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Abstract
Background: The global increase in life expectancy has not shown a similar rise in healthy life expectancy. Accurate
assessment of biological aging is crucial for mitigating diseases and socioeconomic burdens associated with aging. Current
biological age prediction models are limited by their reliance on conventional statistical methods and constrained clinical
information.
Objective: This study aimed to develop and validate an aging clock model using artificial intelligence, based on comprehen-
sive health check-up data, to predict biological age and assess its clinical relevance.
Methods: We used data from Koreans who underwent health checkups at the Seoul National University Hospital Gangnam
Center as well as from the Korean Genome and Epidemiology Study. Our model incorporated 27 clinical factors and employed
machine learning algorithms, including linear regression, least absolute shrinkage and selection operator, ridge regression,
elastic net, random forest, support vector machine, gradient boosting, and K-nearest neighbors. Model performance was
evaluated using adjusted R2 and the mean squared error (MSE) values. Shapley Additive exPlanation (SHAP) analysis was
conducted to interpret the model’s predictions.
Results: The Gradient Boosting model achieved the best performance with a mean (SE) MSE of 4.219 (0.14) and a mean
(SE) R2 of 0.967 (0.001). SHAP analysis identified significant predictors of biological age, including kidney function
markers, gender, glycated hemoglobin level, liver function markers, and anthropometric measurements. After adjusting for
the chronological age, the predicted biological age showed strong associations with multiple clinical factors, such as metabolic
status, body compositions, fatty liver, smoking status, and pulmonary function.
Conclusions: Our aging clock model demonstrates a high predictive accuracy and clinical relevance, offering a valuable tool
for personalized health monitoring and intervention. The model’s applicability in routine health checkups could enhance health
management and promote regular health evaluations.
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Introduction
Over the past several decades, global life expectancy has
increased remarkably, rising from 66.8 years in 2000 to
73.4 years in 2019, according to the World Health Organi-
zation. However, healthy life expectancy has not kept pace,
increasing only from 58.3 years to 63.7 years during the
same period [1]. This demographic shift toward an aging
population has led to increased health care dependency and
associated social costs. The medical industry related to aging
and the social costs thereof are continuously increasing [2].
Accurately assessing biological aging is a critical first step
in mitigating age-related diseases and their socioeconomic
impact.

Biological age refers to an estimation of an individual’s
physiological and functional status, reflecting the cumulative
effects of genetic, environmental, and lifestyle factors on
the aging process [3]. An individual with a biological age
younger than their chronological age may have a lower risk of
developing age-related diseases, while an older biological age
could indicate a higher vulnerability to such conditions. This
highlights the clinical significance of accurately estimat-
ing the biological age for personalized health interventions
and monitoring. While numerous studies have explored the
human lifespan [4,5], their evaluation is challenging due
to the required long-term observations and limited clinical
applicability.

Applying findings from academic studies to clini-
cal practice remains challenging. Current biological age
prediction models, primarily based on conventional statisti-
cal methods such as multivariate regression analysis, rely
on limited clinical data, restricting their predictive power
and insights into the aging process [5-8]. Recent advances
have led to models using omics data [9], including DNA
methylation [10], transcriptome [11], metabolome [12], and
telomere data [9]. However, these models face implementa-
tion challenges in clinical settings due to their complexity
and the difficulty in measuring omics markers. The model
requires multiple molecular modalities and functional data to
exhibit a superior performance [9]. In addition, it is chal-
lenging to quantify the dynamic effects of environmental,
lifestyle, behavioral, and interventional factors on biological
age.

In Asian countries, the health checkup industry has been
growing substantially [13-15], with individuals regularly
monitoring their health status. However, these checkups
typically only indicate normal or abnormal conditions
for individual tests, lacking comprehensive health status
indicators. Providing biological age predictions through an
aging clock could serve as a valuable tool for the health
screening of patients, offering a comprehensive health status
measure and encouraging regular checkup participation.

This study investigated the clinical relevance of arti-
ficial intelligence (AI)-predicted biological age in the
Korean population using comprehensive health checkup data,
examining its relationship with various clinical characteris-
tics.

