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Abstract
Background: Hospitalized, frail older adults have an increased risk of developing hospital-acquired disability associated with
hospital practices of restricted physical activity and immobilization. The use of activity tracking wearable devices may allow
identification and prevention of mobility decline, reducing hospital-acquired disability.
Objective: This study aimed to identify the optimal wearable device and wear location for monitoring mobility in older
hospitalized patients. Specific objectives included (1) comparison of the feasibility and acceptability of ActiGraph wGT3X-BT
(ActiGraph LLC), MOX1 (Maastricht Instruments), MetaMotionC (mBientLab), and Fitbit Versa (Google) for continuous
mobility monitoring and (2) determination of the concurrent validity of the selected device for detecting body posture and step
count.
Methods: Participants were recruited for this observational study in the acute medical care unit of an academic hospital in
Hamilton, Ontario, Canada. Eligible patients were aged 60 years and older, able to undertake the mobility protocol, and had an
anticipated length of stay greater than 4 days. The study was divided into 2 experiments. Experiment 1 evaluated the feasibility
of 4 wearable devices and validated the derived data for body posture and step count. Experiment 2 involved a mobility
assessment session and a 24-hour monitoring and feasibility period with the selected device from experiment 1.
Results: The ActiGraph wGT3X-BT emerged as the most feasible device, demonstrating superior usability, data acquisition,
and management. The thigh-worn ActiGraph accurately detected sedentary behavior, while the ankle-worn device provided
detailed information on step counts and body postures. Bland-Altman plots and intraclass correlation coefficients indicated that
the ankle-worn ActiGraph showed excellent reliability for step counting, with minimal bias and narrow limits of agreement.
Patients expressed a high willingness to wear a continuous mobility tracking device at the hospital and at home.
Conclusions: Thigh- and ankle-worn ActiGraph are optimal for assessing and monitoring mobility in older hospitalized
patients. Challenges such as discomfort and device removal observed during the 24-hour monitoring period highlight areas for
future studies. Overall, our findings support the integration of wearable technology in hospital settings to enhance mobility
monitoring and early intervention strategies. Further research is warranted to evaluate the long-term use of wearable data for
predicting health outcomes post hospitalization and informing clinical decision-making to promote early mobility.
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Introduction
Research indicates that a significant proportion of the adverse
functional and health outcomes experienced by older adults
during hospitalization may not be directly linked to their
underlying health conditions or the reasons for hospitalization
[1-3]. Instead, they may arise from certain hospital practi-
ces, such as restricted physical activity and immobilization,
which may be harmful for older patients, especially for those
who are frail [1]. Studies have consistently shown that older
patients spend a minimal amount of time standing or walking
during their hospital stay, typically just 3% of the time
[4-7]. This limited mobility can have significant consequen-
ces for function, with each day spent in bed associated with
a 1%‐5% loss in muscle strength [3]. On the other hand,
there is evidence showing that older adults who regain their
prehospitalization level of function after discharge have lower
mortality rates and maintain their functional levels 1 year
post discharge. Therefore, early detection and prevention of
mobility decline during hospitalization is critical to improving
patient outcomes and reducing health care utilization [8].

Wearable technology provides a direct means of assessing
and monitoring mobility, by gathering continuous information
on patients’ physical activities and mobility patterns. This
capability would allow practitioners to create and monitor
tailored mobility care for each patient, which may improve
functional outcomes. Several wearable monitors have been
validated in healthy individuals including among older
adults living in the community [9,10]. However, experiment
protocols, including population type, settings, sensor type,
activity, and wear location (eg, wrist vs thigh) can influence
the validity of these devices [11-14]. Despite the increased
use of wearables in clinical settings, the feasibility, validity,
and reliability of these devices have not been fully estab-
lished in older hospitalized patients [15,16]. Collecting data
accurately with wearables in hospitalized patients presents
significant challenges, as they tend to be more sedentary
and walk slower [17]. In addition, hospitalized patients often
have medical devices attached to them, such as intravenous
lines or heart monitors, which can impede mobility and make
it challenging to select the optimal wear location for data
collection.

