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Abstract

Background: Alzheimer disease and related dementias (ADRD) exhibit prominent heterogeneity. Identifying clinically meaningful
ADRD subtypes is essential for tailoring treatments to specific patient phenotypes.

Objective: We aimed to use unsupervised learning techniques on electronic health records (EHRs) from memory clinic patients
to identify ADRD subtypes.

Methods: We used pretrained embeddings of non-ADRD diagnosis codes (International Classification of Diseases, Ninth
Revision) and large language model (LLM)–derived embeddings of clinical notes from patient EHRs. Hierarchical clustering of
these embeddings was used to identify ADRD subtypes. Clusters were characterized regarding their demographic and clinical
features.

Results: We analyzed a cohort of 3454 patients with ADRD from a memory clinic at Massachusetts General Hospital, each
with a specialist diagnosis. Clustering pretrained embeddings of the non-ADRD diagnosis codes in patient EHRs revealed the
following 3 patient subtypes: one with skin conditions, another with psychiatric disorders and an earlier age of onset, and a third
with diabetes complications. Similarly, using LLM-derived embeddings of clinical notes, we identified 3 subtypes of patients as
follows: one with psychiatric manifestations and higher prevalence of female participants (prevalence ratio: 1.59), another with
cardiovascular and motor problems and higher prevalence of male participants (prevalence ratio: 1.75), and a third one with

geriatric health disorders. Notably, we observed significant overlap between clusters from both data modalities (χ2
4=89.4; P<.001).

Conclusions: By integrating International Classification of Diseases, Ninth Revision codes and LLM-derived embeddings, our
analysis delineated 2 distinct ADRD subtypes with sex-specific comorbid and clinical presentations, offering insights for potential
precision medicine approaches.

(JMIR Aging 2025;8:e65178) doi: 10.2196/65178
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Introduction

Background
Alzheimer disease (AD) is a neurodegenerative condition which
affects more than 55 million people globally [1], and it is the
seventh leading cause of death in the United States [2]. Despite
its substantial public health burden, AD remains poorly
understood, with limited treatment options available. AD and
related dementias (ADRD) is an umbrella term that refers to
multiple dementing illnesses, including AD, frontotemporal
dementia (FTD), Lewy body dementia (LBD), and vascular
dementia. AD is the most prevalent, accounting for around 60%
to 80% of all dementia [2]. While these diseases have distinct
clinical and neuropathological criteria, there is substantial
overlap in both clinical presentation and autopsy findings at the
individual patient level. For example, AD is clinically
characterized by an amnestic-predominant dementia and
neuropathologically defined by the build-up of amyloid beta
(Aβ) plaques and neurofibrillary tangles formed by
hyperphosphorylated tau protein [3]; however, these lesions are
frequently accompanied by cerebrovascular disease (CVD) [4]
or Lewy body pathology [5], which can influence clinical
presentation. Likewise, LBD is defined by Lewy bodies but is
also associated with plaques and tangles [6], which may
accelerate the rate of cognitive decline [7]. This clinical and
neuropathological heterogeneity limits our ability to target
disease-modifying drugs to each specific neuropathological
lesion. The so-called amyloid hypothesis has prevailed as the
leading explanation of AD disease etiology, where it is held
that Aβ toxicity leads to tau hyperphosphorylation, synaptic
dysfunction, and neurodegeneration [8]. However, treatments
targeting this hypothesis only show limited efficacy, which may
stem in part from the clinical and neuropathological
comorbidities [9], highlighting the need for a tailored approach
to identify potential subtypes of disease and develop more
effective targeted treatments.

Previous approaches to AD subtyping have focused on RNA
expression, as well as brain imaging and cognitive assessments.
Neff et al [10] identified 5 molecular subtypes of AD using
RNA-sequencing signatures, characterized by different
dysregulated pathways related to tau-mediated
neurodegeneration, Aβ neuroinflammation, synaptic signaling,
immune activity, mitochondria organization, and myelination.
The Subtype and Stage Inference algorithm, applied to magnetic
resonance imaging and positron emission tomography imaging
data, identified distinct AD trajectories based on the rate and
sequence of brain atrophy [11] and tau deposition [12].
Cognitive subtypes have also been identified based on memory,
visuospatial and linguistic capabilities, and executive function
[13-15]. These studies were limited to research cohorts with
specific selection criteria, and it is unclear whether these
subtypes can be extended to larger samples.

In contrast, real-world data, such as, electronic health records
(EHRs), provide readily accessible large observational datasets
and have been used for clustering AD or ADRD subtypes [16].
Unsupervised learning approaches on EHR datasets have
revealed latent structure in conditions, such as autism [17,18]

and Parkinson disease [19]. For AD subtyping, EHR-based
approaches have used the International Classification of
Diseases (ICD) or similar diagnostic codes, showing varying
success depending on the methodology and population. Xu et
al [20] used hierarchical clustering on EHR data from patients
with AD, identifying subtypes related to CVD, mental illness,
age of onset, and sensory problems. Alexander et al [21] found
the following 5 patient subtypes: mental health, nontypical AD,
typical AD, CVD, and men with cancer. They later identified
a consistent subtype with early-onset AD, predominantly female
participants, with a faster rate of progression using various
machine learning methods [22]. Landi et al [23] used
unsupervised deep learning to encode EHRs with temporal
information, identifying early-onset AD, later-onset AD with
mild comorbidities, and typical-onset AD with moderate
symptoms. He et al [24] applied spectral clustering to EHRs of
patients with AD, discerning 4 subtypes with significant
demographic, mortality, and medication use differences. Tang
et al [25] analyzed comorbidity patterns in EHRs of patients
with AD, revealing sex-dependent variations. In another study,
Tang et al [26] used EHRs with knowledge networks to predict
AD onset and identify sex-specific genetic markers. These
studies collectively highlight the varied methodologies and
results in EHR-based research, emphasizing the complexity and
potential of these approaches for a deeper understanding of AD.

However, none of these prior studies leveraged the richer
representation of EHR data by embedding full sequences of
clinical text. Transformers have emerged as state-of-the-art
architecture for language modeling and are broadly characterized
by the concept of attention [27]. Attention, named for its
similarity to cognitive attention, enables the sharing of
contextual information among word representations without
directly encoding their sequence. The transformer used in this
work is a version of the Bidirectional Encoder Representations
from Transformers (BERT) architecture [28]. This architecture
consists of an encoder which can be fine-tuned on downstream
applications and domains. Specifically, we use Clinical BERT
[29], which is pretrained on a large corpus of clinical notes from
the critical care database Medical Information Mart for Intensive
Care (MIMIC) [30].

