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Abstract
Background: Disability profoundly affects older adults’ quality of life and imposes considerable burdens on health care
systems in China’s aging society. Timely predictive models are essential for early intervention.
Objective: We aimed to build effective predictive models of disability for early intervention and management in older adults
in China, integrating physical, cognitive, physiological, and psychological factors.
Methods: Data from the China Health and Retirement Longitudinal Study (CHARLS), spanning from 2015 to 2020 and
involving 2450 older individuals initially in good health, were analyzed. The dataset was randomly divided into a training
set with 70% data and a testing set with 30% data. LASSO regression with 10-fold cross-validation identified key predictors,
which were then used to develop an Extreme Gradient Boosting (XGBoost) model. Model performance was evaluated using
receiever operating characteristic curves, calibration curves, and clinical decision and impact curves. Variable contributions
were interpreted using SHapley Additive exPlanations (SHAP) values.
Results: LASSO regression was used to evaluate 36 potential predictors, resulting in a model incorporating 9 key variables:
age, hand grip strength, standing balance, the 5-repetition chair stand test (CS-5), pain, depression, cognition, respiratory
function, and comorbidities. The XGBoost model demonstrated an area under the curve of 0.846 (95% CI 0.825‐0.866) for the
training set and 0.698 (95% CI 0.654‐0.743) for the testing set. Calibration curves demonstrated reliable predictive accuracy,
with mean absolute errors of 0.001 and 0.011 for the training and testing sets, respectively. Clinical decision and impact curves
demonstrated significant utility across risk thresholds. SHAP analysis identified pain, respiratory function, and age as top
predictors, highlighting their substantial roles in disability risk. Hand grip and the CS-5 also significantly influenced the model.
A web-based application was developed for personalized risk assessment and decision-making.
Conclusion: A reliable predictive model for 5-year disability risk in Chinese older adults was developed and validated. This
model enables the identification of high-risk individuals, supports early interventions, and optimizes resource allocation. Future
efforts will focus on updating the model with new CHARLS data and validating it with external datasets.
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Introduction
The aging of the population presents a significant global
challenge, with profound implications for health care systems,

economic stability, and social services [1,2]. In China, where
the older population is rapidly increasing, the prevalence
of disability among older adults has become a pressing
concern. According to the Chinese Centers for Disease
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Control and Prevention, the number of older individuals with
disabilities reached 52.71 million in 2020 and is projected
to exceed 77.65 million by 2030. By 2030, disabled older
adults are expected to account for over 57% of the total
disabled population, potentially rising to more than 70%
by 2050 if no preventive measures are implemented [3].
Disability in older adults encompasses various limitations
or difficulties in performing daily activities independently,
typically due to chronic degenerative changes in function.
It is commonly assessed through activities of daily living
(ADL) and instrumental activities of daily living (IADL).
This growing burden of disability impacts quality of life and
places a significant strain on families and public resources.
Therefore, accurate prediction of disability is crucial for early
intervention and effective management.

Despite significant research efforts to forecast disability in
older adults, existing models often lack sufficient precision
and fail to account for the complex, multifactorial nature
of disability. These models typically overlook the broader
context of risk factors and offer limited utility for public
health decision-making [4-6]. For instance, a study by Sun
et al [5] identified depressive symptoms as a significant
predictor across different types of disability. However, many
existing models still fail to incorporate mental health factors
alongside physical health indicators, limiting their real-world
applicability. Furthermore, cognitive impairment has been
found to be a strong predictor of disability in specific
ADL and IADL tasks [6], highlighting the importance of
integrating mental, cognitive, and physical health factors in
predictive models. Disability, as a complex health issue,
is influenced by multiple risk domains, including chronic
diseases, polypharmacy, aging, mental health problems,
unhealthy lifestyles, and the family social environment. A
comprehensive predictive model should serve as a vital tool
to improve early identification of at-risk individuals, inform
public health strategies, and optimize resource allocation.

This study seeks to address the limitations in exist-
ing research by developing a disability prediction model
specifically designed for the older Chinese population, using
longitudinal data from the China Health and Retirement
Longitudinal Study (CHARLS) collected between 2015 and
2020 [7]. While previous research has developed disability
prediction models based on CHARLS data from 2015 to
2018 [8], the release of the 2020 survey data enables the
extension of the analysis over a longer time frame. This
study will leverage the validated Extreme Gradient Boost-
ing (XGBoost) algorithm [8] to explore disability predic-
tors in greater depth. In addition, by integrating variables
such as sarcopenia and frailty-related indicators, which have
previously been underexplored in predictive models for
disability, we offer a more nuanced understanding of the
physical, cognitive, physiological, and psychological factors
contributing to disability risk. We aim to create a predictive
model that not only offers high precision but also provides
practical insights for health care professionals and policymak-
ers.

Methods
Study Population
The data for this study were sourced from the CHARLS,
initiated in 2011 by the National School of Development at
Peking University. The CHARLS used a stratified, multistage
Probability Proportional to Size random sampling method,
covering 150 counties and 450 villages and urban communi-
ties across 28 provinces, involving 17,708 individuals from
10,257 households. Follow-up surveys were conducted in
2013, 2015, 2018, and 2020, with detailed methodology
available in other publications [7].

