten-
tial delay between initial PAL scores and Super G measure-
ment, PAL-adjusted scores were also generated and analyzed.
Individual PAL scores were adjusted based on the amount
of time between their PAL and Super G measurement, given
previously reported expected decline in PAL based on age
reported by Talboom and colleagues [26]. This resulted in an
expected 0.2-point decline in PAL for every year between the
initial PAL and current Super G measurement. The formula-
tion of each model can be viewed in the following equations:

1. APOE ε4 carrier status ~ Super G Performance (TinT
or RT) + age +sex + hour played + education +svRT +
PAL (Logistic regression)

2. Sex ~ Super G Performance (TinT or RT) + age + hour
played + education + svRT + PAL + APOE ε4 carrier
status (Logistic regression)

3. Age ~ Super G Performance (TinT or RT) + sex + hour
played + education + svRT + PAL + APOE ε4 carrier
status (Linear regression)

4. PAL ~ Super G Performance (TinT or RT) + age + sex
+ hour played + education + svRT + APOE ε4 carrier
status (Linear regression)

5. PAL adjusted ~ Super G Performance (TinT or RT) +
age + sex + hour played + education + svRT + APOE
ε4 carrier status (Linear regression)

Participants could play Super G at any time throughout the
day, the variable of hour played (measured with a 24-hour
clock rather than a 12-hour clock) was transformed using a
cosine function to ensure that adjacent hours 0 and 23 were
close together. This is visualized in Figure S2 in Multime-
dia Appendix 1. All numeric variables were standardized
(age, svRT, PAL, hour played, and Super G Performance)
to be centered at their respective mean and divided by their
respective SD. Thus, a 1-unit change in the results of these
variables with respect to all reported odds ratios (ORs) and
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beta coefficients represents a 1 SD change in either the
outcome or the performance metric. This allowed for better
relative comparison between all independent variables within
each model. To detect multicollinearity, the variance inflation
factor was calculated, and any variable with a variance
inflation factor of >5 was removed. Outliers were identified
using Cook’s distance and removed if their distance was >1.
Ethical Considerations
The study protocol was reviewed and approved by the
office of Research Integrity and Assurance at Arizona
State University (approval number STUDY00013081). To
participate, participants needed to provide digital informed
consent. All data collected from this experiment were
deidentified for privacy and confidentiality. Participants were
not compensated for their time in this study.

Results
Participant Characteristics
Overall, there were 23 APOE ε4 carriers (20 heterozygotes
and 3 homozygotes) and 31 noncarriers. Between-group
comparisons (carriers vs noncarriers) using the Wilcoxon
rank sum test demonstrated that groups did differ by age
(W=471; P=.04), with noncarriers being an average of
4.3 years older than carriers (carriers=59.9 years, noncarri-
ers=64.2 years). For all other control variables, there were no
observed group differences (Table 1).

Table 1. Genetic, demographic, cognitive, motor, and Super G performance data between APOE ε4 carries and noncarriers.
APOE ε4 carriers APOE ε4 noncarriers Test statistic (df) P value

Participants, n 23 31 —a —
APOE alleles (X/X), n — —
  2/2 — 0
  2/3 — 2
  3/3 — 29
  2/4 4 —
  3/4 16 —
  4/4 3 —
Age (years), mean (SD) 59.9 (7.4) 64.2 (6.9) W=471 (—) .045b

Sex (male/female) 6/17 9/22 χ2=0 (1) >.99
Race χ2=0 (1) >.99
  White 23 31
Ethnicity χ2=0 (1) >.99
  Not Latinx 23 31
Education, n χ2=2.5 (3) .47
  High school diploma 1 0
  Some college 5 4
  Four-year degree 9 12
  Postgraduate degree 8 15
PALc score, mean (SD) 23.4 (8.4), 66th percentile 19.2 (8.5), 54th percentile W=254 (—) .07
median svRTd (ms), mean (SD) 389.7 (75), 71st percentile 418 (79), 65th percentile W=451 (—) .10
Hour of day played, mean (SD)e 13.1 (4.6) 14.9 (4.1) W=441 (—) .14
Hour of day played (cosine), mean (SD) 0.52 (0.6) .45 (6) W=394 (—) .49
Super G time in target (ms), mean (SD) 653.9 (436.6) 469.4 (287.9) W=279 (—) .18
Super G response time (ms), mean (SD) 1614.8 (305.9) 1874.5 (307.4) W=502 (—) .01b