Objectives
In this work, we used both pretrained embeddings of ICD-9
code diagnostic data and transformer-derived embeddings of
clinical notes. This dual approach addresses the limitations of
previous studies by incorporating structured ICD codes, which
allow us to study subtypes of patients with similar ICD codes
(non-ADRD diagnosis in charts), and unstructured clinical notes,
which capture detailed clinical history and manifestations
provided by specialists. By combining these 2 modalities, we
aimed to enhance the clustering of patient ADRD subtypes.

Methods

Cohort Selection Process
Patients were selected from the Massachusetts General Hospital
(MGH) EHR database. The selection criteria included patients
who had at least 2 MGH memory clinic visits (either an
in-person office visit or a video telemedicine visit) from August
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2015 to June 2022, were aged >50 years at their first visit, and
had progress notes of substantial length (≥512 characters). These
criteria were chosen due to the richness of the notes for the
clustering analysis and the high quality of the ADRD diagnosis
from specialists. From the identified patient cohort, 2 datasets
were extracted as follows: one containing structured diagnostic
ICD code data from the patients’ entire medical history and
another consisting of unstructured clinical notes authored by
memory clinic specialists, limited to the most recent visit. We
chose only the most recent visit note because it typically
consolidates the patient’s prior history, thereby reducing
redundancy and providing a focused, up-to-date clinical
snapshot. In addition, the dataset was filtered to exclude patients
who did not have ADRD diagnoses (Multimedia Appendix 1),
as well as those who lacked non-ADRD ICD codes (ie, patients
who only had ADRD ICD codes were excluded).

Ethical Considerations
This study was approved by the Mass General Brigham
Institutional Review Board (protocol 2015P001915), which
granted a waiver of informed consent for secondary analysis of
electronic health data. No participant compensation was
provided. Electronic health data was queried from Epic and
securely stored on servers within the Mass General Brigham
firewall. Access was restricted to authorized study personnel,
in full compliance with institutional privacy and data security
policies.

Embedding Methodology

ICD Codes
Before clustering, it was necessary to derive a patient-level
representation that encoded information relevant to phenotype
in a single vector. While some prior work has relied on one-hot
encoding (where categorical data are converted into binary
vectors) of clinical data to represent patient phenotype, we
leverage existing pretrained embeddings that capture relevant
biomedical semantics in their latent representations of clinical
concepts. In particular, we use a set of 300-dimensional
embeddings for ICD-9 codes, derived from prior work by Choi
et al [31].

For a count-based encoded representation of m ICD-9 codes

across our cohort, P∈ R3454×m, and an embedding matrix,

E∈Rm×300, our design matrix for clustering, X∈ R3454×300, is
given by the following matrix multiplication: X = P · E.

This matrix multiplication sums the non-ADRD ICD
embeddings across a patient record, and the resultant embedding
is directly affected by the number of times each code appears
in a patient’s history. ADRD codes were dropped from the
matrix P to not confound clustering based on structured ADRD
phenotype. A schematic depicting the ICD representation
pipeline is provided in Figure 1A.

Figure 1. Visualization of the clustering pipeline for (A) International Classification of Diseases (ICD) codes and (B) notes. For each subfigure, the
workflow goes from left to right. BERT: Bidirectional Encoder Representations from Transformers.
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Clinical Notes
Clinical notes were encoded using Clinical BERT before
clustering. To derive patient-level representations of clinic notes,
several preprocessing steps were undertaken. First, unwanted
delimiter characters were stripped from patient notes, and notes
were chunked into contiguous sections of up to 1024 characters.
This resulted in a distribution of token numbers of ∼200 to 300
per note following BERT’s WordPiece encoding of input
sequences. After passing through the transformer encoding, we
took the final layer representation averaged over the 12 attention
heads, such that each note was represented by a matrix of
dimension (768, n), corresponding to each of the n input tokens
having a 768-dimensional contextual vector representing it.
Following this encoding, the representation was averaged over
the token dimension to arrive at a single 768-dimensional vector
for the whole note. This was explored using both simple
averaging (arithmetic mean) over the token dimension, as well
as attention-weighted averaging based on row-wise entropy of
the final layer attention matrix. Attention-weighted averaging
was used in patient representations due to the resultant lower
inertia and increased silhouette score on average. A schematic
depicting the note representation pipeline is provided in Figure
1B.

Attention-Weighted Averaging
For a given input sequence of length n, the final layer
representation in a transformer model has an associated

self-attention matrix, A∈ Rn×n. For BERT-based models, n is
≤512 due to the constraint on the length of the context window.

To provide weights for averaging the embedding, E∈ R768×n,
over the token dimension, we compute the row-wise differential
entropy of the attention matrix, given in equation (1).
Differential entropy is the continuous analog of Shannon
entropy, which is usually only defined for discrete random
variables [32]. In particular, the method described in Ebrahimi
et al [33] is used to approximate the differential entropy,
implemented in the Python (Python Software Foundation) library
SciPy version 1.7.3 [34], as the closed-form expression for the
attention distribution for a given row f (x) is not known
analytically from the values of attention sampled. The
differential entropy for a row i is given by

and the corresponding vector h∈ Rn×1 corresponds to the entropy
across every row. From the row-wise entropy, this vector is

softmaxed to obtain the corresponding weights, w ∈ Rn×1, as
follows:

The resultant embedding for a note sequence, N∈ R768×1, is then
given by the matrix multiplication as follows:

and the final patient-level representation is the simple average
over all note fragments for a given patient, for their most recent

encounter. A visualization of attention matrices with varying
row-wise entropy and thus varying weighting per token is
provided in Figures S1 and S2 in Multimedia Appendix 2.

Hierarchical Clustering
Clustering analysis was performed on ICD-9 embeddings and
clinical text representations to identify ADRD subtypes. We
selected hierarchical agglomerative clustering with Ward linkage
due to its ability to capture the hierarchical structure of clinical
data, as seen in ICD-9 codes (eg, metabolic disorders branching
into type 1 and type 2 diabetes) and clinical notes (eg, cognitive
impairment branching into memory loss and aphasia). Cluster
quality was evaluated using elbow plots and silhouette scores,
with implementation via Scikit-learn v1.0.1 [35].

Optimal Transport
To address provider-specific effects in embeddings of clinical
notes, we first applied Uniform Manifold Approximation and
Projection (UMAP) to reduce the dimensionality of the data
and then applied the earth mover distance transport approach
using the Python Optimal Transport package [36]. Optimal
Transport provides a mathematical framework to minimize the
cost of transforming one distribution into another, which can
address the problem of domain adaptation [37]. Domain
adaptation involves adjusting data from different sources to
make their data distributions more comparable, ensuring that
models trained on these data perform well across various
settings. In this context, the earth mover distance method was
used to align the embeddings from various providers to a
standard reference. This alignment ensured that the subsequent
clustering analysis was less skewed by provider-related
differences, allowing a more accurate interpretation of the
underlying phenotypic variation.

