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Abstract
Background: Serum levels of silent information regulator 6 (SIRT6), a key biomarker of aging, were identified as a predictor
of coronary artery disease (CAD), but whether SIRT6 can distinguish severity of coronary artery lesions in older adult patients
is unknown.
Objectives: This study developed a nomogram to demonstrate the functionality of SIRT6 in assessing severity of coronary
artery atherosclerosis.
Methods: Patients aged 60 years and older with angina pectoris were screened for this single-center clinical study between
October 1, 2022, and March 31, 2023. Serum specimens of eligible patients were collected for SIRT6 detection by enzyme-
linked immunosorbent assay. Clinical data and putative predictors, including 29 physiological characteristics, biochemical
parameters, carotid artery ultrasonographic results, and complete coronary angiography findings, were evaluated, with CAD
diagnosis as the primary outcome. The nomogram was derived from the Extreme Gradient Boosting (XGBoost) model, with
logistic regression for variable selection. Model performance was assessed by examining discrimination, calibration, and
clinical use separately. A 10-fold cross-validation technique was used to compare all models. The models’ performance was
further evaluated on the internal validation set to ensure that the obtained results were not due to overoptimization.
Results: Eligible patients (n=222) were divided into 2 cohorts: the development cohort (n=178) and the validation cohort
(n=44). Serum SIRT6 levels were identified as both an independent risk factor and a predictor for CAD in older adults.
The area under the receiver operating characteristic curve (AUROC) was 0.725 (95% CI 0.653‐0.797). The optimal cutoff
value of SIRT6 for predicting CAD was 546.384 pg/mL. Predictors included in this nomogram were serum SIRT6 levels,
triglyceride glucose (TyG) index, and apolipoprotein B. The model achieved an AUROC of 0.956 (95% CI 0.928‐0.983) in
the development cohort. Similarly, in the internal validation cohort, the AUROC was 0.913 (95% CI 0.828‐0.999). All models
demonstrated satisfactory calibration, with predicted outcomes closely aligning with actual results.
Conclusions: SIRT6 shows promise in predicting CAD, with enhanced predictive abilities when combined with the TyG
index. In clinical settings, monitoring fluctuations in SIRT6 and TyG may offer valuable insights for early CAD detection.
The nomogram for CAD outcome prediction in older adult patients with angina pectoris may aid in clinical trial design and
personalized clinical decision-making, particularly in institutions where SIRT6 is being explored as a biomarker for aging or
cardiovascular health.
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Introduction
The global burden of ischemic heart disease from 1990
to 2019 reached staggering figures, with an estimated 9.14
million deaths attributed to coronary artery disease (CAD) in
2019 alone, affecting approximately 197 million individuals
worldwide [1]. China witnessed a notable surge in CAD-asso-
ciated mortality during this period, accounting for 38.2%
of the global rise. By 2017, CAD-related deaths in China
had skyrocketed by 1.12 million, representing an astonishing
184.1% increase compared with that of 1990 [2,3]. As of
2019, China was the global leader in CAD-related deaths,
with 1.87 million reported cases [4]. By 2029, a 64% increase
in CAD cases is expected in China compared with 2020. As a
dynamically evolving condition, CAD significantly contrib-
utes to the development of major adverse cardiovascular
events, such as myocardial infarction, stroke, and cardiovas-
cular mortality [5].

Aging, an independent risk factor for CAD, is character-
ized by a progressive decline in coronary artery and micro-
vascular function, resulting in altered myocardial perfusion
and increased myocardial injury [6]. CAD predominantly
affects middle-aged and older adult populations, particularly
people aged 60 years and older, with a prevalence exceeding
70%. Notably, the older adult population in China, aged 65
years and older, reached 220 million in 2023, constituting
15.4% of the nation’s population and approximately 26.8%
of the global older adult population [7]. The aging demo-
graphic in China is expanding rapidly, with nearly 40 million
individuals aged 80 years and older in 2022, accounting for
approximately 2.7% of the total population of China. Hence,
China is predicted to enter a super-aged society by 2030,
with the older adult population comprising more than 20%
of the total population [8]. By 2084, it is estimated that
half of China’s population will be older adults. A higher
mortality rate has been observed among Chinese older adults
with CAD, with the majority of deaths occurring in people
aged 75 years and older [9]. Despite these trends, research
on CAD has often overlooked the specific needs of the older
adult population. In China, approximately 300 million people
suffer from chronic diseases, with half of them being aged
65 years or older. The older adult population often presents
with atypical clinical symptoms, multiple comorbidities, and
prolonged use of medications, all of which amplify the
risk of cardiovascular disease [10,11]. Previous studies have
indicated that therapeutic interventions in the early stages
of CAD can reduce its incidence and improve prognosis
[12,13], underscoring the necessity for noninvasive methods
for identifying predictive factors for CAD.

