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Abstract
Background: Consumer wearable devices could, in theory, provide sufficient accelerometer data for measuring the 24-hour
sleep/wake risk factors for dementia that have been identified in prior research. To our knowledge, no prior study in older
adults has demonstrated the feasibility and acceptability of accessing sufficient consumer wearable accelerometer data to
compute 24-hour sleep/wake rhythm measures.
Objective: We aimed to establish the feasibility of characterizing 24-hour sleep/wake rhythm measures using accelerometer
data gathered from the Apple Watch in older adults with and without mild cognitive impairment (MCI), and to examine
correlations of these sleep/wake rhythm measures with neuropsychological test performance.
Methods: Of the 40 adults enrolled (mean [SD] age 67.2 [8.4] years; 72.5% female), 19 had MCI and 21 had no cognitive
disorder (NCD). Participants were provided devices, oriented to the study software (myRhythmWatch or myRW), and asked to
use the system for a week. The primary feasibility outcome was whether participants collected enough data to assess 24-hour
sleep/wake rhythm measures (ie, ≥3 valid continuous days). We extracted standard nonparametric and extended-cosine based
sleep/wake rhythm metrics. Neuropsychological tests gauged immediate and delayed memory (Hopkins Verbal Learning Test)
as well as processing speed and set-shifting (Oral Trails Parts A and B).
Results: All participants meet the primary feasibility outcome of providing sufficient data (≥3 valid days) for sleep/wake
rhythm measures. The mean (SD) recording length was somewhat shorter in the MCI group at 6.6 (1.2) days compared
with the NCD group at 7.2 (0.6) days. Later activity onset times were associated with worse delayed memory performance
(β=−.28). More fragmented rhythms were associated with worse processing speed (β=.40).
Conclusions: Using the Apple Watch-based myRW system to gather raw accelerometer data is feasible in older adults with
and without MCI. Sleep/wake rhythms variables generated from this system correlated with cognitive function, suggesting
future studies can use this approach to evaluate novel, scalable, risk factor characterization and targeted therapy approaches.
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Introduction
Twenty-four-hour sleep/wake characteristics, which are
objectively measurable using accelerometer-containing
devices, are related to both dementia biomarkers and
dementia risk. Prior studies have shown that sleep/wake
rhythm disruption, including fragmentation of 24-hour sleep/
wake rhythms, temporally precedes the incidence of mild
cognitive impairment (MCI) and dementia [1,2]. Even among
adults with normal cognition, rhythm fragmentation correlates
with greater brain amyloid deposition [3,4]. Over time,
24-hour rhythm fragmentation has been associated with
increased risk and faster rates of cognitive decline in people
with MCI and mild-to-moderate dementia [1,5] .

The above-mentioned studies linking sleep/wake rhythm
disruption with cognitive impairment and neurodegenerative
processes in aging raise the potential that accelerometer-based
sleep/wake monitoring may have useful clinical applications.
For example, wearable accelerometers could potentially be
used to identify individuals who have established sleep/wake
risk factors for dementia, assign targeted interventions, and
track sleep/wake patterns throughout clinical trials. Compared
with researcher-focused accelerometer devices, consumer
wearables (which also contain triaxial accelerometers) could
yield more widely scalable, and clinician and user-friendly,
systems for developing and testing potential applications.
Our prior pilot study demonstrated that it is possible to
collect 24-hour accelerometer data from the Apple Watch
and generate standard 24-hour sleep/wake rhythm measures
[6]. However, this prior study was limited to a convenience
sample of young adults.

Prior to studies evaluating the use of consumer wearable-
based sleep/wake monitoring for dementia risk stratification
and targeting prevention approaches, we sought to establish
the feasibility of using a consumer wearable device to assess
24-hour sleep/wake patterns in older adults (including those
with elevated dementia risk by virtue of having a diagnosis
of MCI). Our first aim was therefore to evaluate the feasi-
bility of using the Apple Watch and a software platform
called myRhythmWatch (myRW) to obtain 24-hour acceler-
ometer data assessing sleep/wake rhythms in older adults
with and without MCI. Second, we sought to validate that
the sleep/wake rhythm data collected from this system is
relevant to cognition. To do so, we evaluated if sleep/wake
rhythm variables extracted from this system correlated with
cognitive function similar to prior published studies that used
researcher-focused accelerometer devices.