Enrichment Analysis: ICD Clusters
ICD clusters were phenotypically characterized by testing for
enrichment of ICD-9 codes within each cluster. For each cluster,
a 2×2 contingency table was generated for each ICD-9 diagnosis
code, comparing counts of patients with that code within cluster
to counts of patients with that same code in other clusters. A
chi-square test for enrichment was performed; the prevalence
ratio (PR), calculated as the prevalence of each code in one
cluster divided by its prevalence in the rest, was calculated to
measure the strength of the association. A Bonferroni correction
was applied to the resultant P values to correct for multiple
comparisons, and ICD codes in each cluster were ranked by
corrected P value to characterize the most significant
enrichments. All P values in this investigation were two-sided,
with a postcorrected α of 0.05 to determine significance. The
top-10 significant diagnoses with the highest PR were extracted
from each cluster for interpretation. If a cluster lacked significant
diagnoses, the top diagnoses with the highest PR among the
nonsignificant ones were selected. The enrichment analyses
were conducted in Python version 3.8.15.

Topic Modeling: Note Clusters
We used BERTopic [38], using the Python package BERTopic
v0.16.0, to identify representative topics and key terms within
each note cluster. Embeddings obtained through optimal
transport were directly used for clustering and topic assignment,
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bypassing the need for additional embedding and dimensionality
reduction steps. Before conducting cluster-based term
frequency–inverse document frequency (TF-IDF) for topic
assignment, the clinical text was preprocessed using a vectorizer
to remove stop words and exclude common terms that appeared
too frequently across most notes. Furthermore, to fine-tune and
enhance the word representation of topics, we applied the
KeyBERTInspired model, which extracts keywords by
leveraging embeddings and cosine similarity to find the words
with the closest semantic relationship to the note texts, thereby
making them more representative of the topics. Following the
extraction of representative terms within each cluster, we used
GPT-4 (OpenAI) [39], a state-of-the-art large language model
(LLM), to enhance interpretability. GPT-4 summarized the
representative words provided by BERTopic into coherent
themes with greater clinical significance, such as specific
medical conditions, treatments, and medications. The PR,
calculated as the prevalence of each word in one cluster divided
by its prevalence in the rest, was calculated to measure the
strength of the semantic relationship. The BERTopic modeling
and analyses were conducted in Python version 3.9.6.

ADRD Diagnosis Categorization
The categorization of ADRD diagnoses was conducted using
an extensive list of diagnostic names based on disease etiology.
This list was meticulously reviewed for each unique diagnosis
name recorded for the MGH memory clinic patients in the EHR
system. The ADRD diagnoses categories included AD; dementia
unspecified; FTD; LBD; vascular cognitive impairment (VCI);
and others, such as posterior cortical atrophy (PCA), progressive
supranuclear palsy, corticobasal degeneration, and primary
progressive aphasia. An expert behavioral neurologist (JRD)
provided critical input during this process, helping to develop
a comprehensive mapping list that correlates specific diagnosis
names with their corresponding ADRD categories. The
application of this mapping to the data was performed using R
version 4.3.2 (R Foundation for Statistical Computing). The
full list of diagnosis names corresponding to ADRD diagnosis
categories is provided in Multimedia Appendix 1.

Cluster Characterizations
To assess associations between clusters and sex, as well as
ADRD diagnoses, we used the chi-square test. For each cluster,
a 2×2 contingency table was generated for each variable,
comparing the counts of patients with the characteristic within
the cluster to those in other clusters. The PR, defined as the
prevalence of a characteristic in one cluster divided by its
prevalence in the remaining clusters, was calculated to measure
the strength of the association: 1 indicates no difference in
prevalence between the 2 groups, >1 indicates higher prevalence
in the first group, and <1 indicates lower prevalence in the first
group. In addition, to examine variations in the age of onset
across clusters, we initially conducted a Kruskal-Wallis Rank

Sum Test using the stats package from R. η2 (calculated by
subtracting the number of groups from the Kruskal-Wallis H
statistic plus one, and then dividing this result by the total
number of observations minus the number of groups) based on
the H statistic was reported as the effect size: values closer to
0 indicate a smaller effect and values closer to 1 indicate a larger
effect. Following significant findings, further post hoc analyses
using the Dunn test were performed to delineate differences
between groups. The P values were adjusted for multiple
comparisons using the Benjamini-Hochberg method to control
the false discovery rate (FDR). Age-of-onset data were
rigorously annotated by human experts reviewing clinical notes;
where notes did not specify an exact age of onset, the age at the
first clinical visit within the memory clinic was used as an
approximation. Finally, we conducted a chi-square test between
ICD clusters and note clusters to test whether patient cluster
assignment was consistent across note and ICD representations.
If the contingency table was larger than 2×2, Cramér V
(calculated as the square root of the chi-square statistic divided
by the product of the sample size and the minimum dimension
minus one) was reported as the effect size: 0 indicates no
association and 1 indicates a strong association. Standardized
residuals (standardized differences between the observed count
and the expected count) were reported for each cell: values close
to 0 indicate the observed count is close to the expected count,
positive values indicate the observed count is higher than
expected, and negative values indicate the observed count is
lower than expected. All statistical analyses were conducted in
R version 4.3.2.

Results

Study Population
Our final study population consisted of 3454 patients from the
MGH tertiary care memory clinic with clinical notes and ICD
codes in the EHR system. The average age of onset for patients
was 72.1 (SD 9.5) years, with 1678 (48.58%) being female. The
majority were White (n=3059, 88.56%), followed by Asian
(n=90, 2.61%), Black or African American (n=77, 2.23%),
American Indian or Alaska Native (n=4, 0.12%), and Native
Hawaiian or Other Pacific Islander (n=1, 0.03%). In addition,
103 (2.98%) identified as belonging to other races, and race
data were not available for 120 (3.47%) patients. Regarding
ethnicity, 3020 (87.43%) identified as non-Hispanic, 106
(3.07%) as Hispanic, and ethnicity data were not available for
328 (9.5%) patients. AD was the most prevalent diagnosis,
affecting 1317 (38.13%) patients, followed by dementia
unspecified, which accounted for 1101 (31.88%) patients. Each
encounter recorded only one diagnosis name, and only the most
recent encounter was used. The patient selection details are
illustrated in Figure 2. The demographic and ADRD diagnosis
breakdowns are provided in Table 1 and ADRD categorization
details are provided in Multimedia Appendix 1.
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Figure 2. CONSORT (Consolidated Standards of Reporting Trials) diagram illustrating the selection of patients from the Massachusetts General
Hospital (MGH) electronic health record (EHR) system. ADRD: Alzheimer disease and related dementias; Dx: diagnosis; ICD: International Classification
of Diseases.

Table 1. Summary statistics of the final study population.