Silent information regulator 6 (SIRT6), a member of
the nicotinamide adenine dinucleotide–dependent histone
deacetylase family, plays a crucial role in aging and
aging-related diseases by maintaining telomerase stability
and metabolic homeostasis, as well as regulating oxidative
stress [14]. Recent evidence has highlighted the protective

properties of SIRT6 against CAD in preserving endothelial
function, inhibiting inflammatory responses, and regulating
glucose and lipid metabolism. Hence, a decline in serum
SIRT6 levels has emerged as an independent risk factor for
CAD [15], warranting further investigation of its diagnos-
tic and predictive value in older adult patients. Existing
risk assessment models, such as the Pooled Cohort Equa-
tions model and the Systematic Coronary Risk Estimation
model, were primarily developed based on Caucasian and
African American populations and lack specific biomarkers
and demonstrate poor calibration when applied to the Chinese
population [16]. Given these ethnic differences, there is an
urgent need for tailored risk assessment models in cardiovas-
cular disease prevention, particularly in diverse populations
such as China.

In this study, we aimed to develop a nomogram for
predicting outcomes in older adults presenting with clini-
cal symptoms suggestive of CAD. We hypothesized that a
combination of baseline SIRT6 levels with clinical param-
eters could improve the evidence-based selection of candi-
dates for this marker and facilitate clinical decision-making,
resulting in its potential implementation in clinical trials.

Methods
Study Design and Participants
In this single-center study, a nomogram was developed for
predicting the outcomes of potential cases with CAD and
was validated using data from Ruijin Hospital, Shanghai
Jiao Tong University School Of Medicine. Patients aged
60 years or older who were diagnosed with angina pecto-
ris were screened between October 1, 2022, and March
31, 2023. The Judkins method [17] was used for perform-
ing coronary angiography (CAG) via the radial or femoral
artery. The angiographic results underwent joint assessment
by 3 experienced cardiovascular specialists (WFS , ZBZ,
and JWN). The severity of stenosis in the major coronary
arteries, including the left anterior descending branch (LAD),
left circumflex artery, right coronary artery, and left main
coronary artery, was evaluated, with CAD defined as ≥50%
stenosis in any 1 vessel and coronary atherosclerosis (CAS)
as <50% stenosis in all vessels.

Eligible participants were individuals aged 60 years or
older who presented with chest pain and had been evalu-
ated by a specialist, resulting in a preliminary diagnosis
of CAD with an indication for CAG. Participants must
have no prior history of CAG, percutaneous coronary
intervention, or coronary artery bypass grafting. Furthermore,
informed consent must be obtained for the collection of
biological samples, with blood samples obtained prior to
CAG. Participants must also have coronary artery steno-
sis as confirmed by the CAG results. Exclusion criteria
included recent acute infections, gastrointestinal bleeding,
surgical procedures, or trauma within the past 6 months.
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Individuals were also excluded if they had positive viral
markers, including hepatitis B surface antigen, hepatitis B
core antibody with hepatitis B virus–DNA of the detection
threshold or greater, positive hepatitis C virus antibody
with hepatitis C virus–RNA of the upper limit of normal
or greater, or positive HIV antibody. Severe cardiac con-
ditions also warranted exclusion, including decompensated
heart failure, significant valvular heart disease within the
past 6 months, notable electrocardiographic abnormalities (eg,
any degree of atrial fibrillation, second-degree type II or
third-degree atrioventricular block, or corrected QT interval
exceeding 470 milliseconds in females or 450 milliseconds
in males), uncontrolled symptomatic arrhythmias, cerebrovas-
cular events or transient ischemic attacks within the past 6
months, a history of malignancy or autoimmune diseases,
or severe liver or renal disorders unrelated to the study
condition.