Methods
Participants and Study Protocol
Participants were identified by referral from either local
studies that adjudicated MCI diagnoses or a local research
recruitment registry that is led by the University of Pittsburgh
Clinical and Translational Science Institute (Pitt+Me). The

inclusion criteria were (1) being 50 years of age or older;
(2) passing the San Diego Brief Assessment of Capacity to
Consent [7] with scores ≥14.5; (3) have a score of >27 on
the Telephone Interview for Cognitive Status (TICS) [8];
(4) having a TICS score of either ≤34 (high-risk group) or
≥39 (no cognitive disorder or NCD); and (5) have a prior
adjudicated diagnosis of MCI (high-risk group) or report-
ing no concerns regarding cognitive decline (ie, NCD). The
exclusion criteria included (1) self-reporting active behavioral
health treatments for insomnia or depression; (2) self-report-
ing of performing the prescribed exercises; and (3) self-repor-
ted use of sleep medications every night or nearly every
night. After explaining the study purpose and procedures,
we obtained verbal consent to screen interested individuals
for eligibility. Of 82 potentially eligible participants who
completed the verbal eligibility screening, 35 were ineligible,
6 refused, and 41 were enrolled. One participant withdrew
after enrollment, resulting in an analytic sample of 40
individuals (19 high-risk (ie, having a low TICS score and
prior MCI diagnosis) and 21 low-risk (ie, having a high TICS
score and no prior MCI diagnosis), as shown in Figure S1 in
Multimedia Appendix 1 (ie, a flow diagram illustrating how
we arrived at our analytic sample).

After completing web-based written informed consent
forms, participants completed baseline procedures and
assessments via Health Insurance Portability and Accounta-
bility Act (HIPPA)-compliant video-conferencing. We sent
participants the following study devices: an Apple Watch
8, iPhone SE 2nd generation with active data plans, and
nonstock 40-Watt charger. After the participants received the
devices, we conducted an additional study visit to instruct
them on logging in and using the myRW application. We
specifically instructed participants that about 20‐30 minutes
of charging a day is sufficient, and asked them to wear the
watch whenever it was not charging for a week.
Ethical Considerations
All study procedures were approved by the Univer-
sity of Pittsburgh Institutional Review Board (identifier:
STUDY22080033). All the participants completed web-based
written informed consent forms
Study Application
The myRW software system, developed by the corresponding
author, extracts triaxial accelerometer data that are recorded
at 50 hertz on the Apple Watch. After bandpass filtering, we
aggregate across axes and into 30-second counts, and transmit
data for storage and further computations on the Amazon
Web Services platform. To encourage data collection, we
depict the amount of data collected per day graphically by
proportionally filling and color coding a star (Figure 1). We
explicitly told participants that sufficient data were required
to “get a star,” that the goal was to get 7 stars in a row,
and we also displayed information on how many days in
a row participants obtained stars (to encourage data collec-
tion “streaks”). Participants received reminders three times
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daily to check in to the application. Other features, including
personal data graphs and sleep/wake metrics, were disabled

for this study to prevent the feedback from potentially altering
the users’ behavior/typical sleep/wake patterns.

Figure 1. Illustrations of the graphic user interface (left) and the amount of accelerometer data collected in the sample (right). The difference in the
mean (SD) recording length between the no cognitive disorder (NCD; 7.2 [0.6]) and mild cognitive impairment (MCI; 6.6 [1.2]) groups is shown
visually in the density plot (P=.04).

Sleep/Wake Measures
Consistent with prior publications using researcher-focused
accelerometers [9-11], we required participants to have
at least 3 valid continuous days of accelerometer data
to consider the recording adequate for processing. Valid
days were defined, consistent with National Sleep Research
Resource data processing standards [12], as those with no
more than 4 hours of nonwear time or any nonwear time
during the main sleep period. Invalid days and remaining data
missing within days were censored (not imputed). Although
we applied this aforementioned 20 hours per day criterion, to
maximize data collection, note that the app was programmed
to reward participants with a green star only if they collected
at least 22 hours of data per day.