Othere

(n=489)
VCId (n=96)LBDc

(n=261)
FTDb (n=190)Dementia unspec-

ified (n=1101)
ADa (n=1317)Total (N=3454)Characteristics

65.1 (9.4)76 (7.7)71.4 (7.7)63.8 (8.2)73.3 (9.7)74.6 (7.8)72.1 (9.5)Age of onsetf (y), mean (SD)

Sex, n (%)

240 (49.1)41 (43)64 (24.5)78 (41.1)538 (48.86)717 (54.44)1678 (48.58)Female

249 (50.9)55 (57)197 (75.5)112 (58.9)563 (51.14)600 (45.56)1776 (51.42)Male

Race, n (%)

447 (91.4)80 (83)227 (87.0)168 (88.4)988 (89.74)1149 (87.24)3059 (88.56)White

9 (1.8)9 (9)4 (1.5)6 (3.2)22 (2.00)27 (2.05)77 (2.23)Black or African American

4 (0.8)1 (1)14 (5.4)6 (3.2)31 (2.82)34 (2.58)90 (2.61)Asian

1 (0.2)0 (0)0 (0.0)0 (0.0)1 (0.09)2 (0.15)4 (0.12)American Indian or Alaska
Native

0 (0)0 (0)0 (0)0 (0)0 (0)1 (0.08)1 (0.03)Native Hawaiian or Other
Pacific Islander

12 (2.5)3 (3)2 (0.8)2 (1.1)32 (2.91)52 (3.95)103 (2.98)Other

16 (3.3)3 (3)14 (5.4)8 (4.2)27 (2.45)52 (3.95)120 (3.47)Unavailable

Ethnicity, n (%)

428 (87.5)83 (87)228 (87.4)161 (84.7)987 (89.65)1133 (86.03)3020 (87.43)Not Hispanic or Latino

8 (1.6)3 (3)3 (1.1)2 (1.1)37 (3.36)53 (4.02)106 (3.07)Hispanic or Latino

53 (10.8)10 (10)30 (11.5)27 (14.2)77 (6.99)131 (9.95)328 (9.50)Unavailable

aAD: Alzheimer disease.
bFTD: frontotemporal dementia.
cLBD: Lewy body dementia.
dVCI: vascular cognitive impairment.
eIncludes posterior cortical atrophy, progressive supranuclear palsy, corticobasal degeneration, and primary progressive aphasia.
fAge of onset was manually annotated by experts viewing clinical notes; for notes without age of onset, we approximated with the age of first encounter.
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ICD Clustering
To investigate the clinical heterogeneity within ADRD, we
clustered the embeddings of non-ADRD ICD codes assigned
to this tertiary care sample from the MGH ADRD cohort. We
hypothesized that this approach would reveal distinct clinical
subtypes based on clinical comorbidities, which were associated
with demographics (ie, age of onset and sex). The hierarchical
agglomerative clustering method revealed 3 distinct clusters in

the embeddings of non-ADRD ICD codes, as determined by
the silhouette score. Figure 3A depicts a heatmap of enriched
ICD codes across each cluster, and a 2D UMAP projection of
these ICD code embeddings, colored by cluster, is displayed in
Figure 4A. The distribution of patients across the clusters was
as follows: cluster 1 included 1501 (43.46%) patients, cluster
2 included 1597 (46.24%) patients, and cluster 3 included 356
(10.31%) patients. Detailed summary statistics for these clusters
are presented in Table 2.

Figure 3. Heatmap of enrichment in International Classification of Diseases (ICD) clusters and topics in note clusters. (A) This heatmap displays the
enrichment of ICD-9 codes across ICD embedding clusters. Cluster 1 is primarily dominated by skin-related and certain cardiovascular conditions.
Cluster 2 is marked by its exclusive and high prevalence ratios (PR) in psychiatric and behavioral conditions. Cluster 3 shows a diverse set of conditions
with a significant prevalence of respiratory, pain-related, and complicated diabetic mellitus. (B) This heatmap displays representative words for each
note cluster identified through topic modeling. Cluster 1 is primarily dominated by psychiatric manifestations and medications. Cluster 2 highlights
cardiovascular, motor, and sensory issues. Cluster 3 covers a variety of symptoms and conditions, including autoimmune issues, behavioral and movement
disorders, sleep disturbances, etc. In both (A) and (B), the color intensity of each code or word-cluster pairing reflects the PR (prevalence of code or
word in observed group divided by prevalence in other groups) associated with that code or word. Words colored as exclusive were only present in one
cluster.
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Figure 4. Clustering of International Classification of Diseases (ICD) embeddings and their demographic and diagnostic associations. (A) Uniform
Manifold Approximation and Projection (UMAP) visualization of ICD embeddings were characterized by 3 clusters: cluster 1 includes 1501 (43.5%)
patients, cluster 2 comprises 1597 (46.2%) patients, and cluster 3 contains 356 (10.3%) patients. (B) Bar plot showing prevalence for sex by cluster,
significance based on a chi-square test. Notably, cluster 3 has a significantly higher proportion of female participants compared to male participants
(PFDR=.009). (C) Violin plot illustrating the distribution of age of onset across clusters. Each violin plot shows the kernel density estimate of the data,
with the center line representing the median age of onset. Box plot elements are overlaid, where the box limits indicate the upper and lower quartiles,
and the whiskers extend to 1.5 times the IQR. Individual points are hidden for clarity. Significant differences are observed, with cluster 2 showing the
earliest average age of onset at 69.8 (SD 9.6) years, and cluster 3 the latest at 75.5 (SD 8.1) years (P<.001). (D) Heatmap showing prevalence ratio for
Alzheimer disease and related dementias (ADRD) diagnoses across clusters, significance derived from a chi-squared test. Clinical diagnoses include
Alzheimer disease (AD); dementia unspecified; frontotemporal dementia (FTD); Lewy body dementia (LBD); vascular cognitive impairment (VCI);
and others such as posterior cortical atrophy (PCA), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and primary progressive
aphasia (PPA). Significant distribution variations are evident across clusters. The circle size, color, and number indicate the magnitude of the prevalence
ratio. Blue indicates underrepresentation while red indicates overrepresentation. P values were corrected with false discovery rate adjustments.