Upon admission, patients were assessed for CAD severity
using the Gensini score, an angiographic tool for grading
coronary artery lesions [18]. Serum specimens were collected
from eligible patients for the detection of SIRT6 levels by
enzyme-linked immunosorbent assay. Clinical data and the
complete CAG inspection results of these participants were
also collected.
Ethical Considerations
The study protocol was approved by the human ethics
committee of Ruijin Hospital (KY2021-108 Ruijin Hospital).
It adhered to strict data confidentiality measures in com-
pliance with the Helsinki Declaration and the institutional
guidelines and reporting studies conducted using routinely

collected observational data. Participants provided written
informed consent at the time of data collection.

Selection Bias
Several rigorous measures were implemented to address
potential selection bias in this study. Stringent inclusion and
exclusion criteria were carefully defined and applied to ensure
a well-characterized and homogeneous study population.
Furthermore, random sampling techniques were used where
appropriate, and blinding in outcome assessment was ensured
to minimize bias in both participant selection and data
interpretation. These strategies were designed to enhance the
internal validity and robustness of our study results.

Data Collection
All recruited patients were divided into 2 cohorts, the
development cohort and the validation cohort, in an approx-
imate ratio of 8:2. Then, predefined criteria were applied
to ensure cohort comparability. A total of 29 pretherapeutic
parameters were collected, including demographic character-
istics, initial symptoms, history of hypertension and diabetes
mellitus, baseline clinical status, and baseline laboratory test
results. Finally, 3 out of 26 collected parameters were tested
as putative predictors for outcomes in the models. Three
putative predictors allowed for 9-10 events per predictor
for the primary outcome in the training cohort, meeting the
recommended minimal number of events per predictor. These
putative predictors were selected based on previous research
demonstrating their potential prognostic value in CAD and
the investigators’ (WFS, ZYC, and JWN) clinical experience
with CAD. The study flowchart is shown in Figure 1.
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Figure 1. Study flowchart. ApoB: apolipoprotein B; CAD: coronary artery disease; CAG:coronary angiography; SIRT6: silent information regulator
6; TyG: triglyceride glucose; XGBoost: Extreme Gradient Boosting.

Statistical Analysis

Variable Selection
In this study, IBM SPSS Statistics (version 26.0; IBM
Corp) software was used for baseline description and
logistic regression (LR) analysis. Continuous variables were
presented as mean (SD), while categorical variables were
expressed as percentages (n [%]). Normality was assessed
using the Shapiro-Wilk test, with P>.05 indicating adherence

to normal distribution. For normally distributed variables,
an intergroup analysis was conducted using the t test,
while nonnormally distributed data were compared using the
Wilcoxon rank sum test. Features with >30% missing values
were removed. The remaining 29 features were collected for
further processing. For features with missing values of <10%,
median or mean imputation was used. Those with 10%‐20%
missing values were imputed by the “MissForest” package
in R (R Foundation for Statistical Computing). Random
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forest and Extreme Gradient Boosting (XGBoost) algorithms
were implemented via R statistical software (version 4.3.2;
R Foundation for Statistical Computing). Receiver operating
characteristic (ROC) curves were plotted using the “pROC”
package, while nomograms were constructed using the “rms”
and “regplot” packages. The “val.prob” function was used
for refining calibration curve plots and Hosmer-Lemeshow
tests, while the “dcurves” function facilitated decision curve
analysis (DCA). All statistical tests were 2-tailed, with
P<.05 considered statistically significant. Feature ranking was
obtained using Shapley Additive Explanation, Gini, and Gain
values, respectively. A 10-fold cross-validation strategy was
applied to develop the data set into training, validation, and
test sets.

Model Building and Visualization:
Three methodologies, including LR, random forest, and
XGBoost, were used for model building. All analyses were
conducted using the statistical software package R (version
4.3.2). The data from the Ruijin Hospital of Shanghai Jiao
Tong Medical University were used as the training set and
internal validation set for model development and verifica-
tion. Binary LR, random forest, and XGBoost models were
constructed using the training data to classify patients into
those with CAS and those with CAD. The XGBoost model
exhibited the highest comprehensive discriminant ability [19]
and therefore was selected for further analysis. The final
model was visualized as a column line chart to address issues
of poor machine learning interpretability and consequent low
clinical use.

Model Comparison
Accuracy, precision, recall, and F1-score were used to
evaluate the performance of the multiclassification model.