Following previously published technical definitions, we
calculated extended cosine-based [13] and nonparametric
[14-17] sleep/wake measures using the R package ‘RAR’ and
custom code. From the extended-cosine models, we extracted
measures of 24-hour robustness (pseudo-F statistic, indicating
how well the observed data fits the 24-hour curve); activity
onset time (up-mesor, the time which the modeled activity
level passes the middle modeled rhythm height prior to the
peak); and activity offset time (down-mesor or the time which
the modeled activity level passes the middle modeled rhythm
height prior to the nadir). From the nonparametric method,
we calculated the cross-daily stability (inter-daily stability,
measuring the consistency of circadian sleep/wake activity
rhythms across days); rhythm strength (relative amplitude,
measuring the standardized peak-trough difference of 24-hour
activity rhythms); and sleep/wake rhythm fragmentation
(intradaily variability or IV, measuring the frequency and
extent of transitions in activity levels). Although sleep/wake
rhythm fragmentation is typically measured using differences

in activity levels every hour, it can also be computed on a
range of timescales [16,17]. For all nonparametric metrics,
we used all-time series data and did not subsample to hourly
activity levels, as described previously [14]. To explore the
relevance of fragmentation timescale, we computed IV values
using numerator timescales ranging from 5 to 60 minutes, but
holding the denominator constant as done previously [16].
Neuropsychological Measures
Cognitive performance was measured using the Hopkins
Verbal Learning Test (HVLT; PAR, Lutz, FL) and the Oral
Trail Making Test (O-TMT).

The HVLT is a verbal list learning measure with three
trials of 12 words from multiple representative semantic
categories, and includes delayed recall and delayed recogni-
tion memory components [18,19]. For the delayed recall,
participants were asked to repeat as many terms as they
could recall from the word listed presented to them thrice, 30
minutes earlier. For delayed memory recognition, participants
were asked to recognize those same terms appearing on a
broader list containing semantically related terms, ie, “horse”
must be differentiated from “dog,” which was not part of the
original term set. The HVLT assessed encoding, storage, and
retrieval of noncontextual verbal information.

Processing speed was measured as the time taken on Part
A of the O-TMT, which requires the subject to verbally
count upwards from 1 to 25 as quickly as they are able [20].
Set-shifting, an aspect of cognitive function, was measured as
the time taken using Part B of the O-TMT, which requires
the subject to alternate between listing numbers and letters in
sequence (“1, A, 2, B,” etc). Note that longer times on both
parts of the O-TMT indicates worse performance [21].
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Statistical Analyses
To compare recording lengths between the MCI and NCD
groups, we used an independent sample t test and density
plots illustrating recording length distributions by groups.
To examine relationships of sleep/wake rhythm measures
with cognitive function, we first adjusted for key confound-
ers by taking the residuals from linear regression models
(one for each cognitive outcome variable) that had the
confounders age, sex, education (college degree vs less
than college degree), and accelerometer recording length
as predictor variables. We used the residualized values as
age, sex, education, and recording length-adjusted cognitive
outcome variables in a series of linear regressions (one
per sleep/wake predictor variable). Since there were many

conceptually similar or highly inter-correlated intradaily
variability metrics, for related analyses, we only report
Benjamini-Hochberg corrected false discovery rates (which
are here referred to as q values instead of P values) [22] to
account for the 12 statistical tests relating intradaily variabil-
ity metrics within each cognitive outcome.

Results
Sample Characteristics
The sample included older adults, with a mean (SD) age of
67.2 (8.4) years; the majority of the participants were females
with college degrees (Table 1).

Table 1. Sample characteristics.
Characteristics Value
Age, years, mean (SD) 67.2 (8.4)
Female sex, n (%) 29 (72.5)
College degree or greater, n (%) 29 (72.5)
Prior diagnosis of MCIa, n (%) 19 (47.5)
Accelerometer recording length, days, mean (SD) 6.9 (0.9)
Immediate memory, mean (SD) 26.7 (5.2)
Delayed memory, mean (SD) 8.7 (2.8)
Processing speed, seconds, mean (SD) 10.3 (2.8)
Set shifting executive function, seconds, mean (SD) 40.1 (31.6)

aMCI: mild cognitive impairment

Accelerometer Recording Lengths in
People With and Without a Diagnosis of
MCI
In both the groups, all participants achieved the minimum
data requirement for computing 24-hour sleep/wake rhythm
assessments. There was, however, a statistically significant
difference in the mean (SD) recording lengths of about a half
a day when comparing the NCD (7.2 [0.6] days) and MCI
groups (6.6 [1.2] days), with the Satterthwaite test assuming
unequal group variances (df 25.033; t value −2.15; P=.04).
This difference was due to 3 individuals in the MCI group
who collected 3‐6 days of data each (Figure 1).
Associations of Sleep/Wake
Characteristics With Cognitive
Performance
As shown in Table 2, there were small effect size associa-
tions of later activity onset time with lower delayed memory