We examined differences in non-ADRD ICD code frequency
across patient ICD embedding clusters (Figure 3A). In cluster

1, diagnoses, such as seborrheic keratoses (χ2
1=243.15;

PFDR<.001; PR=3.32), actinic keratosis (χ2
1=236.53; PFDR<.001;

PR=3.91), pure hypercholesterolemia (χ2
1=199.13; PFDR<.001;

PR=2.71), history of basal cell cancer (χ2
1=196.22; PFDR<.001;

PR=4.45), and nevus (χ2
1=184.53; PFDR<.001; PR=4.23), show

notably high PRs. These diagnoses largely fall into skin-related
disorders (such as various types of skin cancer and keratoses).
Cluster 2 appears to be unique, with top PRs noted only for

clinical signs, such as disinhibition behavior (χ2
1=1.14;

PFDR=.99; PR=4.65), alexia (χ2
1=0.426; PFDR=.99; PR=3.49),

and orofacial dyskinesia (χ2
1=0.017; PFDR=.99; PR=2.33),

suggesting behavioral and psychiatric manifestations which are
consistent with the FTD enrichment and earlier onset noted
above. Notably, although these diagnoses did not reach

significance in cluster 2, they were absent in the other clusters.
Moreover, many diagnoses in cluster 2 were marked with a lack
of PR, indicating a lower relevance of these diagnoses compared
to clusters 1 or 3. Cluster 3 exhibited significant increases in
diagnoses from a variety of categories, including respiratory

issues (eg, cough: χ2
1=339.47; PFDR<.001; PR=3.77 and

shortness of breath: χ2
1=306.60; PFDR<.001; PR=6.03), chronic

pain (χ2
1=460.55; PFDR<.001; PR=4.80), musculoskeletal

problems (eg, bilateral low back pain without sciatica:

χ2
1=456.91; PFDR<.001; PR=4.80 and foot pain: χ2

1=372.91;
PFDR<.001; PR=3.86), and complications of diabetes mellitus.
Notably, diabetes mellitus (type 2 with autonomic neuropathy:

χ2
1=322.98; PFDR<.001; PR=11.60 and insulin-dependent

diabetes: χ2
1=308.96; PFDR<.001; PR=11.30) had exceptionally

high PRs, suggesting a very strong association with these severe
diabetes conditions in cluster 3.
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Table 2. Summary statistics of International Classification of Diseases clusters.

Cluster 3 (n=356)Cluster 2 (n=1597)Cluster 1 (n=1501)Total (N=3454)Characteristics

75.5 (8.1)69.8 (9.6)73.6 (9.1)72.1 (9.5)Age of onseta (y), mean (SD)

Sex, n (%)

200 (56.2)769 (48.15)709 (47.24)1678 (48.58)Female

156 (43.8)828 (51.85)792 (52.76)1776 (51.42)Male

Race, n (%)

303 (85.1)1421 (88.98)1335 (88.94)3059 (88.56)White

15 (4.2)25 (1.57)37 (2.47)77 (2.23)Black or African American

10 (2.8)40 (2.5)40 (2.66)90 (2.61)Asian

2 (0.6)2 (0.13)0 (0)4 (0.12)American Indian or Alaska Native

0 (0)1 (0.06)0 (0)1 (0.03)Native Hawaiian or Other Pacific Islander

18 (5.1)34 (2.13)51 (3.4)103 (2.98)Other

8 (2.2)74 (4.63)38 (2.53)120 (3.47)Unavailable

Ethnicity, n (%)

336 (94.4)1326 (83.03)1358 (90.47)3020 (87.43)Not Hispanic or Latino

19 (5.3)42 (2.63)45 (3)106 (3.07)Hispanic or Latino

1 (0.3)229 (14.34)98 (6.53)328 (9.5)Unavailable

ADRD Dxb, n (%)

97 (27.2)636 (39.82)584 (38.91)1317 (38.13)ADc

173 (48.6)388 (24.3)540 (35.98)1101 (31.88)Dementia unspecified

5 (1.4)121 (7.58)64 (4.26)190 (5.5)FTDd

23 (6.5)127 (7.95)111 (7.4)261 (7.56)LBDe

19 (5.3)33 (2.07)44 (2.93)96 (2.78)VCIf

39 (11)292 (18.28)158 (10.53)489 (14.16)Otherg

aAge of onset was manually annotated by experts viewing clinical notes; for notes without age of onset, we approximated with the age of first encounter.
bDx: diagnosis.
cAD: Alzheimer disease.
dFTD: frontotemporal dementia.
eLBD: Lewy body dementia.
fVCI: vascular cognitive impairment.
gIncludes posterior cortical atrophy, progressive supranuclear palsy, corticobasal degeneration, and primary progressive aphasia.

Furthermore, statistical analyses revealed significant associations
between ICD cluster membership, demographic variables, and
diagnostic categories. Cluster 3 had an overrepresentation of

female participants relative to clusters 1 and 2 (χ2
1=8.8;

PFDR=.009; PR=1.178); however, clusters 1 and 2 showed no

significant differences in sex distribution (cluster 1: χ2
1=1.8;

PFDR=.26 and cluster 2: χ2
1=0.2; PFDR=.66; Figure 4B). In

addition, the age of onset varied significantly among the ICD

clusters (Kruskal-Wallis χ2
2=182.6; PFDR<.001, η2=0.052).

Cluster 2, with a mean age of onset of 69.8 (SD 9.6) years, had
a significantly earlier age of onset compared with clusters 1
(Z=10.13; PFDR<.001) and 3 (Z=−8.83; PFDR<.001). Moreover,
cluster 1 (mean 73.6, SD 9.1 years) had an earlier onset than

cluster 3 (mean 75.5, SD 8.1 years; Z=−2.61; PFDR=.009; Figure
4C). Cluster 1 was significantly enriched by dementia

unspecified (χ2
1=20.2;   FDR<.001; PR=1.252); cluster 2 was

significantly enriched by FTD (χ2
1=23.9;   FDR<.001; PR=2.039)

and other rare ADRDs (χ2
1=41;   FDR <.001; PR=1.724); and

cluster 3 was significantly enriched by VCI (χ2
1=8.6;   FDR=.007;

PR=2.147) and dementia unspecified (χ2
1=50.2;   FDR<.001;

PR=1.622). In contrast, no cluster was significantly enriched
by AD, though AD was significantly underrepresented in cluster

3 (cluster 1: χ2
1=0.6;   FDR=.53; cluster 2: χ2

1=3.5;   FDR=.09;

and cluster 3: χ2
1=19.4;   FDR<.001; Figure 4D) or LBD (cluster

1: χ2
1=0.1;   FDR=.80; cluster 2: χ2

1=0.5;   FDR=.53; and cluster
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3: χ2
1=0.5;   FDR=.53; Figure 4D). Additional visualizations of

the UMAP projections colored by sex, age of onset, and ADRD
diagnoses are available in Figures S3A, S3B, and S3C,
respectively, in Multimedia Appendix 2.

Note Clustering
Initially, a provider effect was detected in the UMAP projection
of note embeddings from the latest clinical notes of 3454
patients (Figure S4A in Multimedia Appendix 2). To address
this, we used an optimal transport method, aligning the

embeddings from all providers to the 2D embedding of a
selected reference provider (Figure S4B in Multimedia Appendix
2). Following this alignment, hierarchical agglomerative
clustering was applied to the adjusted note embeddings,
revealing 3 distinct clusters, as determined by the silhouette
score. The adjusted UMAP projection, color coded by cluster,
is presented in Figure 5A. The patient distribution within these
clusters was as follows: cluster 1 included 1280 (37.06%)
patients, cluster 2 included 1161 (33.61%) patients, and cluster
3 included 1013 (29.33%) patients. Detailed summary statistics
for each cluster are outlined in Table 3.