The model error was further analyzed using a confusion
matrix. Discrimination, calibration, and clinical use between
the nomogram and the variables incorporated into the
nomogram were assessed in both the training and validation
sets, respectively. ROC curves, calibration curves, and DCA
plots were plotted, and the areas under the ROC curves
(AUROCs) were compared using the Delong test. Calibration
was evaluated using the Hosmer-Lemeshow test.

Results
Characteristics of the Training and
Validation Sets
The final study cohort comprised 222 patients, with 178
allocated to the training set and 44 to the validation
set. The demographic characteristics and clinical results of
patients in both sets are summarized in Table 1. There
were 23.87% (53/222) of patients in the CAS group and
76.13% (169/222) of patients in the CAD group. There
were significant differences in the low-density lipoprotein
cholesterol (LDL-C), apolipoprotein B (ApoB), apolipopro-
tein E (ApoE), fasting blood glucose (FBG), hemoglobin A1c
(HbA1c), Gensini score, TyG index, and atherogenic index
of plasma (AIP) between the CAS and CAD groups (P<.05).
Specifically, the CAD group exhibited a higher TyG index
(12.4 [SD 1.38]) and AIP (0.10 [SD 0.31]) than the CAS
group (10.9 [SD 0.54], 0.00 [SD 0.27]), as shown in Table
1. Significant differences were also observed in categorical
variables, such as sex, history of diabetes, clinical symp-
toms, segmental vascular lesions (ie, LAD, left circumflex
artery, left main coronary artery, and right coronary artery),
and 10-year cardiovascular risk between the CAS and CAD
groups (P<.05).

Table 1. Baseline characteristics of participantsa.
Variables CASb (n=53) CADc (n=169) P value
Age (years), mean (SD) 69.3 (5.33) 68.9 (5.12) .56
Sex, n (%) .03*
  Female 28 (52.8) 59 (34.9)
  Male 25 (47.2) 110 (65.1)
BMI, mean (SD) 25.1 (4.46) 24.6 (2.64) .50
Drinking, n (%) 1.00
  No 47 (88.7) 151 (89.3)
  Yes 6 (11.3) 18 (10.7)
Smoking, n (%) .68
  No 47 (88.7) 144 (85.2)
  Yes 6 (11.3) 25 (14.8)
SBPd, mean (SD) 145 (18.3) 146 (17.8) .82
DBPe, mean (SD) 77.6 (10.1) 78.5 (10.8) .60
Diabetes mellitus, n (%) .006**
  No 43 (81.1) 100 (59.2)
  Yes 10 (18.9) 69 (40.8)
Hypertension, n (%) .65
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Variables CASb (n=53) CADc (n=169) P value
  No 20 (37.7) 56 (33.1)
  Yes 33 (62.3) 113 (66.9)
hs-CRPf, mean (SD) 2.19 (3.37) 2.15 (3.32) .94
CysCg, mean (SD) 1.00 (0.16) 1.59 (7.08) .28
eGFRh, mean (SD) 84.1 (9.63) 82.9 (10.6) .47
mALBi, mean (SD) 1.40 (1.78) 2.03 (5.04) .17
cTnIj, mean (SD) 7.60 (16.1) 25.3 (114) .05
proBNPk, mean (SD) 170 (338) 305 (1764) .35
LDL-Cl, mean (SD) 2.36 (0.89) 1.95 (0.69) .003**
Lp(a)m, mean (SD) 0.26 (0.32) 0.31 (0.35) .35
sLDLn, mean (SD) 0.76 (0.35) 0.66 (0.31) .08
ApoA1o, mean (SD) 1.35 (0.25) 1.28 (0.24) .10
ApoBp, mean (SD) 0.76 (0.23) 0.68 (0.19) .02*
ApoEq, mean (SD) 3.77 (0.52) 3.60 (0.62) .05
FBGr, mean (SD) 5.67 (1.00) 6.10 (1.72) .03*
HbA1cs, mean (SD) 6.00 (0.66) 6.46 (1.28) .001**
FINSt, mean (SD) 9.87 (5.37) 11.7 (11.3) .11
CPu, mean (SD) 2.61 (1.16) 2.72 (1.23) .56
Carotid plaque, n (%) .049*
  <50% 37 (69.8) 138 (81.7)
  >50% 1 (1.89) 9 (5.33)
  No 15 (28.3) 22 (13)
Ten-year cardiovascular risk, n (%) .009**
  High 21 (39.6) 107 (63.3)
  Low 7 (13.2) 15 (8.88)
  Middle 25 (47.2) 47 (27.8)
LADv, n (%) .01*
  No 11 (20.8) 12 (7.10)
  Yes 42 (79.2) 157 (92.9)
RCAw, n (%) <.001***
  No 24 (45.3) 27 (16)
  Yes 29 (54.7) 142 (84)
LCXx, n (%) <.001***
  No 38 (71.7) 57 (33.7)
  Yes 15 (28.3) 112 (66.3)
LMy, n (%) .01*
  No 53 (100) 147 (87)
  Yes N/Az 22 (13)
SIRT6aa, mean (SD) 866 (510) 495 (443) <.001***
TyGab, mean (SD) 10.9 (0.54) 12.4 (1.38) <.001***
AIPac, mean (SD) 0.00 (0.27) 0.10 (0.31) .02*