The overall objective of this study was to identify the
optimal wearable device and wear location for assessing and
monitoring mobility in older hospitalized patients. Specifi-
cally, we aimed to (1) compare the feasibility and accepta-
bility of different wearable devices to assess mobility for
long-term continuous monitoring during inpatient hospital
stays among older hospitalized patients, and (2) for the
selected device from aim 1, determine its concurrent validity
for detecting body posture and step count. To fulfill the
study aims we performed 2 experiments with 2 independent
samples. In the first experiment, we used a standardized
protocol to test the feasibility of data collection with the
ActiGraph wGT3X-BT, MOX 1, MetaMotionC (MMC), and

Fitbit Versa over a short period of time, while validating
the data collected for detecting body posture and step count
using a standardized protocol. The second experiment was
divided in 2 parts where patients wore the selected weara-
ble from experiment 1 in 3 different body locations and
performed a standardized activity protocol, followed by a
24-hour free-living protocol. This investigation was crucial
for understanding the practicality of wearable devices for
mobility monitoring in older adults in a hospital setting, as
well as identifying potential barriers or limitations that may
impact their utility.

Methods
Participants
Patients were recruited from the acute medical care unit of the
Juravinski Hospital, Hamilton, Ontario, Canada. Inpatients
were initially identified by the admitting physician, who
sought approval before study personnel approached them.
Patients were only included if, based on the judgment of the
admitting physician, they were deemed capable of providing
informed consent. A study coordinator, not directly involved
in patient care, then contacted the eligible patients to obtain
informed consent. During data collection, a hospital physical
therapist, who accompanied all participants and assisted with
data collection, ensured safety and facilitated communication
when necessary.

Eligible patients were aged 60 years and older, able to
undertake the mobility protocol with or without assistance,
had an anticipated length of stay of more than 4 days,
and able to provide written informed consent. Experiment
1 was conducted from November to December of 2019 and
experiment 2 from September to December 2020.
Ethical Considerations
This study was approved by the Hamilton Integrated Research
Ethics Board (HiREB #7145) and all participants provided
written informed consent before participation. At the time
of consent, we recorded information regarding participants’
demographics, preadmission functional performance, and
health status. All participants had the right to withdraw from
the study at any time without any adverse consequences. All
data were anonymized. Participants did not receive compen-
sation for their participation.
Measurement Instruments
For the feasibility and device performance of experiment 1, 4
devices were compared, that is, the MetaMotionC (MMC),
Fitbit Versa 1, MOX1, and the medical-grade monitor
ActiGraph wGT3X-BT. The MMC by mBientLab was chosen
for its open platform enabling on-board programming, in
addition to its lower cost. The Fitbit Versa 1 (Google) was
widely recognized in the community at the study’s time,
despite lacking direct access to raw sensor data extraction.
For both devices, a Python algorithm was developed to
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extract the raw data. The MOX1 device (Maastricht Instru-
ments , Netherlands) presents a triaxial accelerometer sensor
and is equipped with proprietary software. During the study
period, the proprietary software of the MOX1 did not offer
direct access to the raw data and step count data. To address
this limitation, the company provided us with a MATLAB
function for extracting the raw data. Finally, the medical-
grade ActiGraph wGT3X-BT (ActiGraph), often viewed
as the gold standard in accelerometry movement analysis
for research, features a built-in triaxial accelerometer that
captures high-resolution raw acceleration data. The ActiLife
software (ActiGraph LLC, version 6.11.4) was employed to
initialize, process, and download data, extracting step counts
and body posture measures (time spent lying down, sitting,
and standing). In experiment 2, we used the ActiGraph
wGT3X-BT as it was the selected device from experiment
1.
Protocols

Experiment 1
Patients from the first experiment were engaged in the
activity data procedures to test the feasibility of 4 different
wearable devices (ActiGraph wGT3X-BT, MOX1, MMC,
and Fitbit Versa), as well as the concurrent validity of the
ActiGraph in detecting body posture and step counts. Each
patient wore all 4 devices on the waist, 3 devices on the thigh,
and 3 on the ankle simultaneously and interchangeably, that
is, up to 10 devices per patient. An elastic band equipped with
Velcro on both ends was used to attach the devices securely

to the body. The waistband featured 4 pockets, while the thigh
and ankle bands had 3 pockets each, providing the flexibility
to interchange the devices as needed during the study. The
waistband was positioned at the level of the anterior superior
iliac spine, the thigh band above the kneecap, and the ankle
band above the malleolus. After positioning the elastic bands,
the wearable devices were randomly assigned to each pocket.
Once wearable devices were placed, patients performed the
mobility protocol that included body posture tasks (standing,
sitting, and lying) and the timed up and go (TUG) [18]
mobility test.