Figure 5. Clustering of note embeddings and their demographic and Alzheimer disease and related dementias (ADRD) diagnosis associations. (A)
Uniform Manifold Approximation and Projection (UMAP) visualization of note embeddings characterized by 3 clusters: cluster 1 includes 1280 (37.1%)
patients, cluster 2 includes 1161 (33.6%) patients, and cluster 3 includes 1013 (29.3%) patients. (B) Bar plot showing prevalence for sex by cluster,
with significance based on chi-square tests. Notably, cluster 1 and cluster 3 were both enriched by female participants (P<.001) while cluster 2 was
enriched by male participants (P<.001). (C) Violin plot illustrating the distribution of age of onset across clusters. Each violin plot shows the kernel
density estimate of the data, with the center line representing the median age of onset. Box plot elements are overlaid, where the box limits indicate the
upper and lower quartiles, and the whiskers extend to 1.5 times the IQR. Individual points are hidden for clarity. Significant differences are observed,
with cluster 2 showing the latest average age of onset at 72.8 (SD 9.2) years, and cluster 1 the earliest at 71.5 (SD 9.3) years (P<.001). (D) Heatmap
showing prevalence ratio for ADRD diagnoses across clusters, with significance derived from a chi-square test. Diagnoses include Alzheimer disease
(AD); dementia unspecified; frontotemporal dementia (FTD); Lewy body dementia (LBD); vascular cognitive impairment (VCI); and others such as
posterior cortical atrophy (PCA), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and primary progressive aphasia (PPA). No
significant distribution variations are observed across clusters (P>.05). The circle size, color, and number indicate the magnitude of the prevalence ratio.
Blue indicates underrepresentation while red indicates overrepresentation. P values were corrected with false discovery rate (FDR) adjustments.
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Table 3. Summary statistics of note clusters.

Cluster 3 (n=1013)Cluster 2 (n=1161)Cluster 1 (n=1280)Total (N=3454)Characteristics

71.9 (9.8)72.8 (9.2)71.5 (9.3)72.1 (9.5)Age of onseta (y), mean (SD)

Sex, n (%)

539 (53.21)327 (28.17)812 (63.44)1678 (48.58)Female

474 (46.79)834 (71.83)468 (36.56)1776 (51.42)Male

Race, n (%)

898 (88.56)1032 (88.89)1129 (88.20)3059 (88.56)White

21 (2.07)26 (2.24)30 (2.34)77 (2.23)Black or African American

29 (2.86)25 (2.15)36 (2.81)90 (2.61)Asian

2 (0.2)1 (0.09)1 (0.08)4 (0.12)American Indian or Alaska Native

1 (0.1)0 (0)0 (0)1 (0.03)Native Hawaiian or Other Pacific Islander

25 (2.47)44 (3.79)34 (2.66)103 (2.98)Other

37 (3.65)33 (2.84)50 (3.91)120 (3.47)Unavailable

Ethnicity, n (%)

888 (87.66)1004 (86.48)1128 (88.13)3020 (87.43)Not Hispanic or Latino

31 (3.06)39 (3.36)36 (2.81)106 (3.07)Hispanic or Latino

94 (9.28)118 (10.16)116 (9.06)328 (9.5)Unavailable

ADRD Dxb, n (%)

363 (35.83)435 (37.47)519 (40.55)1317 (38.13)ADc

331 (32.68)381 (32.82)389 (30.39)1101 (31.88)Dementia unspecified

56 (5.53)65 (5.6)69 (5.39)190 (5.5)FTDd

76 (7.5)104 (8.96)81 (6.33)261 (7.56)LBDe

20 (1.97)40 (3.45)36 (2.81)96 (2.78)VCIf

167 (16.49)136 (11.71)186 (14.53)489 (14.16)Otherg

aAge of onset was manually annotated by experts viewing clinical notes; for notes without age of onset, we approximated with the age of first encounter.
bDx: diagnosis.
cAD: Alzheimer disease.
dFTD: frontotemporal dementia.
eLBD: Lewy body dementia.
fVCI: vascular cognitive impairment.
gIncludes posterior.

We extracted common topics from each note cluster using topic
modeling and examined the distribution of ADRD diagnoses
across these clusters. In cluster 1, we found more terms related
to psychiatric manifestations (eg, compulsive, indifference, and
anxiety) and medications (eg, clozaril, trazodone, and sertraline),
with a slight but nonsignificant enrichment in AD diagnosis

(χ2
1=4.9; PFDR=.14; PR=1.10). Cluster 2 had more terms related

to cardiovascular issues (eg, pacemaker, hypotension, and
arrhythmia) and motor and sensory issues (eg, slurring, cochlear,
and tremors), with a slight but nonsignificant enrichment in

LBD (χ2
1=4.6; PFDR=.14; PR=1.31) and VCI (χ2

1=2.5; PFDR=.25;
PR=1.41) diagnoses. Cluster 3 encompassed a wide variety of
symptoms and conditions common in geriatric populations,
including autoimmune (eg, scleroderma and vasculitis),
behavioral changes and movement (eg, usual jocular behavior

and imbalance, dysphagia), sleep (eg, insomnia), and sensory
(eg, diplopia) problems, with a slight but not-significant

enrichment in rare ADRD diagnoses (χ2
1=3; PFDR=.12;

PR=1.25). Figure 3B depicts the list of representative words
from each cluster and their PR, and Figure S5D in Multimedia
Appendix 2 illustrates sentence examples from each cluster.

Furthermore, statistical analyses revealed significant associations
of note cluster membership, with demographic variables, but
not with ADRD diagnoses. First, both cluster 1 and 3 were
significantly enriched by female participants (cluster 1:

χ2
1=178.7; PFDR<.001; PR=1.593 and cluster 3: χ2

1=12;
PFDR<.001; PR=1.14) while cluster 2 was enriched by male

participants (χ2
1=290.5; PFDR<.001; PR=1.749; Figure 5B). In

addition, age of onset varied significantly among the note
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clusters (Kruskal-Wallis χ2
2=14.9; P<.001; η2=0.004), with

cluster 2 (mean 72.8, SD 9.2 years) having a significantly later
age of onset compared to cluster 1 (Z=−3.82; PFDR<.001) and
cluster 3 (Z=2.31; PFDR=.03), while cluster 1 (mean 71.5, SD
9.3 years) and cluster 3 (mean 71.9, SD 9.8 years) did not differ
(Z=−1.33; PFDR=.19; Figure 5C). However, no association was
observed between note cluster membership and ADRD

diagnoses (Cluster 1-AD: χ2
1=4.9; PFDR=.14; Cluster 1-dementia

unspecified: χ2
1=1.9; PFDR=.32; Cluster 1-FTD: χ2

1=0.02;