performance (β=−.28, 95% CI −0.55 to ‐0.02; t=−2.17,
df=38, P=.04) and more stable rhythms with better process-
ing speed and performance (β=−0.27, 95% CI: −0.54 to
0.00; t=−2.00, df=38, P=.05). None of the other sleep/wake
measures listed in Table 2 were associated with the cogni-
tive outcomes. Regarding sleep/wake rhythm fragmentation,
greater fragmentation levels in the 40‐60-minute timeframe
was significantly associated with worse processing speed and
performance (Table 3; β point estimate range: 0.36, 0.40;
q=.022). When repeating analyses in the subgroup with at
least 6 days of data, results were not substantively altered
(n=37; see Tables S1 and S2 in Multimedia Appendix 1).

To illustrate the accelerometer data collected in this study
and visualize 24-hour sleep/wake fragmentation, Figure 2
shows data from example participants with lower and higher
degrees of 24-hour sleep/wake rhythm fragmentation.

Table 2. Associations between 24-hour sleep/wake rhythm variables and cognitive performance.

Variable Immediate memorya Delayed memorya Psychomotor speed/attentionb
Set shifting executive
functionb

β (95% CI) P value β (95% CI) P value β (95% CI) P value β (95% CI) P value
24 h robustness .06 (−.22 to .34) .67 .17 (−.11 to 0.44) .22 −.09 (−.38 to .20) .53 −.18 (−.48 to .11) .22
Cross-daily stability .11 (−.17 to .39) .44 .13 (−.14 to .41) .34 −.27 (−.54 to .00) .05 −.11 (−.42 to .19) .45
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Variable Immediate memorya Delayed memorya Psychomotor speed/attentionb
Set shifting executive
functionb

β (95% CI) P value β (95% CI) P value β (95% CI) P value β (95% CI) P value
Rhythm strength .08 (−.21 to .36) .59 .04 (−.23 to .32) .75 −.04 (−.33 to .24) .76 −.12 (−.42 to .18) .43
Activity onset time −.13 (−.41 to .15) .36 −.28 (−.55 to ‐.02) .04 .04 (−.24 to .33) .76 −.11 (−.41 to .19) .46
Activity offset time −.03 (−.32 to .25) .81 −.07 (−.35 to .21) .60 −.12 (−.41 to .16) .40 .17 (−.13 to .47) .26

aHigher scores on the memory tests indicates better performance (as the outcome is number of items recalled)
bFor psychomotor speed/attention and set-shifting, higher scores indicate worse performance (as the outcome is the duration of time to complete Oral
Trails A and B, respectively)

Table 3. Associations between 24-hour sleep/wake rhythm fragmentation on various timescales with cognitive performance.

Time scale Immediate memorya Delayed memorya Psychomotor speed/attentionb
Set shifting executive
functionb

β (95% CI) q value β (95% CI) q value β (95% CI) q value β (95% CI) q value
5 minutes -.10 (−.38 to .18) 0.938 −.01 (−.29 to .27) 0.938 .14 (−.14 to .43) 0.314 .28 (−.01 to .58) 0.092
10 minutes −.10 (−.38 to .18) 0.938 −.02 (−.3 to .26) 0.938 .14 (−.14 to .43) 0.314 .26 (−.03 to .55) 0.102
15 minutes −.10 (−.39 to .18) 0.841 −.05 (−.33 to .23) 0.841 .16 (−.12 to .45) 0.298 .30 (.02 to .59) 0.092
20 minutes −.12 (−.41 to .16) 0.628 −.11 (−.38 to .17) 0.628 .21 (−.07 to .49) 0.203 .34 (.06 to .62) 0.092
25 minutes −.11 (−.40 to .17) 0.628 -.10 (-.38 to .18) 0.628 .20 (−.08 to .48) 0.203 .34 (.06 to .63) 0.092
30 minutes −.11 (−.39 to .17) 0.628 −.11 (−.39 to .16) 0.628 .23 (−.05 to .51) 0.177 .32 (.03 to .61) 0.092
35 minutes −.09 (−.37 to .19) 0.628 −.13 (−.41 to .14) 0.628 .28 (.01 to .55) 0.085 .28 (−.01 to .57) 0.093
40 minutes −.08 (−.36 to .20) 0.628 −.15 (−.42 to .13) 0.628 .37 (.10 to .63) 0.022 .32 (.03 to .60) 0.092
45 minutes -.09 (-.38 to .19) 0.628 −.16 (−.44 to .11) 0.628 .37 (.11 to .63) 0.022 .29 (.00 to .58) 0.092
50 minutes −.11 (−.39 to .17) 0.628 −.18 (−.45 to .09) 0.628 .40 (.14 to .65) 0.022 .25 (−.05 to .54) 0.118
55 minutes −.08 (−.36 to .21) 0.628 −.18 (−.45 to .1) 0.628 .36 (.09 to .62) 0.022 .17 (−.13 to .47) 0.254
60 minutes −.12 (−.40 to .16) 0.628 −.23 (−.50 to .04) 0.628 .36 (.09 to .62) 0.022 .18 (−.12 to .48) 0.250