During the body posture tasks, patients were asked to
lie down, sit on the edge of the bed, and then stand with
or without support for 5 minutes. The time spent in each
body posture was observed and recorded by a physiotherapist.
Following, the patients performed the TUG which is a reliable
and valid test to assess mobility and balance in older adults
[18]. It measures, in seconds, the time taken by an individual
to stand up from a standard armchair, walk 3 meters, turn,
walk back to the chair, and sit down. The participants wore
their customary walking aid (none, cane, or walker), and no
physical assistance was given. The recording initiated as the
patient raised from the chair and stopped as the patient sat on
the chair again. The time and the number of steps taken to
complete the test were also counted and recorded. Following
the activity procedures, patients were invited to complete the
acceptability questionnaire (Textbox 1). The protocol took
approximately 45‐60 minutes to complete.

Textbox 1. Feasibility questionnaires for experiments 1 and 2.
Experiment 1

1. Have you ever used a device to measure physical activity in the past? (Responses: yes, no)
2. Would you be willing to wear the device for a longer period, 5 to 7 days, as part of a research study? (Responses: very

likely, somewhat likely, not likely)
3. What part of the body would you prefer to wear the device? (Responses: waist, thigh, ankle)
4. Which of these devices would you likely use? (Responses: ActiGraph, MOX1, Versa, MetaMotionC)
5. How easy would it be for you to remember to use the device every day? (Responses: very easy, easy, very difficult,

difficult)
6. Do you think this device would interfere with your daily routine? (Responses: no effect, minor effect, major effect)
7. Would you feel more motivated to move when wearing the device? (Responses: yes, no, no answer)

Experiment 2
1. Have you ever used a device to measure physical activity in the past? (Responses: yes, no)

a. What devices did you use?
b. What activity (or activities) did you track with the devices?
c. How long ago was it that you used the devices?
d. If you stopped using the devices, why did you stop?

2. Would you be willing to wear a device to measure physical activity for 5 to 7 days while in the hospital? (Responses:
likely, uncertain, unlikely, very likely, very unlikely)

3. Would you be willing to wear a device daily to measure physical activity once you return home from the hospital, for
a period of up to say 3 months? (Responses: yes, no)

4. What part of the body would you most prefer to wear the device? (Responses: wrist, waist, thigh, ankle, other)
5. Would you feel more motivated to move when wearing a device to measure physical activity? (Responses: yes, no)
6. Prior to being in the hospital, how many days per week on average did you engage in 30 minutes or more of physical

activity, which was enough to raise your breathing rate? (Responses: 1, 2, 3, 4, 5, 6, 7, none)
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Experiment 2
We conducted 1 mobility assessment session where patients
wore the chosen device from experiment 1 (ActiGraph)
in 3 different body locations (wrist, thigh, and ankle)
and performed a standardized mobility protocol under the
supervision of a trained physiotherapist. Patients wore the
ActiGraph on the wrist using a wristband. At the thigh, the
ActiGraph was attached to the anterior aspect of either the
left or right thigh just above the kneecap, and at the ankle,
the device was attached just above the malleoli. The Hypafix
Stretch Non-Woven Adhesive (BSN Medical) was used to
affix the devices. The mobility protocol included the same
body posture protocol as the first experiment, followed by
a step count task recorded during a 30-meter walking test
(30MWT) [19,20]. Patients were asked to stand up from
a chair, walk 30 meter, turn around, and walk back at a
comfortable pace using their usual walking aid if necessary.

The time and the number of steps taken to complete the test
was counted and recorded. The mobility protocol in experi-
ment 2 lasted approximately 30‐45 minutes.

After the mobility assessment, each patient was randomly
assigned to wear the ActiGraph devices on either the wrist
and thigh or wrist and ankle for the next 24 hours. We
assessed the acceptability and feasibility of the wearable
devices by location, as well as their acceptability of

wearing the adhesive patches over a 24-hour duration in
the hospital. We also documented any interruptions or issues
encountered during the 24-hour monitoring period. If patients
removed or stopped using the device, the research assistant
recorded feedback from both the patient and the attending
nurses regarding the reasons for discontinuation. Figure 1
illustrated the variations within each experiment.

Figure 1. Summary of procedures for experiment 1 and 2.