Methods
Participants and Datasets
The study investigated the healthy population participating
in comprehensive health checkups at the Seoul National
University Hospital Gangnam center, from 2003 to 2016.
The initial baseline data were used, and the participants
included a total of 81,211 Koreans, who comprised the
Health and Prevention Enhancement (H-PEACE) cohort.
The details of the H-PEACE cohort have been described
previously [16]. To summarize, each participant completed
a questionnaire on their past medical history and under-
went anthropometric measurements and laboratory tests after
at least 10 hours of fasting on the same day. We also
used the data from the Korean Genome and Epidemiol-
ogy Study (KoGES) from the Korean Center for Disease
Control and Prevention as the replication set. From the
KoGES data, we used the health examination cohort (KoGES
HEXA data), which included past medical history, anthropo-
metric measurement, and laboratory data [17]. Briefly, the
KoGES HEXA cohort is a national health examinee registry,
consisting of 173,357 urban Korean adults who underwent
health checkup programs. We used clinical factors overlap-
ping between factors from the H-PEACE cohort data and
the KoGES HEXA data. The exclusion criteria to define
the healthy adult super-control cohort were as follows:
(1) participants diagnosed with diabetes, hypertension, or
dyslipidemia; (2) participants drinking alcohol more than 14
g/week; (3) current or previous smokers; (4) those aged less
than 30 years; and (5) those having a history of malignant
disease. To check the clinical implication of the predicted
biological age, we performed multiclinical feature association
study in the gene-environmental interaction and phenotype
(GENIE) study [16], which consisted of 123 clinical factors
and gene datasets. We used the 116 clinical factors, excluding
the 27 factors used to predict biological age, to determine the
multiple associations with predicted biological age.
Development of a Biological Age
Prediction Model
This study aimed to develop a widely applicable biologi-
cal age model using only basic health screening parame-
ters. The clinical features used to construct the biological
age model were based on routine clinical measurements,
including standard demographic features, blood test results,
and anthropometric measurements, rather than the findings
from expensive specialized examinations. The selection of
clinical factors was constrained by the requirement that
they be present in both the training dataset (H-PEACE
cohort) and the replication dataset (KoGES HEXA cohort).
Through this feature selection process, we used 27 clinical
factors as inputs for predicting the biological age, which are
gender, anthropometric measurements (height, weight, BMI,
and waist circumference), metabolic status (levels of fasting
glucose, glycated hemoglobin [HbA1c], uric acid, total
cholesterol, triglyceride, high-density lipoprotein cholesterol,
and low-density lipoprotein cholesterol), liver functions
(albumin, total bilirubin, alkaline phosphatase, aspartate
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aminotransferase, alanine aminotransferase, and gamma-glu-
tamyl transferase), complete blood cell counts (white blood
cell count, red blood cell count, hemoglobin, hematocrit, and
platelet count), calcium and renal function (levels of blood
urea nitrogen and creatinine, and the glomerular filtration
rate calculated using the chronic kidney disease epidemiology
collaboration (CKD-EPI) equation [18]).

The true labels were defined as the chronological age
of the super-control population, based on the assumption
that chronological age aligns with biological age in phys-
iologically standard individuals. This cohort was carefully
selected to exclude individuals with pathological conditions,
such as metabolic diseases or malignant diseases, as well as
those exposed to environmental factors known to influence
biological age, including smoking and alcohol consumption
[19].

The baseline data of the H-PEACE super-control cohort
was split into 80% as the training set and 20% as the testing
set with stratification based on both age and sex. Specifically,
age stratification was conducted by categorizing participants
into decade-based intervals, which were 20‐29, 30‐39, 40‐49,
50‐59, 60‐69, 70‐79, and more than 80 years. Five-fold
cross-validation was performed to find the best hyperparame-
ter for each model. We employed various machine learning
models such as linear regression, least absolute shrinkage
and selection operator (LASSO) regression, ridge regression,

elastic net, random forest, support vector machine (SVM),
gradient boosting, and K-nearest neighbors. These models
were chosen for their ability to handle diverse relationships in
data, including linear, nonlinear, and complex interactions.
Hyperparameter optimization for each model was conduc-
ted using a grid search. To evaluate the performances of
the developed models to predict biological age, we used
adjusted R2 and mean squared error (MSE) values. The
evaluation results reported in this study are from 10 itera-
tive experiments. A replication study was conducted in the
KoGES HEXA dataset with the same experimental setting
as the H-PEACE dataset. We interpreted the biological
age prediction results using Shapley Additive exPlanation
(SHAP) [20]. SHAP analysis was performed to elucidate the
roles and impacts of different biological markers in predicting
biological age.
Investigation of the Clinical Relevance of
the Predicted Biological Age
We conducted linear regression analysis for multiple clinical
factors using the GENIE study dataset with the predicted
biological age, adjusting for chronological age. All reported P
values were corrected for multiple tests using the Bonferroni
correction.