Initially, 21,095 participants from the 2015 baseline survey
were included. The final cohort consisted of 2450 individ-
uals after applying the following exclusion criteria: (1) no
information on biomarker or blood data; (2) younger than 60
years (for this study, older adults were defined as individuals
aged 60 years or older, in accordance with the World Health
Organization and the Chinese government’s standard for
aging population classification); (3) missing ADL or IADL
data in 2015; (4) missing follow-up ADL or IADL data in
2020; (5) having ADL and IADL limitations or any form
of disability in 2015, including physical, intellectual, visual,
auditory, or significant speech impairments; and (6) other
relevant data missing.
Ethical Considerations
The Institutional Review Board of Peking University (IRB
No. IRB00001052-11014) approved the research, and all
respondents provided informed consent. CHARLS adheres
to the Declaration of Helsinki and China's Personal Informa-
tion Protection Law. The CHARLS database adheres to strict
privacy protection and anonymization principles during data
collection and processing to ensure the security of partici-
pants' personal information.
Assessment of Disability
Disability in this study was defined as impairment in
performing ADL and IADL, which is commonly used in
geriatric research to evaluate functional limitations in older
adults. ADL assessed the ability to perform fundamental
self-care tasks such as dressing, bathing, eating, getting out
of bed, toileting, and managing urination and bowel move-
ments. IADL measured more complex daily tasks, including
household chores, cooking, shopping, phone use, financial
management, and medication adherence. Responses were
categorized into four levels: (1) no difficulty, (2) difficulty
but can still do it, (3) difficulty and need help, and (4) cannot
do it. To create a binary outcome, responses of (2) “Difficulty
but can still do it,” (3) “Difficulty and need help,” and (4)
“Cannot do it” were coded as 1 (indicating ADL and IADL
disability), while the response “No difficulty” was coded as
0 (no disability). Participants were classified as having ADL
and IADL disabilities if they reported any level of difficulty
(levels 2‐4) in at least one ADL or IADL item [9].
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Predictive Variables

Clinical Factors
Laboratory assessments included a range of biomarkers:
white blood cell count, hemoglobin, hematocrit, triglycer-
ides, total cholesterol, glucose, uric acid, creatinine, blood
urea nitrogen (BUN), high-density lipoprotein cholesterol,
low-density lipoprotein cholesterol, cystatin C, C-reactive
protein, and glycated hemoglobin.

Depressive symptoms were evaluated using the 10-item
Center for Epidemiologic Studies Depression Scale (CES-D)
[10]. CES-D scores ranged from 0 to 30, with higher scores
indicating more severe symptoms. The CES-D has been
validated for Chinese middle-aged and older populations [11].
A score of 10 or above was used to indicate depression, while
scores below 10 indicated no depressive symptoms [12].
Cognitive function was assessed using a modified version of
the telephone interview for cognitive status (TICS) question-
naire [13]. The overall cognitive score was calculated by
summing the scores from four domains: (1) orientation (5
points), (2) computation (5 points), (3) memory (20 points),
and (4) drawing (1 point), with a total possible score of 31
points [14]. Higher scores indicate better cognitive perform-
ance.

Physical Performance
The physical examination included measurements of systolic
and diastolic blood pressure, pulse, and respiratory function.
Respiratory function was measured using a peak flow meter.
Participants were instructed to stand, take a deep breath,
and blow as hard and fast as possible into the mouthpiece.
The highest value from 3 attempts was recorded for analy-
sis. Physical performance was assessed using gait speed, the
5-repetition chair stand test (CS-5), and standing balance.
Gait speed was measured to evaluate lower limb function
and mobility. A walking course of 2.5 meters was set up,
and participants were instructed to walk the course twice at
their usual pace. The average gait speed was calculated by
dividing the distance by the time taken. The 5-repetition CS-5
was conducted to assess lower limb strength and endurance.
Participants were asked to sit in a chair with their arms
folded across their chest and, upon the examiner’s command,
to stand up and sit down 5 times consecutively at their
fastest pace without using their arms for support. The total
time required to complete the 5 repetitions was recorded,
with a longer duration indicating poorer lower limb func-
tion. The standing balance assessment involved maintaining
a standing position for 10 seconds in three distinct foot
placements: (1) side-by-side, (2) semitandem, and (3) full
tandem. Handgrip strength, the primary indicator of muscle
strength, was measured for each participant using a Yuejian
WL-1000 dynamometer (Nantong Yuejian Physical Measure-
ment Instrument Co). Handgrip strength was measured in
both the dominant and nondominant hands, with 2 measure-
ments per hand. The higher value for each hand was recorded,
and the average value for the 2 hands was taken to represent
the handgrip strength. Together, these assessments provided a

comprehensive evaluation of physical function and perform-
ance.