PFDR=.99; Cluster 1-LBD: χ2
1=4.1; PFDR=.15; Cluster 1-other:

χ2
1=0.19; PFDR=.92; Cluster 1-VCI: χ2

1<0.001, PFDR=.99;

Cluster 2-AD: χ2
1=0.3; PFDR=.89; Cluster 2-dementia

unspecified: χ2
1=0.6; PFDR=.76; Cluster 2-FTD: χ2

1=0.01;

PFDR=.99; Cluster 2-LBD: χ2
1=4.6; PFDR=.14; Cluster 2-other:

χ2
1=8.3; PFDR=.07; Cluster 2-VCI: χ2

1=2.5; PFDR=.25; Cluster

3-AD: χ2
1=3.1; PFDR=.21; Cluster 3-dementia unspecified:

χ2
1=0.4; PFDR=.89; Cluster 3-FTD: χ2

1<0.001; PFDR=.99; Cluster

3-LBD: χ2
1<0.001; PFDR=.99; Cluster 3-other: χ2

1=6.1;

PFDR=.12; Cluster 3-VCI: χ2
1=3; PFDR=.21; Figure 5D).

Additional visualizations of the UMAP projections colored by
sex, age of onset, and ADRD diagnoses are provided in Figures
S5A, S5B, and S5C, respectively, in Multimedia Appendix 2.

Comparison Between ICD Clusters and Note Clusters
Statistical analysis demonstrated significant associations

between ICD and note clusters (χ2
4=89.43; P<.001; Cramér

V=0.114). Specifically, note cluster 1, characterized by more
female participants (PR=1.593) and terms related to psychiatric
manifestations and medications, significantly overlapped
(standardized residual=8.42; PFDR<.001) with ICD cluster 2,
which is noted for the earliest onset of disease (mean 69.8, SD
9.6 years) and a higher prevalence of psychiatric disorders and
higher proportion of patients with FTD (PR=2.039). In addition,
note cluster 2, which had higher proportion of male participants
(PR=1.749) and terms related to cardiovascular and motor
issues, overlapped significantly (standardized residual=4.90;
PFDR<.001) with ICD cluster 3, which is marked by the oldest
onset of disease (mean 75.5, SD 8.1 years), a higher occurrence
of VCI (PR=2.147), and dementia unspecified (PR=1.622) and
had high prevalence of diabetes. These findings suggest a
meaningful pattern of cluster correspondence across modalities
(Figure 6).

Figure 6. Heatmap of the association of International Classification of Diseases (ICD) clusters with note clusters. Heatmap of the association of ICD
clusters with note clusters. ICD clusters were significantly associated with note clusters (P<.001). Post hoc analyses revealed that note cluster 1 was
positively associated with ICD cluster 2 (standardized residual=8.42, P<.001) and negatively associated with ICD clusters 1 and 3 (cluster 1: standardized
residual=−4.57, P<.001; cluster 3: standardized residual=−6.36, P<.001). Furthermore, note cluster 2 was positively associated with ICD cluster 3
(standardized residual=4.9, P<.001) and negatively associated with ICD cluster 2 (standardized residual=−5.48, P<.001). Finally, note cluster 3 was
negatively associated with ICD cluster 2 (standardized residual=−3.25, P=.003). Each cell displays standardized residuals (standardized differences
between the observed count and the expected count) along with the count of overlapping patients (n). Color bar represents the value of the standardized
residual. P values were corrected with false discovery rate adjustments.
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Discussion

Principal Findings
This study aimed to characterize the clinical heterogeneity across
ADRD by applying representation learning techniques on patient
EHRs in a tertiary care clinic. We used pretrained ICD code
embeddings, a transformer architecture for encoding clinical
notes, and unsupervised learning to identify distinct ADRD
subtypes. This work represents the first example of clustering
patients with ADRD using embeddings derived directly from
an LLM, without prior rule-based extraction of relevant medical
concepts from the clinical note. The ICD codes allowed us to
investigate subtypes of patients with similar ICD codes
(non-ADRD diagnosis in charts), while the clinical notes
allowed us to capture clinical history and presentation recorded
by memory specialists. Our results demonstrate distinct patterns
of disease manifestation with significant overlap between the
ICD and note clusters. The overlap of clusters between the 2
approaches suggests that the subtypes may reflect common
underlying clinical heterogeneity, as distinct subtypes can be
identified through different data modalities.

Our choice of hierarchical agglomerative clustering was guided
by the hierarchical nature of our data, empirical evidence from
prior dementia subtyping studies, and theoretical limitations of
alternative algorithms. Alternative methods, such as K-means,
Gaussian mixture models [40], and density-based spatial
clustering of applications with noise (DBSCAN) [41], face
theoretical limitations: K-means assumes spherical clusters that
is difficult to satisfy in high-dimensional embeddings; DBSCAN
relies on density thresholds that break down in such spaces; and
Gaussian mixture models can be unstable with overlapping
subtypes. In contrast, hierarchical clustering preserves these
nested relationships, resulting in more homogeneous [42] and
reproducible [43] clusters.

In our study, we identified 3 clusters from ICD embeddings,
each characterized by distinct health conditions. Cluster 1
predominantly featured issues related to skin health, with a
commonality of dementia unspecified diagnoses and an average
age of onset in the early 70s. The association between skin
health and dementia in this cluster may be attributed to age, as
both conditions become more prevalent with advancing age.
This aligns with findings from previous studies, which reported
an increase in the prevalence of actinic keratosis [44] and
seborrheic keratosis [45], as well as AD [46], with age. Cluster
2 is marked by early-onset, psychiatric and behavioral
manifestations; enrichment in FTD and other less common
forms of ADRD; and the earliest age of onset among our
clusters, typically in the late 60s. This cluster extends the
characterization found in previous studies that described a
behavioral symptom subtype in patients [20,21] by
demonstrating similar characteristics in a broader population
of patients with ADRD. Cluster 3 encompasses a broad array
of conditions like respiratory issues and severe diabetes,
affecting older patients, more female participants than male
participants, with a higher incidence of VCI and dementia
unspecified, and an age of onset in the mid-70s. Reflecting the
AD subtype identified by previous researchers, this group was

characterized as being overall older and having more
comorbidities [20]. Landi et al [23] further differentiated patients
with AD by onset timing, which we also observed but across a
more diverse set of ADRD diagnoses. Notably, our ICD-based
clustering did not reveal clearly separated clusters in the 2D
UMAP projections. While UMAP aims to preserve both local
and global relationships when reducing high-dimensional data
to a lower-dimensional space, some distortions may inevitably
occur during dimensionality reduction. Alternatively, the
overlapping clusters could reflect the complexity of comorbid
conditions in ADRD, which may not form clearly
distinguishable subgroups.