Data Reduction

Experiment 1
Data were collected at 100 Hz for MOX1, and at 50 Hz for
the other devices. In the second experiment, the ActiGraph
data were collected at 30 Hz. Custom Python algorithms were

created for the MMC and Fitbit devices to enable continuous
saving and downloading of raw accelerometer data, necessi-
tating the use of a companion device, a tablet. The MOX1
device was initialized using its proprietary software and data
were downloaded using the provided MATLAB function.
Raw data from these devices were not subjected to further
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processing; our focus was solely on recording downloading
time, as well as the quantity and quality of the saved data.

In both experiments, the ActiLife software (version 6.11.4)
was used to initialize, download, and process the ActiGraph
data. Data were aggregated into 60 seconds time-stamped
epochs. The following measures were obtained from the
ActiLife: wear time, counts per minutes, activity intensity,
step counts, and body posture (time spent in lying down,
sitting, and standing). The following measures were obtained
from the ActiLife algorithms: wear time, counts per minute,
activity intensity, step counts, and body posture (time spent
lying down, sitting, and standing). For step counts, since the
ActiLife algorithms measures strides when attached to the
thigh, we doubled the stride numbers to determine the actual
number of steps taken. This adjustment is necessary because
each stride recorded by the device corresponds to two steps—
one for each leg—so the raw stride count is multiplied by 2 to
obtain an accurate step count.

In addition, we applied the ActiGraph manufacturer’s step
algorithm, the low-frequency extension filter, to the step
count data. This filter is designed to detect lower-amplitude
movements, enhancing the accuracy of step detection [21].
Body posture classification in both experiments was obtained
using the thigh-worn algorithm from the ActiGraph that relies
on movement and the thigh angle to accurately classify lying
and sitting versus standing positions [22]. The first and last
45 seconds of data from each activity were discarded to avoid
potential participant error in recording time and to exclude the
transition times.

Experiment 2
For the 24-hour protocol, the accelerometer data from the
ActiGraph was screened for wear time using the method
described by Choi et al [23]. Based on the activity counts
determined by the ActiLife algorithms, and using an epoch
length of 60 seconds, nonwear time was defined as 90
consecutive minutes of zero counts, with an allowance of 2
minutes of nonzero counts, provided there were 30-minute
consecutive zero counts before and after that allowance.
Based on the wear time, we determined the average amount
of time the patients wore the devices at the wrist, thigh, and
ankle during the 24-hour protocol.

Statistical Analysis
Descriptive data were analyzed using measures of central
tendency and dispersion. Absolute percentage errors were
calculated between the observed body posture time and
step count against the values obtained using the ActiGraph
algorithm (absolute percentage errors=[(observed data–
ActiGraph data)÷observed data]×100). Intraclass correlation
coefficients (ICC2,1) [24] were used to examine criterion
validity between step count taken from the ActiGraph
compared with those observed during the TUG and 30MWT.
By convention, an ICC ≥0.75 was considered excellent,
0.60‐0.74 good, 0.40‐0.59 fair, and <0.40 poor [25].

Bland-Altman plots [26,27] were constructed to show the
variability of the ActiGraph in recording step count compared
with the observed data. With this technique, the mean error
score and the 95% prediction intervals can be examined in
graphical form. Comparisons that are in closer agreement
will have a mean bias close to zero and tighter 95% predic-
tion intervals. Statistical analyses were conducted with SPSS
version 26 (IBM Corp) with the α level set at .05.

Results
Overview
A total of 25 older adults (n=17, 65% women) with a
mean age of 79.6 (SD 8.1) years participated in experiment
1, and 30 participants (n=24, 80% women), with a mean
age of 81.4 (SD 8.8) years, participated in experiment 2
(Table 1). The patients were hospitalized due to the follow-
ing conditions: cardiac conditions (n=6) including hyperten-
sion, congestive heart failure, atrial fibrillation, and coronary
artery disease; urinary tract infection (n=5); deconditioning
(n=5); falls (n=3); acute kidney injury (n=3); exacerbation
of COPD (n=2); shortness of breath (n=2); sepsis (n=2);
pneumonia (n=1); syncope (n=1); leg pain (n=1); vertigo
(n=1); gastroenteritis (n=1); and back pain (n=1). Table 1
describes the patients’ demographics and clinical character-
istics. In general, patients were more independently mobile
before admission.