aVariables of significance (*P≤.05, ** P≤.01, and *** P≤.001).
bCAS, coronary atherosclerosis.
cCAD: coronary artery disease.
dSBP: systolic pressure.
eDBP: diastolic blood pressure.
fhs-CRP: hypersensitive C-reactive protein.
gCysC: cystatin c.
heGFR: estimated glomerular filtration rate.
imALB: microalbumin.
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Variables CASb (n=53) CADc (n=169) P value

jcTnI: troponin I.
kproBNP: pro-B-type natriuretic peptide.
lLDL-C: low-density lipoprotein cholesterol.
mLp(a): lipoprotein(a).
nsLDL: small dense low-density lipoprotein.
oApoA1: apolipoprotein A1.
pApoB: apolipoprotein B.
qApoE: apolipoprotein E.
rFBG: fasting blood glucose.
sHbA1c: hemoglobin A1c.
tFINS: fasting insulin.
uCP: C-peptide.
vLAD: left anterior descending branch.
wRCA: right coronary artery.
xLCX: left circumflex artery.
yLM: left main coronary artery.
zN/A: not applicable.
aaSIRT6: silent information regulator 6.
abTyG: triglyceride glucose.
acAIP: atherogenic index of plasma.

Circulating SIRT6 Levels in Patients
To investigate the potential difference in serum SIRT6 levels
between the CAD and CAS groups, the enzyme-linked
immunosorbent assay was used to determine the SIRT6 levels
in serum samples. A significant reduction in serum SIRT6
levels was observed in the CAD group (495 [SD 443] pg/mL)
compared with the CAS group (866 [SD 510] pg/mL) (Figure

2A). To further assess the diagnostic potential of serum
SIRT6 as a biomarker for distinguishing between CAS and
CAD, ROC analysis was performed. A serum SIRT6 level of
546.384 pg/mL was identified as the optimal cutoff value for
discriminating between CAS and CAD (AUROC 0.725, 95%
CI 0.653‐0.797) (Figure 2B).

Figure 2. Serum levels of silent information regulator 6 (SIRT6) and receiver operating characteristic (ROC) curve. (A) Serum levels of SIRT6 were
lower in patients with CAD and patients with CAS. (B) ROC curve analysis of SIRT6 in predicting the diagnosis of CAD (AUROC 0.725, 95% CI
0.653‐0.797). AUROC: area under the receiver operating characteristic curve; CAD: coronary artery disease; CAS: coronary atherosclerosis.

Exploration of Variable Correlations
Factors with significant differences in intergroup analysis,
including ApoB, unstable angina pectoris, LDL-C, AIP,
FBG, HBA1c, TyG index, history of diabetes mellitus,
SIRT6, LAD, AIP, 10-year cardiovascular risk, carotid
plaque burden, segmental vascular lesions, and Gensini score,
were selected for further interfactor correlation analysis. To

illustrate the correlations among these predictive indicators, a
correlation coefficient matrix graph was constructed. While
serum SIRT6 did not exhibit positive correlations with
other indicators, aside from LDL-C, it demonstrated negative
correlations with the Gensini score, 10-year cardiovascular
risk, and carotid plaque burden (Figure 3).
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Figure 3. Correlation heatmap analysis. AIP: atherogenic index of plasma; ApoB: apolipoprotein B; DM: diabetic mellites; FBG: fasting blood
glucose; HbA1c: hemoglobin A1c; LAD: left anterior descending branch; LCX: left circumflex artery; LDL-C: low-density lipoprotein cholesterol;
LM: left main coronary artery; RCA: right coronary artery; Risk: 10-year cardiovascular risk; SIRT6: silent information regulator 6; TyG: triglyceride
glucose; UA: unstable angina pectoris.