The overview of the study is shown in Figure 1.

Figure 1. Overview of the study. H-PEACE: Health and Prevention Enhancement, KoGES: Korean Genome and Epidemiology Study, GENIE:
gene-environmental interaction and phenotype, CT: computed tomography, MRI: magnetic resonance imaging, MRA: magnetic resonance
angiography.

Ethical Considerations
The Institutional Review Board of the Seoul National
University Hospital approved the study protocol and
waived the need for informed consent (IRB number
H-2005-223-1129). The study was performed in accord-
ance with the Declaration of Helsinki. All patient data
were deidentified before analysis, and strict confidential-
ity measures were implemented throughout the data collec-
tion, storage, and analysis processes. Access to the data
was restricted to authorized research personnel only. The

data management procedures complied with relevant data
protection regulations to safeguard participants' privacy. No
personally identifiable information was included in the final
dataset or results.
Statistical and Computational Analyses
All analyses and calculations were performed using Python
version 3.11.11 (Python Software Foundation). Multiple
evaluation indices, including adjusted R2 and MSE, β, and
P value, were used to comprehensively evaluate the perform-
ances of the models and the significance of the associations.
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The statistical significance was based on a two-tailed P value
of <.05.

Results
General Characteristics of the
Participants
After applying the exclusion criteria to define the super-con-
trol cohort and removing the missing variables, we developed
a model using a dataset collected from 28,417 individu-
als who underwent comprehensive health checkups at the
Seoul National University Hospital Gangnam Center (ie, the
H-PEACE cohort). The enrollment process is shown in Figure
S1 in Multimedia Appendix 1. The mean (SD) participant
age was 44.22 (11.26) years for 6467 men and 21,950 women.
The baseline characteristics according to the aging of the
study participants are shown in Table S1 in Multimedia
Appendix 2. There were 1005 participants who were more
than 65 years old and 27,412 who were 65 years old or less.
Figure S2 in Multimedia Appendix 1 shows the chronologi-
cal age distribution for the respective genders. Figure S3 in
Multimedia Appendix 1 shows the distribution of gender in

the training and test sets as well as the chronological age
group distribution in the training and test sets.
Development and Performance of the
Biological Age Prediction Model
The models were trained using 27 clinical variables on
the full training dataset (80% of the super-control cohort),
then predicted on the test set (20%). For generalizability,
5-fold cross-validation with 10 iterative experiments were
performed. The model was replicated using the KoGES
HEXA data of 11,968 super-controls. Among 8 machine
learning algorithms, the model showing the best performance
was gradient boosting, for which the mean (SE) MSE value
was 4.219 (0.140) and the mean (SE) R2 value was 0.967
(0.001). The hyperparameters for the gradient boosting model
were α=0.9, complexity parameter α=0, learning rate=0.1,
maximum depth=5, and number of trees=500.

The second-best performing algorithm was the SVM
model, with a mean (SE) MSE of 8.244 (0.210) and mean
(SE) R2 value of 0.935 (0.002). The performances of the 8
machine learning models in the test set are shown in Table 1.

Table 1. Comparison of the performances of 8 machine learning models to predict biological age in the test set (N=5684).
Model Mean squared error, mean (standard error) R2, mean (standard error)
K nearest neighbor 63.829 (0.176) 0.497 (0.002)
Elastic net 50.518 (2.251) 0.602 (0.018)
Linear regression 50.314 (5.165) 0.603 (0.040)
LASSOa 50.271 (3.477) 0.604 (0.027)
Ridge 50.235 (5.047) 0.604 (0.039)
Random forest 20.941 (1.020) 0.835 (0.008)
Support vector machine 8.244 (0.210) 0.935 (0.002)
Gradient boosting 4.219 (0.140) 0.967 (0.001)

aLASSO: Least Absolute Shrinkage and Selection Operator.