Table 1. Demographics, comorbidities, and mobility characteristics of the patients.
Variables Experiment 1 Experiment 2
Demographics, n 25 30

Age (y), mean (SD) 79.6 (8.1) 81.4 (8.8)
Sex (female), n (%) 17 (65) 24 (80)
BMI (kg/m2), mean (SD) 25.6 (6.2) 25.2 (7.7)

Gait aids, n (%) 25 (100) 29 (100)
None 12 (48) 7 (24)
Walker rollator 12 (48) 16 (55)
Cane 1 (4) 2 (6)
Cane and walker 0 4 (14)

Most common comorbidities, n 30 —c
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Variables Experiment 1 Experiment 2

Cardiac condition (hypertension, congestive heart failure, atrial fibrillation, and coronary artery disease) 25 —
Diabetes 9 —
Osteoarthritis 8 —
Cancer 7 —
COPDb and Asthma 7 —
Osteoporosis 5 —
Kidney disease 5 —
Early diagnosis of Alzheimer 2 —
Parkinson 2 —

Mobility before admission, n (%) — 30 (100)
Independent — 8 (27)
Independent with cane — 3 (10)
Independent with walker — 15 (50)
1 Person assist — 1 (3)
1 Person assist with walker — 2 (7)
Independent with cane inside and walker outside — 1 (3)

Mobility after admission — N=30
Independent — 1 (3)
Independent with cane — 1 (3)
Independent with walker — 11 (37)
1 Person assist — 3 (10)
1 Person assist with walker — 14 (47)

Mobility tests, n 23 —
TUGa (s)

Mean (SD) 28.5 (13.7) —
Median (IQR) 23.3 (7.14-61.0) —

Average speed (m/s)
Mean (SD) 0.27 (0.16) —
Median (IQR) 0.22 (0.09-0.84) —

30MWTd (m-s) test 1
Mean (SD) (s) 50 (31)
Median (IQR) (s) — 35 (30-120)
Percentile 25 (s) — 32
Percentile 75 (s) — 67

30MWT (m-s) retest
Mean (SD) (s) 58 (17)
Median (IQR) (s) — 20 (30-50)
Percentile 25 (s) — 50
Percentile 75 (s) — 70

aTUG: timed up and go.
bCOPD: chronic obstructive pulmonary disease.
cNot applicable.
d30MWT: 30-meter walking test.

Experiment 1
The acceptability questionnaire showed that out of 25
patients, 24 patients (96%) reported no previous experience
with wearables. However, 20 patients (80%) expressed their
willingness to wear a wearable for a period of 5-7 days. In
terms of the preferred body location, the ankle was selected

by 14 patients (58%), the waist was selected by 7 patients
(29%), and the thigh by 4 patients (17%). Furthermore, 1
patient did not answer this question. Among the wearable
devices, the Fitbit Versa was selected by 12 patients (48%),
the ActiGraph was chosen by 6 patients (24%), and the
MOX1 and MMC were selected by 3 (12%) and 2 (8%)
patients, respectively.
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We observed that both the ActiGraph and MOX1 devices
were easy to set up and enabled faster data downloads
compared with Fitbit and MMC devices. Of the 4 devices,
only the ActiGraph retrieved 100% of the collected data. The
MATLAB function from the MOX1 retrieved 72% of the
files, with 1 file containing missing data, and 7 files having a
lower frequency than the specified 100 Hz setup. In addition,
the MATLAB function provided by the manufacturer did
not include time stamps. The algorithms on the Fitbit Versa
were able to retrieve 79% of the data, with the primary issue
being missing data. Similarly, the MMC algorithms retrieved
81% of the data, although some data were missing due to
a time stamp error that was not identified until later in the
data collection process. In addition to its high performance,
the ActiGraph device also had the longest battery life and
storage volume compared to all other devices. The proprietary

software offered by ActiGraph allowed us to process, quickly
view and extract the data using a comprehensive selection
of independently developed and validated algorithms. Given
the ease of data collection using the ActiGraph in the above
experiment, it was selected as the most user-friendly device
for further evaluation.

For the body posture assessments, the waist- and thigh-
worn ActiGraph identified the lying down position correctly
73.6% and 78.2% of the time, respectively. For the standing
posture, both the thigh- and ankle-worn ActiGraph ach-
ieved high identification rates of 83.8% and 82.3%, respec-
tively. However, all devices exhibited poor performance in
identifying the sitting position, ranging from 25.4% to 49.6%
(Table 2).