A correlation coefficient matrix graph was constructed.
Darker shades represent stronger correlations, with posi-
tive correlations indicated by positive values and negative
correlations by negative values. The predictive indicators
included in this analysis are primarily independent predictive
factors.
Feature Selection and Ranking
The significance of variables was preliminarily evaluated by
LR analysis. Ultimately, serum SIRT6 levels, TyG index, and

ApoB were incorporated into the model construction (Figure
4A). Feature importance ranking was determined using
Gini (Figure 4B), Gain (Figure 4C), and Shapley Additive
Explanation values (Figure 4D and E), which yielded similar
results (Figure 4).
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Figure 4. Feature importance. (A) Logistic regression results; (B) random forest results; (C) XGBoost results; (D) random forest SHAP; and (E)
XGBoost SHAP. ApoB: apolipoprotein B; OR: odds ratio; SHAP: Shapley Additive Explanation; SIRT6: silent information regulator 6; TyG:
triglyceride glucose; Extreme Gradient Boosting XGBoost.

Model Performance Comparisons
An LR model and 2 machine learning models were construc-
ted to predict the development of CAD in older adult patients.

The discriminative performance of the 3 models is shown via
ROC curves in Figure 5.
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Figure 5. Receiver operating characteristic curves for predicting different classes using various models. (A) AUROC of the training set and (B)
AUROC of the validation set. AUROC: area under the receiver operating characteristic curve; RF: random forest; Xgboost: Extreme Gradient
Boosting.

In the training set, the random forest model demonstrated
the best predictive ability for CAD in older adult patients
(AUROC 0.977, 95% CI 0.960‐0.995), followed by the
XGBoost (AUROC 0.956) and LR (AUROC 0.890) models
(Figure 5A). However, in the validation set, the classifica-
tion performance of the random forest model was noticeably
inferior to that of the XGBoost model. The AUROC values of

XGBoost, LR, and random forest models were 0.913, 0.908,
and 0.757, respectively (Figure 5B).

In cross-validation, the LR model demonstrated the best
predictive ability for CAD in older adult patients (AUROC
0.912), followed by the XGBoost (AUROC 0.892) and
random forest (AUROC 0.892) models (Figure 6).

Figure 6. Cross-validation AUROC of various models. AUROC: area under the receiver operating characteristic curve; Xgboost: Extreme Gradient
Boosting.

Detailed performance metrics of the 3 models are shown
in Table 2. The XGBoost model exhibited the best discrim-
ination, with the highest recall (1) and accuracy (0.863),

the second-highest precision (0.833), and the second-highest
F1-score (0.909). Although the XGBoost model may not
perform as well as the other 2 models in certain aspects,
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its overall stability and balanced performance on both the
training and the validation sets make it a more reliable choice.
As a results, we developed a CAD prediction model for the

older adults using the XGBoost algorithm and visualized the
results through a nomogram. The nomogram based on the
serum SIRT6-level model is shown in Figure 7.

Table 2. Model performance metrics.
Model Accuracy Precision Recall F1-score
LRa 0.795 0.75 1 0.857
RFb 0.863 0.941 0.889 0.914
XGBoostc 0.863 0.833 1 0.909

aLR: logistic regression.
bRF: random forest.
cXGBoost: Extreme Gradient Boosting.

Figure 7. Nomogram for predicting the probability of CAD. Variables of significance (**P≤.01 and ***P≤.001). ApoB: apolipoprotein B; CAD:
coronary artery disease; SIRT6: silent information regulator 6; TyG: triglyceride glucose.

The calibration curves (Figure 8A) showed a similar trend
among the 3 models, and the Hosmer-Lemeshow test
results (χ28=11.001; P=.20) indicated no significant difference

between the predicted and observed values. These data
suggest that the XGBoost model has good calibration ability.
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Figure 8. Calibration curve and decision curve analyses for predicting coronary artery disease. (A) Calibration curves of the training cohort; (B)
decision curve analysis (DCA) of the training cohort; and (C) DCA of the validation cohort. RF: random forest; XGBoost: Extreme Gradient
Boosting.