Super G time of reversal (ms), mean (SD) 2000.6 (592.4) 2060.3 (836.4) W=432 (—) .19
Super G scaling ratio, mean (SD) 0.66 (0.3) 0.64 (0.3) W=343 (—) .82

aN/A: not applicable.
bStatistical significance (P<.05).
cPAL: paired associates learning.
dsvRT: simple visual reaction time.
eBased on 24-hour clock.
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Relationship Between Super G
Performance and AD Risk Factors
Within the APOE ε4 carrier status logistic regression (model
1) there was a significant association between APOE ε4
carrier status with Super G RT (OR 0.12, 95% CI 0.02-0.44;
P=.006) (Figure 2A). Thus, a participant with a Super G
RT that was 1 SD below the mean would have an 88%
increase in odds of being an APOE ε4 noncarrier than
carrier. Visual comparison between all Super G perform-
ance metrics and APOE ε4 can be visualized in Figure
S3 in Multimedia Appendix 1. All other control variables,
including PAL (P=.62) and svRT (P=.29), were not signifi-
cantly related to APOE ε4 carrier status. Within the partic-
ipant age linear regression (model 3), Super G TinT was
significantly associated with age (β −3.97, 95% CI −6.64 to
−1.30; P=.005) (Figure 2C) and within the participant sex
logistic regression (model 2), TinT was also associated with
sex (OR 32.03, 95% CI 3.74-1192.61; P=.01) (Figure 2B),
with lower TinT values (poorer performance) associated with
being older and being female, respectively. This is consistent
with our earlier work in other cohorts [27]. Visual comparison
between all Super G performance metrics and sex can be
visualized in Figure S4 in Multimedia Appendix 1.

Given that previous research in MindCrowd has demon-
strated a main effect of sex on verbal learning (as measured

with the PAL test) [26,28], and that TinT is also strongly
linked with participant sex (Figure 2B), within the PAL
linear regression (model 4), a sex-by-TinT interaction was
also included to best model PAL [26]. Results from the PAL
model demonstrated that age was associated with PAL (β
−3.37, 95% CI −6.34 to −0.4; P=.03), indicating that older
age was associated with lower PAL scores. There was also a
main effect of participant sex (βMale −7.73, 95% CI −14.98
to −0.45; P=.04). This result indicates that male participants
scored an average of 7 points lower on the PAL than females.
There was a significant sex-by-TinT interaction (βMale:TinT
6.77, 95% CI 0.34-13.19; P=.04). This result indicates that
males with a mean TinT 1 SD greater than the group mean
are associated with an increase of 6.77 points on the PAL
compared with females with the same TinT performance
(Figure 2D). Furthermore, in the PAL adjusted regression
(model 5), where PAL scores are modified based on the
time between PAL and Super G measures, the results are
nearly identical to the raw scores (βage −3.41, 95% CI −6.38
to −0.44; P=.03; βMale −7.57, 95% CI −14.81 to −0.33;
P=.04; βMale:TinT 6.72, 95% CI 0.31-13.14; P=.04; Figure
S5 in Multimedia Appendix 1). The results of this adjusted
analysis provide evidence that the delay between PAL and
Super G measures does not significantly impact the observed
relationship between PAL and TinT given participant sex.
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Figure 2. (A) Mean Super G response time (ie, time at which Super G exits the start planet once the blue atmosphere disappears) between APOE ε4
noncarriers and carriers. Y-axis represents the probability a participant is classified as a carrier or noncarrier based on their mean response time. The
blue line represents the binomial relationship between response time and carrier status with faster response time more associated with being a carrier
and slower response time more associated with being a noncarrier. The gray ribbon represents the 95% CI of the estimated probability of binomial
relationship. (B) Mean Super G time in target between female and male participants. Y-axis represents the probability a participant is classified as
a male or female based on their mean time in target. The blue line represents the binomial relationship between time in target and sex with better
time in target associated with being a male and worse time in target associated with being a female. The gray ribbon represents the 95% CI of the
estimated probability of binomial relationship. (C) Linear relationship between participant age in years and their mean Super G time in target. The
blue line represents the least squares line fitted between the variable and the gray ribbon about the line represents the 95% CI. (D)The relationship
between mean Super G time in target to individual PAL total score stratified by sex (male in blue and female in pink). Given known sex differences
between males and females on PAL and observed sex differences on mean Super time in target, such a stratification by sex was necessary to control
for potential confounding of sex on the Super G to PAL relationship. The blue line represents the line of least squares for males and the pink line
represents the line of least squares for females. The gray ribbon about each line represents the 95% CI. PAL: paired associates learning.

Discussion
This study tested whether motor skill acquisition, as assessed
by the Super G task, was sensitive to known risk factors of

AD, namely age, sex, APOE ε4 carrier status, and verbal
learning. Results showed that better Super G performance
was directly and independently associated with each of these
risk factors, suggesting that Super G may be a sensitive
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digital biomarker of AD risk that can be remotely collected.
Interestingly, TinT and RT were related to different AD risk
factors (sex, age, and verbal learning vs APOE ε4 carrier
status, respectively), likely reflecting how different aspects
of motor skill map onto different AD risk factors. Our prior
work showed that TinT is the product of optimal execution
of SR and TR and best characterizes overall skill compared
with the other Super G variables [21], and it was related
to age, sex, and verbal learning. However, RT is a perform-
ance characteristic of early skill acquisition, as it measures an
individual’s ability to anticipate when to initialize movement
at the beginning of the trial, which was related to APOE
ε4 carrier status. Although APOE ε4 carriers unexpectedly
outperformed noncarriers in terms of early skill acquisition
(ie, better RT performance), this opens up the possibility
of using Super G as a prognostic enrichment strategy for
enriching AD-focused cohorts with ε4 carriers [29].