The SHAP values from the gradient boosting and SVM
models were analyzed to interpret their predictions of
biological age. The SHAP values offer feature importance,
providing the interpretation of the model’s decision-making
by quantifying the contribution of each feature to the model’s
output [20]. The corresponding visualizations are presented in
Figure 2.

In the predictions of biological age generated by the
gradient boosting model, the markers of kidney function,
gender, HbA1c level, liver function, and anthropometric

measurements were highlighted as significant predictors. In
the SVM model, the SHAP summary plot revealed that
kidney function markers, gender, liver function markers,
red blood cell indices, and anthropometric measurements
were the most influential predictors of biological age. These
findings underscored the multifaceted nature of aging and
highlighted the importance of maintaining optimal kidney
function, metabolic status, and body composition in mitigat-
ing biological aging.
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Figure 2. Visualization of the feature importance with Shapley Additive exPlanation (SHAP) values. SHAP summary plots for the model from
the gradient boosting model (A) and the support vector machine (SVM) model (B) are visualized. Features with broader spreads and higher SHAP
values have a more significant impact to predict biological age and values with the color gradient indicate whether higher or lower feature values are
associated with increased biological age predictions. GFR: glomerular filtration rate, HbA1c: glycated hemoglobin, AST: aspartate aminotransferase,
BUN: blood urea nitrogen, ALP: alkaline phosphatase.

Subgroup Analysis by Gender
The performances of the gradient boosting and SVM models
were evaluated in the respective genders, male versus
female participants. Applying the gradient boosting model
to male participants, the mean (SE) MSE value was 5.258
(0.490). The SHAP value was significantly influenced by
renal function, metabolic status, red blood cell indices, and

anthropometric measurements. In female participants, the
mean (SE) MSE value was 2.743 (0.099) and the SHAP
values with the highest impact were similar to those for the
male participants. The performances in the SVM and SHAP
plots for male and female participants are shown in Table 2
and Figure S4 in Multimedia Appendix 1.

Table 2. Comparison of the performances of the test set and replication set in all ages and in age above 65 years.
Gradient boosting Support Vector Machine

Dataset Subgroup All ages Age above 65 years All ages Age above 65 years
MSEa MSEa MSEa MSEa

Test set Male and Female 4.219 (0.140) 18.942 (1.250) 8.244 (0.210) 18.077 (1.094)
Replication set Male and Female 2.406 (0.083) 2.190 (0.085) 7.838 (0.065) 3.116 (0.148)
Test set Male 5.258 (0.490) 20.357 (2.493) 15.476 (0.652) 20.678 (1.504)
Replication set Male 2.032 (0.110) 2.096 (0.113) 6.337 (0.053) 3.143 (0.205)
Test set Female 2.743 (0.099) 17.153 (0.819) 7.955 (0.170) 18.928 (1.698)
Replication set Female 16.050 (0.467) 3.746 (0.366) 37.301 (0.777) 3.832 (0.510)

aMean squared error (MSE) values are shown as mean (standard error).

Replication of the Developed Biological
Age Prediction Model
We replicated the model with the gradient boosting and SVM
models using the KoGES HEXA data for participants of all
ages and those under 65 years of age. The prediction model
was better replicated in male participants and those aged
above 65 years. The replicated results are shown in Table
2.
Delta Age Evaluation Using Baseline and
Follow-Up Data
The model predicted the biological age in the test set (20%
of the total dataset; 5684 individuals). The delta age, which

is the difference between the biological age and the predicted
biological age, was calculated for all individuals in the test
dataset.

Figure 3 shows the delta age distribution across the
different age groups, and Figure S5 in Multimedia Appendix
1 shows the delta age distribution across different age groups
in each gender.
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Figure 3. The delta age distribution across different age groups. The distribution of the delta age across different age groups in the test set at baseline
(total n=5684) is shown for the gradient boosting (A) and support vector machine (B) models.

With the increase in the age groups, there was an observa-
ble pattern in the variability of delta age. In the younger
age group (the 1st to the 3rd groups), there was increased
variability, suggesting diverse aging processes influenced
by multiple factors such as genetics, lifestyle, and health
conditions. Older groups (the 7th and 8th groups) showed
less variability and more positive values of delta age, possibly
reflecting a selection of healthier individuals who have
managed to reach older ages. The results were consistent in
each gender group as well.