The DCA revealed that the XGBoost model exhibited greater
net benefit along with the threshold probability, indicating its
superior clinical use compared with other models (Figure 8B
and C).

Discussion
Principal Findings
An accurate risk assessment is critical for patient-centered
clinical decision-making. The nomogram presented in this
study may serve as an important clinical decision aid
tool, assisting in determining whether invasive CAG should
be performed, or informing patients as a basis for joint

decision-making. In this study, traditional LR and 2 com-
mon machine learning algorithms were used to establish a
prediction and evaluation model of coronary artery steno-
sis in older adult patients with suspected CAD. Through
a comprehensive analysis of models, the XGBoost algo-
rithm–based model with excellent prediction performance and
good internal verification ability was selected. In addition,
we developed a nomogram for CAD prediction by combin-
ing traditional clinical variables (eg, ApoB) with 2 novel
variables relevant to the older adult population, serum SIRT6
levels and the TyG index, which allowed for assessing
the risk of coronary artery stenosis more conveniently and
interactively (Figure 6). This, to some extent, helps address
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the issue of poor interpretability, which often hampers the
implementation of machine learning models.

Given its significant role in genomic stability, DNA repair,
and telomere function, SIRT6 has been considered to have
therapeutic potential in aging and aging-related diseases.
Moreover, SIRT6 plays a crucial role in the development
and progression of CAD due to its involvement in oxi-
dative stress, inflammation, and energy metabolism [20].
Previous studies have highlighted the importance of SIRT6
in protecting blood vessels and the heart from endothe-
lial dysfunction, atherosclerosis, myocardial fibrosis, and
ischemia or reperfusion injury [21,22].

In this study, we observed lower serum SIRT6 levels
in older adult patients with CAD than in those with CAS.
Correlation analysis revealed a negative association between
serum SIRT6 levels and the Gensini score, suggesting that
reduced serum SIRT6 levels may exacerbate the severity of
coronary artery lesions. Furthermore, serum SIRT6 levels
were negatively correlated with segmental vascular lesions
and carotid plaque burden, indicating that serum SIRT6 may
reflect the overall burden of atherosclerotic plaques in blood
vessels. Dyslipidemia is an independent risk factor for the
occurrence and development of CAD, while diabetes mellitus
doubles the risk of cardiovascular disease and is a leading
cause of mortality in patients with dyslipidemia [23,24].

LDL-C levels are considered a determinant of the absolute
risk of major cardiovascular events [25]. Previous evidence
has revealed that liver-specific knockout of SIRT6 signifi-
cantly increases the proprotein convertase subtilisin/kexin
type 9 (PCSK9) gene expression and plasma LDL-C levels,
while SIRT6 overexpression improves lipid metabolism and
reduces atherosclerosis risk by lowering plasma LDL-C
and PCSK9 levels [26]. Although a previous clinical study
in a Chinese population of all ages found no correlation
between serum SIRT6 and LDL-C levels [15], in this study,
we found a positive correlation between serum SIRT6 and
LDL-C levels. Future investigations are needed to explore the
mechanisms by which SIRT6 affects cardiovascular function
through lipid metabolism in the older adult population.

Disruption of glucose homeostasis is another recognized
risk factor for CAD. Animal models have shown that SIRT6
plays an important role in glucose production and uptake,
insulin signaling, and metabolism [27]. Our data revealed
that circulating SIRT6 levels were negatively correlated with
FBG and the comorbidity of diabetes, which is consistent
with previous findings [28]. Whether glucose metabolism
disruption mediates the relationship between SIRT6 and
CAD warrants further investigation. In addition, our study
identified serum SIRT6 as an independent biomarker for
assessing the severity of coronary artery lesions in older
adults, with the optimal cutoff value for classifying athero-
sclerosis and CAD being 546.384 pg/mL.