Appendicular skeletal muscle mass (ASM) was estima-
ted using a formula specifically developed for the Chinese
population, which closely corresponds with dual-energy
X-ray absorptiometry measurements [15,16]. The formula
accounts for weight, height, sex (1 for males, 2 for females),
and age as follows:

ASM =0.193× weight (kg) + 0.107 × height (cm) − 4.157
× sex − 0.037 × age − 2.631
Potential Covariates
Covariates for our study were identified from previous
literature and grouped into 2 main categories. The first
included social and lifestyle factors: age, gender, BMI,
marital status, residential area, daily sleep hours, and alcohol
and tobacco use. BMI categories were defined as underweight
(BMI <18.5 kg/m²), normal weight (BMI =18.5‐24 kg/m²),
and overweight (BMI ≥24 kg/m²). The second category
addressed pain, incidents of falling, and number of comor-
bidities (hypertension, dyslipidemia, diabetes, cancer, stroke,
heart disease, lung disease, liver disease, kidney disease,
digestive disease, mental health disorders, memory disorders,
asthma, and arthritis) [14,17]. The comorbidity classification
was based on the CHARLS questionnaire design. Neurolog-
ical disorders, including Parkinson disease and Alzheimer
disease, are included under memory-related diseases.
Statistical Analysis
The preprocessed dataset was split into a training subset
with 70% data and a testing subset with 30% data. Con-
tinuous variables were described using medians and IQR,
with comparisons using the Mann–Whitney U test. Count
variables were expressed as frequencies and percentages and
assessed using the χ2 test. Model development and testing
were performed using the training and testing sets, respec-
tively.

Initial correlation analysis identified potential multicolli-
nearity. Variable selection was conducted exclusively on the
training set using LASSO regression with 10-fold cross-vali-
dation to prevent information leakage and ensure an unbiased
evaluation of model performance. LASSO regression was
chosen over other methods due to its ability to perform
simultaneous variable selection and regularization, reduce
overfitting, and enhance model interpretability. In addition,
ablation experiments were conducted to evaluate the effect of
removing specific features related to sarcopenia and frailty
on model performance. The logloss metric was used to
assess the performance of the models with and without
these features. The selected variables informed the devel-
opment of an XGBoost model, a machine learning algo-
rithm that uses gradient boosting through decision trees to
iteratively minimize prediction errors. For the optimization of
the XGBoost model, hyperparameter tuning was performed
using a grid search approach. Key hyperparameters were
tuned, including the number of boosting rounds (nrounds),
which determines the number of iterations for boosting, and
the maximum tree depth, which controls the complexity
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of each individual tree. The learning rate (eta) was adjus-
ted to control the weight of each update during training.
In addition, the minimum loss reduction (gamma) for tree
splitting, the feature subsampling ratio (colsample_bytree),
and the minimum child weight were optimized to control the
model’s complexity and prevent overfitting. The subsample
ratio (subsample) was also tuned to control the fraction
of training data used in each boosting round. The optimal
parameters were selected based on the lowest logloss value
obtained during cross-validation.

Model performance was assessed using receiver operat-
ing characteristic (ROC) curves and area under the curve
(AUC) values, with higher AUC indicating better discrimi-
nation. Calibration curves evaluated the agreement between
predicted and observed outcomes. Decision curve analysis
(DCA) and clinical impact curves (CIC) aided in determining
optimal application and estimating the model’s impact on
patient management. SHapley Additive exPlanations (SHAP)
values were used to interpret variable importance and model
transparency. Four key SHAP plots were generated: (1) a
summary plot, (2) dependence plot, (3) interaction plot, and

(4) force plot. The model has been deployed on a web-based
platform.

Analyses were conducted with R software (R Foundation
for Statistical Computing), version 4.3.2. A P value <.05 was
considered statistically significant.

Results
Baseline Characteristics
This study assessed a cohort of 2450 older adults initially in
good health. Over a 5-year follow-up period, 610 participants
developed disabilities, resulting in a disability incidence rate
of 24.90%. The dataset was split 7:3, with the training set
consisting of 1715 individuals (427 with disabilities) and the
testing set comprising 735 participants (183 with disabilities).
Baseline characteristics of both sets were detailed in Table
1 and Figure 1. Except for differences in sleep duration and
white blood cell counts, no statistically significant differences
were observed between the 2 groups (P>.05).

Table 1. Baseline characteristics in the training and testing subset.