Table 2. Percentage of times the ActiGraph correctly detected body posture compared with the physiotherapist recordings during experiment 1
(n=25).
Patient body posture Experiment 1 devices’ attachment

Waist, % Thigh, % Ankle, %
Liea Sit Stand Lie Sit Stand Lie Sit Stand

Lie 74b 0 0 78b 54 0 54b 0 0
Sit 11 41b 38 0 25b 15 0 50b 15
Stand 0 57 61b 1 1 84b 0.1 48 84b

Offc 16 1 1 21 20 1 45 3 3
aLie: laying down.
bPercentage of time the ActiGraph device correctly identified the body postures.
cOff: percentage of time that the device detected it was off.

Table 3 displays the results of the ICC analysis, compar-
ing the step counts during the TUG tests recorded by the
ActiGraph devices worn on the waist, thigh, and ankle
compared with direct observation by the physiotherapist. Data
from 2 participants were excluded due to errors in register-
ing the start and end of the tests. The ankle-worn device
demonstrated the highest agreement with the physiotherapist
(ICC2,1=0.94, 95% CI 0.85-0.97), the lowest bias (average
of the mean difference=0.9 steps), and a lower percentage

of error counting steps (12.8%). The waist-worn device
also shows excellent agreement with direct observation
(ICC2,1=0.85, 95% CI 0.65-0.94) but higher bias (1.4 steps)
and a higher percentage of error counting steps (21%). The
thigh-worn device has the lowest agreement (ICC2,1=0.75,
95% CI −0.21 to 0.93), the highest bias (overcounted on
average 7.3 steps), and the highest percentage of error
counting steps (28.8%).

Table 3. Intraclass correlations and percentage of error in counting steps between the physiotherapist (observer) step count and ActiGraph during the
timed up and go test in experiment 1 (n=23).
Body location Bias ICCa 95% CI P value Percentage error counting steps
Waist 1.4 0.85 0.65 to 0.94 .001 21
Thigh 7.3 0.75 −0.21 to 0.93 .001 28.8
Ankle 0.9 0.94 0.85 to 0.97 .001 12.8

aICC: intraclass correlation coefficient.

Experiment 2
The acceptability questionnaire was completed by 25 patients.
Their responses indicated that 22 (88%) had never used a
wearable before, 19 (76%) would wear a device for 5 to 7
days while in hospital, and 16 (64%) were willing to wear the
device daily at home, up to 3 months, as part of a research
study. Furthermore, 12 (48%) patients felt motivated to move
when wearing a device, and 8 (32%) would prefer to wear
the device on the wrist. Intercurrences during the 24-hour

protocol, include the following challenges with the devices:
1 participant had the thigh device removed and reapplied by
nurses, while another participant removed both the ankle and
wrist devices due to discomfort and itching. In 1 case, the
wrist device was taken off because of itchiness, and another
participant forgot the purpose of the devices, leading to the
removal of both the wrist and thigh devices. In addition, the
wrist device was loosened because of swelling, 1 participant
had to remove the ankle device for 24 hours due to a major
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infection on the lower leg, and another was unable to wear the
thigh device because the tape caused irritation.

Of the 30 patients, the ActiGraph devices were positioned
on the wrist and ankle in 11 (37%) patients and on the wrist
and thigh in 19 (63%) patients for the 24-hour protocol.
One thigh-worn device recorded only 1:36 of data during
the 24-hour protocol so the data were not included in the
analysis. On average, the patients wore the device on the wrist
for 22:45 (range 20:58-25:51), on the thigh for 24:36 (range
23:33-26:51), and on the ankle for 20:11 (range 8:03-26:16).
Intercurrences reported while wearing the devices included
itchiness at the wrist and thigh, patients removing devices due
to forgetting their purpose, and patients loosening the device
due to joint swelling.

The ActiGraph algorithms for the thigh-worn devices
have recently changed, combining lying down and sitting

as sedentary posture and including stepping detection (Table
4). The thigh-worn devices identified 100% of sedentary
posture while the patient was lying down, 98% while they
were sitting, and 91% while they were standing. The ankle-
worn devices best identified lying (89%) and standing (84%)
postures, and poorly identified the sitting posture (43.2%).
In addition, the ankle-worn devices classified the position as
sedentary on average 93% of the time when lying, but only
49% while the patients were seated. The wrist-worn devices
performed poorly compared with the thigh- and ankle-worn
devices, identifying lying down between 49% and 52% of
the time and sitting and standing around 15% ‐25% of the
time. The wrist-worn devices were able to identify 80% of the
sedentary posture while the patient was lying down, and 71%
while sitting (Table 4).