In addition, our analysis of clinical notes revealed 3 distinct
subtypes. Cluster 1 featured terms related to psychiatric
manifestations and medications, aligning with findings from
previous studies [20,21]. Cluster 2 included terms related to
cardiovascular and various motor and sensory issues, supported
by previous studies that identified subtypes of CVD [20,21] and
aligning with the predominant diagnoses of VCI and LBD within
this cluster. Cluster 3 covered a wide array of health conditions,
consistent with the higher occurrence of rare ADRD diagnoses,
which tend to involve more heterogeneous health conditions.
Notably, we observed significant overlap between ICD and note
clusters, identifying 2 ADRD subtypes of interest that were
concordant across the 2 data modalities: the first subtype,
“psychiatric manifestations,” and the second subtype, “diabetes
with cardiovascular or motor issues.” Thus, our analysis
delineated 2 distinct ADRD subtypes with specific diagnostic
and symptomatic profiles.

Our study identified sex differences across all clinical note
clusters with substantial effects observed in note clusters 1 and
2. For example, note cluster 1 was significantly overrepresented
in female participants and had a higher prevalence of AD
(PR=1.1). It also overlapped significantly (P<.001) with ICD
cluster 2, which was enriched for psychiatric and behavioral
symptoms (eg, apathy). This aligns with Tang et al [25], who
reported stronger psychiatric associations in female patients
with AD, including greater links to depression. This pattern
may be partially attributed to women’s greater likelihood of
seeking mental health care [47,48]. In contrast, note cluster 2
was overrepresented in male participants, with higher prevalence
of VCI (PR=1.41) and LBD (PR=1.31), consistent with Tang
et al [25], who found vascular dementia was more common in
male participants. The higher prevalence of VCI in male
participants may be related to a greater burden of hypertension,
particularly in early life [49]. In addition, the increased
representation of male participants with LBD may reflect
potential underdiagnosis in female participants [50,51]. Given
the clinical impact of sex disparities in ADRD—particularly in
AD and LBD [52]—future studies integrating longitudinal data
and clinicopathological evidence will be crucial to disentangling
biological influences from health care–seeking behaviors.

Another interesting observation relates to variations in age of
onset, a key indicator of disease severity, across the identified
subtypes in both clinical notes and ICD-based clusters, with
notable differences in the ICD-derived subtypes. For instance,
the early-onset ICD cluster 2 was enriched with psychiatric
disorders and included diseases known with early-onset,
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including FTD [53] and other rare ADRD categories, such as
PCA [54]. In contrast, the late-onset ICD cluster 3, exhibited a
higher prevalence of diverse health conditions, including
respiratory issues (eg, cough and shortness of breath), chronic
pain, musculoskeletal conditions, such as bilateral low back
pain and foot pain, as well as diabetes mellitus. While chronic
pain is not typically associated with ADRD, pain could indicate
the general aging process [55], and relate to osteoporosis and
osteoarthritis, which likely contribute to chronic pain in older
adults. Other symptoms, such as foot pain and shortness of
breath, may reflect comorbidities of diabetes.

Limitations
Our study has a few limitations. First, there are the challenges
associated with using real-world EHR data. Differences in how
health care providers document information, stemming from
variations in training, personal documentation habits, and
clinical judgment, may have contributed to inconsistencies.
Furthermore, health care use patterns, such as visit regularity,
may influence our clustering results. For example, variations
in visit frequency could lead to overrepresentation of certain
symptom clusters or skewed associations. Future studies
adjusting for health care use patterns may help address this
limitation. Second, the inclusion of long-term patient histories
in clinical notes—where recent notes may capture both current
and past symptoms—could introduce extraneous information,
making it difficult to isolate content relevant to the latest
diagnosis. This mixture of historical and recent data may have
diluted the association between documented ADRD diagnoses
and their actual clinical significance, leading to observed trends
rather than clear associations. Furthermore, the repetition of
relevant language across multiple encounters may have
influenced the clustering process, potentially reflecting the
frequency of patient visits to the memory clinic, rather than
clinical characteristics. Third, our study is constrained by the
absence of an independent validation cohort to confirm the
identified clusters. While the relative overlap in clusters
identified through ICD codes and note contents, along with the
alignment with findings from previous research, offers some
validation, the results could be strengthened by applying the
same encoding and clustering techniques to an external
validation cohort. To ensure external validity, these results need

to be validated at other health care institutions. Fourth, another
limitation of this study is that our subtyping characterization
only focused on ADRD diagnoses based on etiology, but did
not address the stage of disease, which clearly affects the
neuropsychological profile. This calls for a focus on the
heterogeneity of disease stage in future research. Moreover,
there may be sex differences in who receives health care at
different stages and ages, adding another layer of complexity
to our findings. Finally, our study is limited by the lack of racial
diversity in the cohort, with 88.6% of participants being White.
Given known racial differences in AD incidence, comorbidities,
and health care access [56-59]—and particularly the heightened
impact of hypertension on AD risk in some minoritized groups
[59,60]—our findings may not fully capture the spectrum of
ADRD subtypes in these populations. Future studies with
broader representation are necessary to improve the
generalizability of our subtyping approach.

Future Directions
In future work, the preprocessing of clinical notes could be
enhanced by implementing multiple methods, such as medspaCy
[61], with a focus on targeting sections most relevant to
diagnoses, such as medical history. To further improve the
extraction and analysis of pertinent data, the use of emerging
LLMs, such as GPT [39], should be explored. In addition,
validating an independent dataset and enriching the patient
population would help increase the robustness and reliability
of the identified ADRD subtypes. To advance this work, we
will use a dual-modality approach that leverages both structured
and unstructured data sources, such as medications and imaging.
A deep autoencoder that uses multiple modalities simultaneously
could offer methodological improvements over our current
practice of conducting parallel clustering analyses and relying
on heuristic averaging of embeddings. Furthermore, explicitly
using the temporal or graph properties of EHRs could yield
more informative representations, enhancing unsupervised
clustering capabilities, as has been shown in prior approaches
in a supervised learning setting [62,63]. Ultimately, our goal is
to develop machine learning models capable of predicting these
ADRD subtypes from real-word health care systems. Such
models may aid in more precise diagnostics, prognostics, and
the formulation of targeted treatment strategies.
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Multimedia Appendix 1
List of diagnosis names to Alzheimer disease and related dementias diagnosis categories. This document provides a list of diagnosis
names from the electronic health records of patients at a memory clinic to various Alzheimer disease and related dementias
diagnosis categories.
[PDF File (Adobe PDF File), 613 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Visualizations of model attention and embedding representations. This appendix includes attention heatmaps from the final
transformer layer across heads, as well as Uniform Manifold Approximation and Projection projections of International Classification
of Diseases code, and clinical note embeddings, characterized by sex, age of onset, Alzheimer disease and related dementia
diagnosis, and provider information.
[DOCX File , 2067 KB-Multimedia Appendix 2]
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