Variable
Total Training set Testing set

P valueN=2450 N=1715 N=735
Dependent variable, n (%)
  Disability 610 (24.90) 427 (24.90) 183 (24.90) —
  Non-disability 1840 (75.10) 1288 (75.10) 552 (75.10) —
ASM/Ht2 6.89 [5.97-7.59] 6.87 [5.96-7.56] 6.92 [6-7.70] .12
Hand grip (kg) 31 [25-38] 31 [25-38] 31 [24.60-38] .78
Gait speed (m/s) 0.83 [0.69-0.97] 0.83 [0.69-0.97] 0.83 [0.70-0.99] .17
CS-5 (s) 8.78 [7.22-10.60] 8.81 [7.30-10.70] 8.71 [7.08-10.50] .11
Balance 3 [3-3] 3 [3-3] 3 [3-3] .99
Age (year) 65 [62-70] 65 [62-70] 65 [62-70] .70
Sex, n (%) .50
  Male 1393 (56.86) 967 (56.38) 426 (57.96)
  Female 1057 (43.14) 748 (43.62) 309 (42.04)
BMI level, n (%) .14
  Underweight 142 (5.80) 104 (6.06) 38 (5.17)
  Normal weight 1299 (53.02) 926 (54.00) 373 (50.75)
  Overweight 1009 (41.18) 685 (39.94) 324 (44.08)
Marital status, n (%) .21
  Unmarried 417 (17.02) 303 (17.67) 114 (15.51)
  Married 2033 (82.98) 1412 (82.33) 621 (84.49)
Living area, n (%) .59
  Rural 1958 (79.92) 1376 (80.23) 582 (79.18)
  Urban 492 (20.08) 339 (19.77) 153 (20.82)
Education level, n (%) .24
  Illiterate 811 (33.10) 577 (33.64) 234 (31.84)
  Primary school 1062 (43.35) 753 (43.91) 309 (42.04)
  Middle school 388 (15.84) 256 (14.93) 132 (17.96)
  High school and above 189 (7.71) 129 (7.52) 60 (8.16)
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Sleeping, n (%) .04a

  <6 h 699 (28.53) 511 (29.80) 188 (25.58)
  ≥6 h 1751 (71.47) 1204 (70.20) 547 (74.42)
Pain, n (%): .17
  No 1981 (80.86) 1374 (80.12) 607 (82.59)
  Yes 469 (19.14) 341 (19.88) 128 (17.41)
Falldown, n (%) .81
  No 2102 (85.80) 1469 (85.66) 633 (86.12)
  Yes 348 (14.20) 246 (14.34) 102 (13.88)
Smoking, n (%) .35
  No 1497 (61.10) 1037 (60.47) 460 (62.59)
  Yes 953 (38.90) 678 (39.53) 275 (37.41)
Drinking, n (%) .45
  No 1496 (61.06) 1056 (61.57) 440 (59.86)
  Yes 954 (38.94) 659 (38.43) 295 (40.14)
Comorbidities, n (%) .33
  0 1705 (69.59) 1209 (70.50) 496 (67.48)
  1 538 (22.96) 365 (21.28) 173 (23.54)
  ≥2 207 (8.45) 141 (8.22) 66 (8.98)
Depression, n (%) .37
  No 1900 (77.55) 1339 (78.08) 561 (76.33)
  Yes 550 (22.45) 376 (21.92) 174 (23.67)
Cognition 15.00 [12.00-18.00] 15.00 [11.50-18] 16 [12-19] .46
Systolic BPb 129.67 [116.67-143.67] 129.67 [116.33-143.33] 130.33 [118-143.67] .21
Diastolic BP 74.00 [67.33-81.33] 74 [67.33-81.33] 74.33 [67.33-81.83] .71
Pulse 72.3 [66-79.3] 72.67 [66-79.67] 72 [66-79] .53
Respiratory function 280 [203.33-360] 276.67[200-356.67] 280 [213-363.00] .15
WBCc (1000) 5.70 [4.75-6.80] 5.67 [4.72-6.78] 5.90 [4.80-6.90] .01a

HGBd (g/dl) 13.74 [12.66-14.80] 13.70 [12.60-14.80] 13.90 [12.70-14.90] .13
HCTe (%) 41.60 [38.50-45.00] 41.40 [38.40-44.80] 41.90 [38.70-45.20] .19
TGf (mg/dl) 110.62 [81.42-161.95] 109.73 [80.53-161.06] 114.16 [81.42-163.72] .30
CHOg (mg/dl) 182.63 [161-205.79] 183.40 [161.39-206.56] 181.47 [159.85-203.86] .24
GLUh (mg/dl) 97.30 [90.09-108.11] 95.50 [90.09-108.11] 97.30 [90.10-108.11] .46
UAi (mg/dl) 5.00 [4.10-5.90] 5.00 [4.10-5.90] 4.90 [4.10-5.90] .51
CRPj (mg/l) 1.40 [0.80-2.60] 1.40 [0.80-2.70] 1.40 [0.80-2.40] .17
HbA1ck (%) 5.90 [5.60-6.20] 5.90 [5.60-6.20] 5.90 [5.60-6.20] .81
CREAl (mg/dl) 0.81 [0.69-0.93] 0.80 [0.69-0.93] 0.81 [0.70-0.94] .27
BUNm (mg/dl) 15.13 [12.89-18.49] 15.41 [12.89-18.49] 15.13 [12.61-18.49] .37
HDLn (mg/dl) 50.19 [43.24-57.92] 50.19 [43.24-58.30] 50.19 [43.24-57.14] .50
LDLo (mg/dl) 101.93 [84.56-120.85] 102.32 [84.56-121.24] 99.61 [84.17-120.08] .15

aP< .05
bBP: blood pressure.
cWBC: white blood cell.
dHGB: hemoglobin.
eHCT: hematocrit.
fTG: triglycerides.
gCHO: total cholesterol.
hGLU: glucose.
iUA: uric acid.
jCRP: C-reactive protein.
kHbA1c: glycated hemoglobin.
lCREA: creatinine.
mBUN: blood urea nitrogen.
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nHDL: high-density lipoprotein cholesterol.
oLDL: low-density lipoprotein cholesterol.