aHigher scores on the memory tests indicates better performance (as the outcome is number of items recalled).
bFor psychomotor speed/attention and set-shifting, higher scores indicate worse performance (as the outcome is duration of time to complete Oral
Trails A and B, respectively).

Figure 2. Accelerometer data from two participants. Top: The participant was in the low risk (no cognitive disease) group and had relatively
lower sleep/wake rhythm fragmentation. Bottom: The participant is from the high-risk (mild cognitive impairment) group and had relatively higher
sleep/wake rhythm fragmentation.

Discussion
These results demonstrate that it is feasible to collect
raw accelerometer data and characterize 24-hour sleep/wake
rhythms in older adults with and without MCI using the

Apple Watch and myRW system. Each individual in our
sample met the minimum data requirement to derive sleep/
wake rhythms measures. Notably, however, several individ-
uals in the MCI group generated shorter recordings. Thus,
while supporting the feasibility of using the Apple Watch
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and myRW system to assess sleep/wake rhythms in peo-
ple with MCI who are at risk for dementia, our findings
also suggest that some individuals with MCI may require
additional support (eg, additional human support or program-
med reminders) and data imputation [23] to monitor sleep/
wake rhythms over longer periods with this system.

With regard to our second aim, we found that sleep/wake
rhythm variables extracted from the Apple Watch accelerom-
eter data were correlated with cognitive function. We found
small-to-medium effect size correlations between sleep/wake
measures and cognitive performance. Specifically, we found
that later activity onset times were related to worse delayed
memory performances. In addition, less stable and more
fragmented rhythms were correlated with worse processing
speed. Detecting these signs of disrupted sleep/wake rhythms
early on could help target prevention strategies, given prior
research demonstrating that sleep/wake rhythm fragmentation
[1], worse memory [24,25], and slower processing speeds
[26] are all associated with the risk of developing dementia.

The study had several limitations. This was a cross-
sectional observational study limited to accelerometer and
neuropsychological measures, so there is no way to determine
causality or the mechanisms underlying associations between
the variables examined. The sample size was relatively small;
therefore, there is a risk of false negative associations and
effect size estimates (relating sleep/wake measures with
cognition) that should be deemed less reliable than those
from large epidemiologic studies. We failed to detect some
associations that were expected based on prior literature
examining dementia risk (eg, previous findings linking low
rhythm strength with dementia risk [27]). Larger studies
examining the relationships between these sleep/wake factors

and specific domains of cognitive function, earlier in the
disease processes, will be needed to verify our findings.
We made efforts to minimize data loss as described above,
but did not use data imputation, which could be applied in
future studies. Additionally, given the small sample, future
studies will be required to confirm results of using this system
in samples that are more broadly representative, eg, sam-
ples including more ethnically diverse population subgroups.
Finally, we note that determining the mechanism underlying
these relationships between sleep/wake rhythm disruption,
cognition, and dementia risk is outside the scope of this
work. Recent literature has notably suggested that sleep/wake
rhythm fragmentation relates to neurodegeneration of the
locus coeruleus [28], which could hasten dementia pathology
and cognitive decline [29,30].

In summary, we have demonstrated that it is feasible to use
the Apple Watch and myRW system to gather accelerometer
data and characterize sleep/wake risk factors for dementia
in older adults including adults with MCI. A strength of
this study is the use of the Apple Watch, which is already
voluntarily being used by millions of people, as it may
provide increased scalability for applications of sleep/wake
risk factor monitoring into the general public and general
practice settings. One implication of this research is that it is
feasible for future research to be conducted for evaluating if
monitoring sleep/wake disruption using consumer wearable-
based systems improves upon existing dementia risk factor
detection and management approaches. Future studies will
also be needed to examine if tailoring interventions using
information on sleep/wake patterns derived from this system
improves outcomes among older adults who are at risk for
dementia.
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