Among 5684 baseline participants, there were 2022
participants who had follow-up data, with follow-up duration

ranging from 1 to 10 years (with 0 meaning the same age at
two consecutive visits).

Figure 4 shows the projectiles of the changes in delta
age during follow-up across different age groups in the test
set (n=2022) for the gradient boosting and SVM models.
While the younger age groups exhibited stable biological
aging trajectories, the middle-aged and older groups showed
increased variability and accelerated aging over the follow-
up period. The observed trends were consistent across both
the gradient boosting and SVM models, providing robust
evidence for the described aging patterns.

Figure 4. The delta age trajectory during follow-up across different age groups. The projectiles of the changes in delta age during follow-up across
different age groups in the test set (n=2022) are shown for the gradient boosting model (A) and SVM model.

Figure S6 in Multimedia Appendix 1 shows the trajectory
of the changes in delta age during follow-up across different
gender groups in the test set at baseline (n= 5684) for the
gradient boosting model and SVM model.
Clinical Interpretation Using a Multiple
Clinical Factor Association Study
To explore the clinical relevance of the predicted biologi-
cal age, we performed a phenome-wide association analy-
sis between 116 phenotypes corroborated by comprehensive

health checkups from the GENIE study dataset and the output
of the predicted biological age model (data for both genders
are shown in Table S2 in Multimedia Appendix 2, data for the
male gender are shown in Table S3 in Multimedia Appendix
2, and data for the female gender are shown in Table S4 in
Multimedia Appendix 2).

We found that the predicted biological age was sig-
nificantly associated with 50 clinical factors after Bonfer-
roni correction (Tables S2-S4 in Multimedia Appendix 2).
Notably, the most significant associations were observed
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with metabolic status, body composition, fatty liver, smoking
status, and pulmonary function, after adjusting for the
chronological age. Table 3 shows the top 10 significant
results in both genders, in male participants, and in female
participants. The correlations among the variables are shown

in Figure S7 in Multimedia Appendix 1. These findings
suggest that the predicted biological age, developed from
multiple clinical factors from comprehensive health checkups,
may also possess predictive capabilities for aging in various
organs.

Table 3. Top 10 significant clinical factors associated with the predicted biological age.
Clinical factors Study modality N β P value
In both genders
  Diabetes diagnosis Questionnaire 10,351 −.002 1.75×10−270