Figure 1. Flowchart of the data selection. CHARLS: China health and retirement longitudinal study, ADL/IADL: Activities of daily living and
instrumental activities of daily living.

Predictor Selection
Figure 2 represented the interrelations among the continuous
independent variables measured in the study. The matrix
used varying shades of color and circle sizes to illustrate
the magnitude and direction of correlation coefficients. The
analysis revealed significant correlations, such as a nega-
tive association between hand grip and age, and a posi-
tive association between CHO and high-density lipoprotein
(P<.001).

To identify the strongest predictors of disabilities, the
training dataset was normalized to account for different
measurement units across variables. With disability as the
dependent variable, 36 potential predictors were evaluated
using LASSO regression. The compressive variable coeffi-
cient was used to avoid overfitting and improve predictive
accuracy. The parameter λ was selected based on the largest
λ within 1 SD of the minimal binomial deviance to enforce

stricter penalty constraints. The LASSO regression retained 9
predictors with non-zero coefficients (Figure 3): age, hand
grip, standing balance, CS-5, pain, depression, cognition,
respiratory function, and the count of comorbidities.

Following LASSO regression, Table 2 summarizes the
results of the ablation experiments, which evaluates the
impact of removing specific sarcopenia- and frailty-rela-
ted features (hand grip, CS-5, and standing balance) on
model performance. Logloss was used as the primary metric
to evaluate the model’s performance, with lower values
indicating better predictive accuracy. The results showed
that removing these features increased the logloss, with
the most significant increase observed when all 3 fea-
tures were removed simultaneously. These findings suggest
that including sarcopenia-related parameters is crucial for
maintaining the model’s predictive accuracy.
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Figure 2. Correlation matrix of continuous independent variables. *: P<.05; **: P<.01; ***: P<.001. ASM/Ht2: appendicular skeletal muscle
mass and height 2, CS-5: five-repetition chair stand test, Systolic and Diastolic BP: systolic blood pressure, WBC: white blood cell, HGB:
hemoglobin, HCT: hematocrit, TG: triglycerides, CHO: total cholesterol, GLU: glucose, UA: uric acid, CRP: C-reactive protein, HbA1c: glycated
hemoglobin, CREA: creatinine, BUN: blood urea nitrogen, HDL: high-density lipoprotein cholesterol, LDL: low-density lipoprotein cholesterol.
Positive correlations are represented by blue tones, and negative correlations by red tones, with the intensity of the color indicating the strength of the
correlation. Circle size is proportional to the absolute value of the correlation coefficient.

Figure 3. Variable selection via LASSO regression model. (A) Optimal parameter selection in LASSO regression. This plot illustrates the choice of
the optimal λ, displaying log (λ) on the horizontal axis and regression coefficients on the vertical axis. (B) LASSO regression parameter (λ) selection
via binomial deviance plot. Each point represents the model’s deviance at varying log (λ) values, with the vertical dotted line indicating the λ value
that minimizes the binomial deviance.
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Table 2. Performance comparison of ablation experiments on model performance.
Model configuration Logloss Change Number of features
All features (full model) 0.411 0 9
Removing hand grip 0.427 0.016 8
Removing CS-5a 0.421 0.010 8
Removing standing balance 0.413 0.002 8
Removing hand grip, CS-5, and standing balance 0.442 0.031 6

aCS-5: five-repetition chair stand test

Construction and Assessment of the
Predictive Model
Using disability outcomes from 2020 as the dependent
variable and 9 predictors selected through LASSO regres-
sion, a predictive model was constructed using the XGBoost
algorithm. The model’s hyperparameters were optimized
through grid search and cross-validation. The best parame-
ters identified were: nrounds=100, max_depth=3, eta=0.1,
gamma=0.1, colsample_bytree=0.8, min_child_weight=3, and

subsample=0.8. These parameters were used to train the final
XGBoost model, which was then evaluated on the testing
dataset.

The performance of the XGBoost model was evaluated
using ROC curves to assess its discrimination ability. In the
training set, the model achieved an AUC of 0.846 (95% CI
0.825‐0.866), indicating good discrimination (Figure 4A). In
the testing set, the AUC was 0.698 (95% CI 0.654‐0.743),
reflecting moderate predictive accuracy (Figure 4B).

Figure 4. Receiver operating characteristic curves.
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Calibration curves for the training and testing sets assessed
the model’s predictive accuracy. The training set showed a
mean absolute error of 0.001 (Figure 4C), suggesting high
precision, while the testing set had a mean absolute error
of 0.011 (Figure 4D). Both curves closely approximated
the ideal line, confirming the model’s reliable prediction of
disability risk.

Clinical decision analysis demonstrated the effectiveness
of the XGBoost model in predicting disability across different
risk thresholds. In the training set, the DCA showed that using
the XGBoost model to identify high-risk patients provided
a net benefit (Figure 5A). For example, at a chosen risk
threshold of 0.30, applying the model’s predictions would
result in a better net benefit than treating all patients or
treating none, highlighting the model’s clinical utility in
improving decision-making. The testing set also demonstrated
a similar net benefit (Figure 5B), confirming the model’s

robustness and clinical applicability in an independent
dataset.