Abnormal blood lipids are established independent risk
factors for CAD. Unlike previous studies that commonly
included LDL-C, HDL-C, and other conventional measures,
our study incorporated ApoB as one of the predictive factors.
ApoB is a crucial component of LDL-C, and its deposition

within the arterial wall is a fundamental step driving the
progression of atherosclerosis, from initial lipid deposition
to the development of acute complex events, such as plaque
rupture [29]. Compared with other individual lipid markers,
ApoB serves as a more accurate biomarker for cardiovascular
risk assessment [30,31]. Elevated ApoB levels, representing
LDL levels, are associated with the occurrence of CAD, and
ApoB levels are positively correlated with the Gensini score,
indicating the degree of atherosclerosis and arterial narrowing
[32]. In addition, circulating ApoB levels are considered more
predictive than plasma cholesterol levels for early-onset CAD
risk [33]. Correlation analysis indicated a significant positive
correlation between ApoB and LDL-C levels. Moreover, in
all 3 statistical methods used for feature selection, ApoB
consistently emerged as significant, which is in line with
previous findings [31]. However, in an intergroup analysis,
we observed higher levels of ApoB in the CAS group than in
the CAD group, which is contrary to previous results [33].

Insulin resistance further disturbs glucose and lipid
metabolism in patients with diabetes, promoting chronic
inflammation, disrupting normal endothelial function, and
accelerating the development of complications, such as
atherosclerosis-related cardiovascular diseases. The persis-
tent prevalence of insulin resistance is considered a major
contributor to the high mortality rate in atherosclerosis-related
cardiovascular diseases worldwide [34]. The TyG index is
a quantitative measure based on blood glucose and triglycer-
ides that assesses insulin resistance. A clinical study has
shown an association between the TyG index and coronary
artery calcification [35]. However, in cohort studies, the TyG
index was found to be correlated with carotid atherosclero-
sis [36] but unrelated to the incidence of CAD [37]. In our
study, intergroup analysis revealed that the TyG index was
significantly higher in the CAD group than in the CAS group.
Correlation analysis indicated positive associations between
the TyG index and the Gensini score, carotid plaque burden,
and segmental vascular lesions. Furthermore, in multifactorial
regression analysis and machine learning feature selection,
the TyG index consistently demonstrated a strong correla-
tion with CAD, suggesting that it may be an independent
risk factor for CAD. Furthermore, we observed a negative
correlation between serum SIRT6 levels and the TyG index.
Future research is needed to explore the impact of SIRT6 on
the TyG index and to elucidate the relationship between these
factors in terms of glucose and lipid metabolism disturbance
and the development of CAD.
Strengths and Limitations
Our prediction model addresses the challenge of poor
interpretability associated with machine learning models.
By incorporating readily obtainable clinical and physiologi-
cal indicators, this nomogram not only provides prediction
results and probabilities directly but also facilitates personal-
ized intervention through probability curves. Tailored patient
treatment may reduce medical costs and unnecessary invasive
tests. Particularly in resource-constrained medical settings,
our model may assist in disease screening and alleviate the
medical burden.
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Although the overall performance of the model was good,
the sample distribution in our study was not balanced, and
the model was not validated externally with independent data
sets. Therefore, the generalizability and extrapolation to the
overall population cannot be currently estimated. Second,
the model was more inclined to classify patients without the
disease as having the disease, while the proportion of patients
with the disease misclassified as being disease-free was very
low. The rate of missed diagnosis was also low. Third,
the limited small sample size and single-center, cross-sec-
tional design constrained the generalizability of the results.
Furthermore, this study specifically focused on the older
adult population; however, there is currently no consensus
on age-related changes in circulating ApoB levels. Further-
more, some studies have suggested that the ApoB–apolipo-
protein A1 (ApoA1) ratio has a higher predictive value for
atherosclerosis and intima-media thickness than individual
lipid markers. Therefore, in future research, expanding the
sample size and using the ApoB-ApoA1 ratio as a composite
indicator are needed to further evaluate the correlation
between ApoB and the severity of coronary artery lesions.

Conclusions
Based on the LR, random forest, and XGBoost algorithms,
we developed a predictive model for CAD occurrence in
the older adult population, incorporating SIRT6, the TyG
index, and ApoB. The model was comprehensively evalu-
ated for discrimination, calibration, clinical applicability, and
internal validation. The XGBoost predictive model exhibited
favorable predictive performance and clinical use, which may
facilitate early CAD screening and diagnosis in older adult
patients, particularly for identifying high-risk individuals.
Furthermore, the model may reduce unnecessary invasive
examinations in negative patients and minimize missed
diagnoses in positive patients. The personalized probability
curve generated by the model may offer targeted interven-
tion guidance. Our findings also underscore the importance
of considering risk factors such as SIRT6, ApoB, and TyG
levels in this population.
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