  Skeletal muscle mass Bioelectrical impedance 10,231 −.053 7.87×10−256

  Fatty liver Ultrasonography 10,287 −.006 5.20×10−195

  Diabetes medication Questionnaire 10,351 −.001 4.38×10−178

  Metabolic syndrome Questionnaire 10,351 −.003 1.35×10−174

  Smoking status Questionnaire 8995 −.004 8.43×10−170

  Visceral fat area Abdominal computed tomography 6183 −46.952 2.86×10−153

  Forced vital capacity (liters) Spirometry 10,138 −.005 6.32×10−141

  Forced expiratory volume in 1 s (liters) Spirometry 10,138 −.004 5.71×10−135

  Chloride level Blood 9964 .011 4.18×10−77

In male participants
  Diabetes diagnosis Questionnaire 4292 −.001 1.91×10−56

  Fatty liver Ultrasonography 4270 −.004 2.74×10−46

  Metabolic syndrome Questionnaire 4292 −.002 1.72×10−41

  Diabetes medication Questionnaire 4292 −.001 9.63×10−36

  Mean corpuscular hemoglobin Blood 4264 .013 3.61×10−35

  Mean corpuscular volume Blood 4264 .026 1.54×10−27

  Visceral fat area Abdominal computed tomography 2157 −26.868 3.61×10−24

  Total fat area Abdominal computed tomography 2157 −48.823 1.23×10−14

  Mean corpuscular hemoglobin concentration Blood 4264 .005 5.10×10−14

  Heart rate Electrocardiography 3297 −.040 1.02×10−12

In female participants
  Diabetes diagnosis Questionnaire 6059 −.002 4.13×10−146

  Diabetes medication Questionnaire 6059 −.002 2.49×10−98

  Metabolic syndrome Questionnaire 6059 −.002 1.93×10−38

  Fatty liver Ultrasonography 6017 −.004 5.03×10−31

  Potassium level Blood 5839 .001 4.02×10−24

  Sodium level Blood 5839 .007 1.59×10−23

  Chloride level Blood 5839 .007 3.07×10−15

  Forced vital capacity (liters) Spirometry 5956 .002 3.97×10−15

  Forced vital capacity percent Spirometry 5956 .032 4.71×10−14

  Visceral fat area Abdominal computed tomography 4026 −17.835 9.80×10−14

Discussion
This study underscores the clinical relevance of biological age
as predicted by AI using comprehensive health checkup data.
Our findings elucidate the clinical relevance of biological
age—as assessed through machine learning models—which
exhibits strong associations with multiple clinical factors,
thereby providing valuable insights into the aging process and
its implications on health. The result demonstrated that the
best-performing model, gradient boosting, achieved a mean

(SE) MSE value of 4.219 (0.140) and mean (SE) R2 value
of 0.967 (0.001), indicating acceptable predictive accuracy.
Additionally, the SHAP analysis highlighted markers such
as kidney function, gender, HbA1c level, liver function,
and anthropometric measurements as significant predictors of
biological age. These findings suggest that biological age is
a multifaceted construct influenced by various physiological
factors and can serve as a robust indicator of the overall
health status. The identification of these markers is significant
because it supports the importance of maintaining optimal
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kidney function, metabolic health, and body composition in
mitigating biological aging. This comprehensive understand-
ing can lead to more targeted and effective interventions
aimed at improving overall health and longevity.

Our study findings align with existing research findings
that emphasize the utility of biological age as a compre-
hensive health indicator [21-23]. Previous studies have also
identified the importance of factors such as kidney function
[24], metabolic health [25,26], and inflammatory markers
[27,28] in the aging process. However, our use of machine
learning models such as the gradient boosting model and
the SVM model provides a more nuanced understanding
of how these factors interact to influence biological age,
setting our research apart from traditional statistical methods.
For instance, while existing literature has demonstrated the
importance of individual biomarkers, our approach integrates
multiple clinical variables to provide a holistic prediction
model.

The use of multiple machine learning algorithms allowed
for a comprehensive evaluation of their predictive capa-
bilities. The gradient boosting model outperformed other
algorithms, with performance R² of 0.967 and MSE of
4.219, due to its ability to handle nonlinear relationships
and feature interactions, which are crucial in modeling
complex biological systems [29]. Unlike linear models such
as the ridge or LASSO regression, the gradient boosting
model iteratively optimizes residual errors, capturing intricate
dependencies between features. Its robustness to outliers and
noise further enhances performance, making it particularly
suited for real-world health checkups [30,31]. The generaliza-
bility of gradient boosting, demonstrated in both the training
and replication datasets, underscores its potential for clinical
application. Future studies should explore hybrid approaches
to integrate the strengths of the gradient boosting model with
more efficient models for broader use.

In the SHAP analysis, kidney function emerged as a
significant predictor of biological age, consistent with its
established role as an indicator of systemic health [32].
The decrease in kidney function is closely associated with
aging-related changes, such as a reduced glomerular filtration
rate and increased risk of chronic kidney disease [33]. These
conditions often signify cumulative damage from metabolic
stressors, hypertension, and other age-related factors [34].
The inclusion of kidney function markers, such as creati-
nine and the estimated glomerular filtration rate, in our
model highlights their critical contribution to capturing the
physiological aging process. Maintaining optimal kidney
function could therefore serve as a target for mitigating
biological aging and reducing the burden of associated
comorbidities.

The body composition, including markers such as waist
circumference and BMI, was another key contributor
identified on SHAP analysis. This finding underscores the
impact of adiposity and muscle mass on aging trajectories.
Increased visceral fat and reduced skeletal muscle mass are
hallmark features of sarcopenic obesity, a condition linked
to metabolic dysfunction and accelerated biological aging

[35,36]. Such changes exacerbate systemic inflammation
and insulin resistance, further compounding aging-related
risks [37,38]. The identification of body composition as a
significant predictor emphasizes the importance of lifestyle
interventions, such as exercise and dietary modifications, to
preserve muscle mass and manage body fat. By integrating
these markers into the prediction model, our study high-
lights their multifaceted roles in biological aging. Kidney
function and body composition serve not only as indicators
of systemic health but also as modifiable factors, offering
potential avenues for personalized health interventions aimed
at slowing biological aging and promoting longevity. This
enhanced understanding enriches the clinical utility of our
model and provides actionable insights for practitioners.