In both datasets, the “Number high risk” line decreased
steeply with increasing thresholds, indicating fewer indi-
viduals were classified as high-risk under stricter criteria
(Figure 5C and D). In contrast, the “Number high risk
with event” line, representing individuals who experienced
disability, showed a more gradual decline. These trends
highlight the model’s ability to focus predictions on a targeted
group as thresholds increase, demonstrating its utility in
guiding clinical decision-making and optimizing interventions
for those most likely to benefit. For a more comprehen-
sive evaluation of the model’s performance, the specific-
ity, accuracy, positive predictive value (PPV), and negative
predictive value at thresholds of 0.2 and 0.5 are provided in
Multimedia Appendix 1.
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Figure 5. Clinical decision curves and impact curves for XGBoost model. (A) The red line represents the net benefit of the training set. (B) The blue
line represents the net benefit of the testing set. The ’all’ line indicates the benefit when all patients are treated, and the ’none’ line when no patients
are treated. (C-D) The solid lines depict the total number of individuals identified as high risk, and the dashed lines represent those at high risk who
experienced the true event.

SHAP for Model Interpretation
We used SHAP values to assess the influence of each variable
on the 5-year disability risk. Figure 6A ranked predictors by
their mean SHAP values, reflecting their average contribution
to the model’s output. Pain had the highest mean SHAP
value, followed by respiratory function and age, indicat-
ing their strong overall influence on disability prediction.
Figure 6B showed the SHAP value distributions, where

pain, respiratory function, and age exhibited the broadest
ranges, suggesting their dynamic and individualized impact.
Hand grip and CS-5 also significantly influenced the model,
highlighting their importance in predicting physical func-
tion-related disability, while cognition, comorbidities, and
depression showed more consistent contributions. Balance
had the least impact.
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Figure 6. SHAP: SHapley additive exPlanations value interpretation diagram for predicting disability. (A) Variable importance in the predictive
model as measured by SHAP values. (B) SHAP value distribution for predictive model variables. SHAP values for model variables are shown
as violins. The color represents feature value intensity, and the width indicates impact density. (C) Scatter plot matrix of SHAP values for model
predictors. Each plot reveals the influence of a single variable on the model output, with color intensity indicating the magnitude of the feature value.
(D) Individual sample SHAP value analysis for disability risk prediction.

The SHAP summary plot (Figure 6C) provided an overview
of the overall influence of each predictor on the model’s
output, revealing that pain, age, and respiratory function
had the most substantial and wide-ranging influence on the
predicted disability risk. The SHAP dependence plot (Figure
6D) visualized the individualized impact of these predictors
on a single patient’s disability risk profile, offering insights
into the model’s decision-making process at both macro and

micro levels. Together, these plots provided a comprehensive
understanding of the predictors’ contributions to disability
risk prediction.

A web-based calculator [18] enables clinicians to estimate
the 5-year disability probability by entering patient-specific
data [18], aiding in personalized clinical decisions (Figure 7).
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Figure 7. Online calculator for individual disability prediction.

Discussion
Principal Findings and Comparison With
Previous Works
This study constructed an effective 5-year disability
prediction model using baseline data from CHARLS 2015 to
forecast disability occurrence in 2020. The model identi-
fied 9 key predictive variables (pain, respiratory function,
age, handgrip strength, CS-5, cognitive function, depres-
sion, comorbidities, and standing balance) that are closely
associated with disability incidence in Chinese older adults.
Calibration curves demonstrated the model’s strong discrim-
ination and consistency in both training and test sets,
while DCA and CIC highlighted its positive clinical and
social application value. The use of longitudinal data
from CHARLS allowed for a more accurate, data-driven
understanding of aging-related disability trends, leveraging
demographic and health-related variables highly relevant
to the Chinese context. In addition, the inclusion of sar-
copenia and frailty-related diagnostic indicators as predic-
tive variables represents a novel aspect of this research.
These indicators enhance the model’s sensitivity to phys-
ical, cognitive, physiological, and psychological changes
associated with aging that contribute to disability. This model

offers a practical tool for improving disability prevention and
management in older adults.