The observed APOE ε4 benefit in this study is contrary
to previous work where APOE ε4 carrier status leads to
worse performance on memory tests in carriers compared
with noncarriers [30-32]. However, the role APOE ε4 in
aging independent of AD pathology may be significant [33],
as a small but growing body of evidence in both cogni-
tively unimpaired humans and rodents shows that visual
working memory and learning is better among APOE ε4
carriers than noncarriers [34-36]. Although APOE ε4 is the
primary genetic risk factor for AD [13], evidence suggests a
possible benefit, or compensatory behavior [37], of learn-
ing at an earlier age while leading to impairments in later
life [38,39]. Previous research has shown that cognitively
unimpaired individuals who are APOE ε4 carriers have
greater gray matter volume in frontal regions, can better
allocate cognitive control, and possess better visual working
memory and learning than APOE ε4 noncarriers [34,40,41].
Furthermore, task-based neuroimaging studies have associ-
ated better performance on visual working memory tasks
among carriers with greater activation in frontal and parietal
regions [34,36,42]. This leads to the hypothesis that increased
frontal activation is a compensatory mechanism that modifies
behavior in AD, given that frontal brain regions are relatively
spared in AD [43,44]. Although these data do not provide
direct support for the APOE ε4 compensatory mechanisms,
it may be plausible that Super G may be able to measure
a suspected APOE ε4 benefit. This interpretation is further
supported by the fact that in-lab motor skill studies have
associated greater skill with higher white matter integrity of
frontoparietal tracts [45,46] in cognitively unimpaired older
adults, which could serve as a candidate neural substrate for
such a compensatory mechanism as proposed previously, but
further study would be needed to confirm.

Prior research that has investigated sex differences in
motor skill learning and performance has demonstrated a
preferential advantage for males compared with females [47].
Similarly, this study revealed that males tended to perform
better than females on Super G. The estimated effect size
of mean time in target between males and females was
very large, with Cohen d=1.66. This result is consistent with
previous research using Super G, which also found large sex

differences in performance [27]. Several factors may explain
the observed sex differences in Super G performance. One
possible biological explanation [48] may be due to early tau
deposition which has been shown to be elevated in females
compared with males, consistent with the higher risk for
developing AD among females. Thus, a remote and unsuper-
vised motor skill task that is sensitive to sex differences
may aid in the detection of sex-specific changes in behav-
ior due to disease in a scalable way. Moreover, there was
an interaction between sex, verbal learning, and Super G
performance, which suggests that motor skill in males (ie,
Super G performance) may be linked to their verbal learning
to a greater degree than in females. Larger sample sizes are
needed to examine the interactions between sex and other
behavioral variables in the context of AD [49,50].

Several limitations to this study should be acknowledged.
First, the mean time between when the PAL and Super G
was 5 years. Although this is a substantial delay between 2
variables of interest, there was no correlation between PAL
score and this intertest interval. Furthermore, when PAL
was adjusted for this delay, there was no change in the
reported relationship between Super G and PAL regardless
of whether raw or adjusted PAL scores were used as the
dependent variable (Figure S5 in Multimedia Appendix 1).
Thus, the reported result between PAL and Super G appears
robust, even with such a delay between measures. Second,
the study sample was all non-Hispanic White and highly
educated (>80% with at least a college degree), preventing
any analysis of interactions between race or ethnicity and
APOE ε4. Analyses that consider the interaction between race
and carrier status are important, given that the link between
the APOE ε4 allele and the AD is weaker among Black/
African American and Hispanic/Latino individuals despite
their increased risk of developing AD overall [12,51,52]. In
addition, the study sample size was relatively limited due to
our required inclusion criteria, particularly the existence of
APOE genotyping data. As such, future Super G research
will recruit larger and more diverse samples. We plan to
expand the size of this work with future collaborations,
and it is important to note that the MindCrowd cohort
itself has increased in size, in racial and ethnic diversity,
and in the number of individuals in the cohort who have
APOE genotyping data, suggesting a path to addressing this
limitation in the future. Third, we did not collect participant
data on previous video game experience, which may be
a contributing factor to the observed relationship between
Super G performance and sex [53]. Fourth, there is no
defined minimal clinically important difference or clinical
cutoff score for the PAL, making it difficult to determine
the meaningfulness of the observed relationship between
PAL and Super G performance. For example, it cannot be
determined whether the predicted change in PAL of 6.5 points
among males, in relation to TinT performance, is representa-
tive of a meaningful increase or decrease in verbal learn-
ing. Finally, with only an 8.1% response rate in this study
(54 participants completed all trials of Super G out of the
662 contacted), there may be limited generalizability to the
broader MindCrowd cohort or the general public. However,
this response rate is similar to other web-based AD-focused
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cohorts such as the Alzheimer’s Prevention Trials Webstudy
[54], although the participants in this study were not paid to
participate (in contrast to the Alzheimer’s Prevention Trials
Webstudy), were not actively seeking care, and were emailed
only once during the recruitment process. It is noted that these

are the factors that could influence participation rates. Despite
these limitations, this study establishes the proof of concept
that Super G may be a feasible skill-based digital biomarker
of individual AD risk.
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