Visualization of the delta age distribution across different
age groups shows that there is increased variability in the
younger age group and less variability and a more positive
value of delta age in the older group. This pattern under-
scores the importance of middle age as a critical period for
implementing health interventions to manage biological aging
effectively, and the need for focused care strategies to manage
aging-related health issues in older adults.

In the multiple clinical factor association study for
predicted biological age, we found that the predicted
biological age was significantly associated with 50 clini-
cal factors even after the adjustment of chronological age.
The most significant associations were observed with the
metabolic status, body composition, fatty liver, smoking
status, and pulmonary function. These associations highlight
the clinical relevance of biological age as a comprehensive
marker of an individual’s health status and suggest poten-
tial pathophysiological mechanisms accompanying the aging
process. Reduced pulmonary function is known to be an
indicator of systemic aging and has been linked to increased
mortality and morbidity in older adults [39,40]. This suggests
that maintaining optimal lung function could be crucial in
mitigating the effects of biological aging and improving
overall health outcomes.

The association between smoking status and predicted
biological age is well-documented in various studies. For
example, research using AI to analyze blood data from
149,000 adults revealed that smokers exhibit a faster rate
of biological aging compared to nonsmokers [41]. Remarka-
bly, female smokers were predicted to have a biological age
twice that of their chronological age [42]. These findings
emphasize the detrimental impact of smoking on biological
age. Additionally, exposure to tobacco during early life has
been linked to accelerated biological aging in adulthood [43].
The underlying mechanisms include inflammation [44,45],
epigenetic changes [46], and chromosomal damage [47].
These results underline the potential for biological recovery
after cessation, aligning with prior research and emphasizing
both the dangers of smoking and the benefits of quitting.

Body composition changes, including increased body fat,
decreased muscle mass, and higher BMI, were also signifi-
cantly associated with biological age. These findings align
with previous studies that have shown that sarcopenia (loss
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of muscle mass) and obesity are critical factors in the
aging process [48]. Excess body fat, particularly visceral
fat, is associated with metabolic syndrome, cardiovascular
diseases, and insulin resistance, all of which contribute to
accelerated biological aging [49,50]. Conversely, maintaining
muscle mass is essential for physical function and metabolic
health, highlighting the importance of exercise and nutrition
in managing the biological age. These findings also pro-
vide insights into the pathophysiological aspects of aging,
suggesting that targeted interventions in these areas could
potentially mitigate the adverse effects of aging and improve
health outcomes.

The results have significant implications for health care
and aging research. By providing a comprehensive measure
of biological age, health care providers can better assess an
individual’s overall health status and identify potential risks
for age-related diseases. This approach could also facilitate
more personalized health care strategies, improving patient
outcomes and quality of life. Furthermore, the findings
contribute to the broader understanding of the aging process,
offering valuable insights for researchers aiming to develop
innovative strategies to overcome age-related diseases and
enhance healthy aging.

Despite the robust findings, there are limitations to
consider. The study population was predominantly Korean,

which may limit the generalizability of the results to other
ethnic groups. Additionally, the reliance on clinical data
from health checkups may not capture all factors influencing
biological age, such as genetic predispositions or epigenetic
clocks and environmental influences. Future studies should
aim to include more diverse populations and incorporate
additional variables to enhance the comprehensiveness and
applicability of the models. Furthermore, longitudinal studies
are needed to validate the long-term predictive capabilities
of the models and their effectiveness in different health care
settings.

In conclusion, our study demonstrates the clinical
relevance of biological age as predicted by machine learn-
ing models. The findings provide valuable insights into the
aging process and highlight the potential of biological age
as a comprehensive health indicator. Future research should
focus on refining these models and exploring their applica-
bility in diverse populations to further enhance their utility
in clinical practice. The integration of advanced machine
learning techniques with comprehensive health data holds
great promise for advancing our understanding of aging and
improving health care outcomes.
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