One notable observation in this study is the difference
in AUC values between the training set (0.846) and the
testing set (0.698). This discrepancy suggests potential
overfitting, where the model may have captured noise or
random fluctuations in the training data that do not general-
ize to unseen data. The observed discrepancy may be due
to the imbalance in the dataset with respect to the outcome
variable (disability status). To address this, we attempted
oversampling to balance the data. However, this approach
increased model complexity by retaining additional statisti-
cally significant predictors, raising concerns about overfit-
ting. As a result, we proceeded with the original dataset
to prioritize model simplicity and reduce overfitting risks.
Although the model’s discriminative performance decreased
in the test set, the overall trends remain robust, providing
valuable insights into disability prediction for older popula-
tions. Moving forward, we plan to conduct external vali-
dation using additional datasets or longitudinal CHARLS
follow-up data to further assess the model’s generalizabil-
ity across diverse settings and time points. We selected the
XGBoost algorithm for modeling based on its demonstrated
ability to handle complex datasets and address class imbal-
ance by assigning higher weights to the minority class [8].
This approach enhances the model’s ability to predict the
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minority class accurately. XGBoost’s advantages over other
algorithms include its superior performance with structured
and unstructured data, its regularization techniques to reduce
overfitting, and its efficiency in training large datasets. In
addition, its gradient boosting framework captures complex
variable interactions, making it more suitable than tradi-
tional linear models. To optimize performance, we used
advanced techniques such as cross-validation and hyperpara-
meter tuning, including a comprehensive grid search over
key parameters. This rigorous process ensured the model was
robust and well-calibrated, improving its predictive perform-
ance. By extending the analysis to the latest 2020 CHARLS
data, this study offers a more comprehensive 5-year predic-
tion window compared with previous work focused on shorter
time frames.

SHAP summary charts clarified the role and importance
of each variable in predicting disability, providing transpar-
ency and interpretability to the model. According to the
SHAP chart, pain, respiratory function, and age were the
top 3 factors in importance, with the wide distribution of
SHAP values. This indicates that changes in these varia-
bles significantly alter the risk of disability. Chronic pain,
particularly lower back and neck pain, is a leading cause of
disability globally, as highlighted by the Global Burden of
Disease Study 2015. These types of pain are major causes of
years lived with disability in many regions, including Latin
America, the Caribbean, most regions of Asia, Oceania, and
sub-Saharan Africa [19]. Chronic pain is closely linked to
functional disability and poor physical performance in the
older, as supported by various studies [20,21]. Respiratory
function declines with age in older people, and respiratory
impairment accounts for 20.7% of all types of disability
[22]. Maximal inspiratory pressure and maximal expiratory
pressure are correlated with hand-grip strength and skeletal
muscle mass index [23,24]. Respiratory sarcopenia, charac-
terized by a decrease in respiratory muscle strength along-
side systemic skeletal muscle with aging [25], can lead
to deterioration in respiratory force generation, adversely
affecting activities of daily living [26]. Overall, respiratory
impairment is prevalent among older individuals and is linked
to physical inactivity and poor performance-based mobility
[27]. Age is an independent risk factor for disability, with
intrinsic capacity and functional ability declining with age.
Disability levels are highest in the oldest patients [28], and
age correlates with increased pain and respiratory impairment.
Older adults are more likely to experience these issues,
further increasing their disability risk [29]. In summary,
higher pain scores, poorer respiratory function, and older age
are associated with a greater risk of disability. Clinically,
this suggests the need for emphasis on pain management and
respiratory exercises in old people, particularly for those with
chronic respiratory diseases.

The concentrated distribution of SHAP values for
handgrip strength, CS-5, and cognitive function indicates
these variables significantly influenced disability prediction.
The ablation experiments further confirmed the impact of
handgrip strength and CS-5 on the model. When these
sarcopenia-related features were removed, the model’s

performance was notably affected, as indicated by a
significant increase in logloss. This finding aligns with
the SHAP analysis results, which showed a wide distribu-
tion of values for these variables. Weak handgrip strength
is identified as a key component of sarcopenia, strongly
associated with subsequent disability and mortality [30].
Reduced handgrip strength and lower extremity strength, as
measured by the CS-5, are strong predictors of functional
impairment, disability, and low health-related quality of life,
significantly increasing the risk of severe disability, frailty,
and other health limitations in older adults [31,32]. Cogni-
tive function is another crucial risk factor for disability.
Studies have shown that cognitive decline is associated with
ADL disability [33], and longitudinal research indicates that
cognitive impairment may precede ADL disability, serving
as a predictor of intermediate and late-stage ADL loss
[34]. Physical and cognitive functions are closely related,
with physical activity enhancing neurogenesis in the adult
brain. Dual-task training, which enhances both cognitive and
physical functions, has shown positive effects on cognitive
function and physical activity in older individuals [35].
In summary, declines in handgrip strength, lower extrem-
ity strength (CS-5), and cognitive function are positively
correlated with an increased risk of disability. This under-
scores the importance of targeted interventions, such as
early muscle strength training for the upper and lower limbs
and cognitive function exercises, to help reduce the risk of
disability.

Although the roles of depression, comorbidities, and
standing balance are less significant in predicting disability,
they still contribute to its progression in the elderly and
remain non-negligible factors. Depression, in particular, is
a common psychological disorder among older adults and
continues to be one of the most prevalent and disabling
biopsychosocial conditions in this population. A Chinese
cross-sectional study provided evidence of the association
between depressive symptoms and ADL disability [36].
There is also a strong association between depression and
physical activity, with significant mental health benefits
gained from being physically active, even at levels below
public health recommendations [37]. This may explain why
depression can affect disability progression through physi-
cal function measures such as handgrip strength and CS-5.
Similarly, comorbidities and standing balance are associated
with disability and are critical factors in the multifactorial
process of disability [38,39]. Comorbidity, the coexistence
of 2 or more chronic diseases in older adults is a well-docu-
mented risk factor for increased mortality, reduced quality
of life, and functional decline, ultimately leading to disabil-
ity [40]. As a consequence of managing multiple chronic
conditions, polypharmacy, defined as the concurrent use
of multiple medications, becomes increasingly common in
older populations [41]. Polypharmacy has been associated
with a higher risk of falls, frailty, cognitive impairment,
and adverse drug interactions, further exacerbating health
deterioration and disability [42]. However, in this study,
medication use was categorized in the CHARLS question-
naire only as Chinese traditional medicine or Western modern
medicine, without detailed data on specific medications. This
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limitation prevented a comprehensive analysis of polyphar-
macy’s impact. The decline in standing balance in older
adults indicates decreased postural control and increased risk
of falls, often seen in populations with sarcopenia and frailty,
which eventually progresses to disability [43]. Overall, these
findings suggest that we should consider the combined effects
of mental health, management of multiple chronic diseases,
and balance function when predicting disability and formulat-
ing prevention strategies.

In our study, we evaluated the treatment benefits of the
model using DCA. Figure 6A shows the net benefit across
different risk thresholds. At low thresholds (<0.2), the net
benefit was high but gradually declined as the threshold
increased, approaching zero around 0.6. The model outper-
formed both all-treatment and no-treatment strategies across
most thresholds, demonstrating its clinical utility. In practice,
selecting an appropriate threshold is critical for clinical
decision-making and resource allocation. A low threshold is
suitable for high-sensitivity scenarios, such as community
screening for early intervention in older adults. A medium
threshold balances sensitivity and specificity, making it ideal
for resource-limited settings where the model can precisely
identify high-risk individuals for targeted interventions. Many
clinicians have used DCA to test various disease prediction
models, such as those for 30-day mortality in MIMIC-III
patients with sepsis-3, major adverse cardiovascular events in
older patients, and hypertension risk in patients with type 2
diabetes mellitus [44-46].
We evaluated the model’s predictive efficacy at different risk
thresholds using CIC. As shown in Figure 6C, at thresh-
olds below 0.2, the model identifies over 500 high-risk
patients, with approximately 200 actual events, resulting in
a high false-positive rate and increased resource consumption.
This range is suitable for early widespread screening when
follow-up resources are available. At thresholds between 0.2
and 0.5, the number of high-risk patients identified aligns
more closely with actual events, balancing sensitivity and
specificity while improving cost-effectiveness. This range
is ideal for resource-limited settings. At thresholds above
0.5, the number of high-risk patients decreases significantly,
nearly matching actual events but potentially missing some
high-risk cases. The CIC provides clinicians with a visual tool
to balance sensitivity and specificity, optimizing disability
prediction and intervention strategies in older adults. CIC
is commonly used to evaluate the predictive accuracy and
clinical value of clinical prediction model for various diseases
[47-49]. However, they are rarely used to evaluate the clinical
usefulness of disability prediction models in older adults.
The 9 variables selected through LASSO regression form a
streamlined yet effective set of predictors that can be easily
integrated into routine clinical practice. Specifically, the
inclusion of sarcopenia and frailty-related features provides

health care professionals with clear and actionable insights
into the ability of older adults to live independently, enabling
timely interventions to prevent disability. By focusing on
these key variables, the model remains interpretable, reducing
the risk of “black-box” complexity in clinical decision-mak-
ing. To facilitate practical application, we developed a
web-based application via the Streamlit platform that uses
these 9 predictors to calculate the 5-year risk of disabil-
ity for individual patients. This user-friendly tool allows
clinicians to input patient-specific data and receive immediate
risk assessments, integrating predictive analytics into clinical
workflows and bridging complex data models with everyday
decision-making. Future applications of this model can aid
healthcare professionals in identifying individuals at high risk
of disability and implementing early, targeted interventions.
This approach has the potential to delay the onset of disability
and improve the quality of life for older individuals.
Limitations
The limitations of this study include the selection of predictor
variables. While the selected predictors are based on the
best available evidence, other important variables, such as
activity intensity, were not included due to high missing
values. In addition, the model generalization and optimization
is a limitation. The model performs well on the internal test
set but lacks external validation due to the unavailability
of a suitable external dataset. We plan to collect data from
multicenter older care communities for external validation to
further improve and optimize the model. As the CHARLS
database updates, the model may need periodic updates
to maintain accuracy and usefulness. Moreover, predicting
long-term disability risk is challenging due to complex time
interactions that may alter the risk trajectory.
Conclusions
Our research incorporates parameters aligned with the
diagnostic criteria for sarcopenia and frailty. These physi-
cal function measures are combined with predictors from
cognitive and psychological health dimensions, recognizing
the complex interplay of physical capability, aging, and
mental health in the development of disability. This approach
enhances the model’s precision and considers the need for the
efficient identification of at-risk individuals and the optimiza-
tion of medical resources in clinical practice. Consequently,
the model provides a highly reliable disability prediction tool
for older patients, health care workers, and policymakers. In
the future, we will adjust the model based on updates to
the CHARLS database to ensure its suitability for the older
population in China. In addition, we will seek appropriate
external databases for validation and promote the model’s
application across different ethnic groups.
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