Table 4. Percentage of times the ActiGraph correctly detected body posture compared with the physiotherapist recordings during experiment 2
(N=30).
Patient’s body posture Experiment 2 devices’ attachment

Wrist, % Thigh, % Ankle, %
Seda Lieb Sit Stand Sed Stand Step Sed Lie Sit Stand

Lie 84 50c 34 8 100c 0 0 92 89c 3 1.3
Sit 72 46 26c 23 98c 1 1 47 4 43c 49
Stand 76 10 66 24c 8 91c 0 13 0 13 84c

Offd 8 5 0 — 6 4 2
aSed: sedentary (lying down + sitting).
bLie: laying down.
cPercentage of time the ActiGraph device correctly identified the body postures.
dOff: percentage time that the device detected it was off.
eNot applicable

Figure 2 shows the Bland-Altman plots of the difference
between the observed step count and the ActiGraph placed
on the waist, thigh, and ankle during the TUG test during
experiment 1. Visual interpretation of the plots shows less
bias (0.9), narrower limits of agreement (−7.4 to 9.1), and

more observations closer to zero for the ankle-worn Acti-
Graph. In contrast, the thigh-worn device showed a larger
limit of agreement, suggesting poor agreement between the 2
measurements, and a tendency to overcount steps.
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Figure 2. Bland-Altman plots comparing observer measurements with ActiGraph data from devices worn on the waist, thigh, and ankle during
the TUG test in experiment 1. The dashed lines denote the 95% limits of agreement (SD 1.96) of the mean difference, with darker dashed lines
highlighting the mean difference or bias. TUG: timed up and go.

During the 30MWT in experiment 2, the wrist- and
thigh-worn devices showed poor ICC values and a high
percentage of miscounted steps. The ankle-worn devices

showed excellent reliability and on average overcounted the
number of steps by 1.9% (Table 5).
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Table 5. Intraclass correlation coefficients and absolute percentage error of steps between the physiotherapist step count and the ActiGraph during
the 30-Minute Walk Test in experiment 2 (n=30).
Body location Bias ICCa 95% CI P value Percentage error counting steps
Wrist –42.1 –0.032 –0.217 to 0.218 .62 49.4
Thigh –36.0 0.331 –0.149 to 0.706 <.001 56.8
Ankle 1.6 0.959 0.915 to 0.981 <.001 1.9

aICC: intraclass correlation coefficient.

The Bland-Altman plots in Figure 3 illustrate the agree-
ment between observer-rated step counts and ActiGraph
step counts at the wrist, thigh, and ankle locations dur-
ing the 30MWT. Among the 3 locations, the ankle-worn
device demonstrated the best agreement with observer ratings,

exhibiting a small bias and most observations falling within
the 95% limits of agreement. In contrast, the wrist-worn
device exhibited poor agreement, with the largest bias and
widest limits of agreement.
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Figure 3. Bland-Altman plots comparing observer measurements with ActiGraph data from devices worn on the wrist, thigh, and ankle during the 30
MWT in experiment 2. The dashed lines denote the 95% limits of agreement (SD 1.96) of the mean difference), with darker dashed lines highlighting
the mean difference or bias. 30 MWT: 30-meter walk test.

Discussion
This study aimed to identify the optimal wearable device
and wear location to assess and monitor mobility among

older patients during hospitalization. We observed a high
level of acceptability and feasibility regarding the usability
and accuracy of wearable devices for detecting and monitor-
ing activity in older patients hospitalized for acute medical
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illness. Although most patients had limited experience with
activity monitoring devices, they were willing to wear one
while hospitalized. Patients showed a preference for the Fitbit
and ActiGraph devices, worn at the ankle or waist. Both the
ActiGraph and Mox1 devices were easy to set up, but only
the ActiGraph allowed for the retrieval of all data collected.
Overall, the ActiGraph wGT3X-BT emerged as the preferred
device with superior usability, data acquisition, and manage-
ment.

The ActiGraph wGT3X-BT is widely recognized as the
gold standard research-grade device for wearable mobility
tracking, which is consistent with the findings of this study in
our population. Its previous use in hospital settings under-
scores its utility for monitoring physical activity and posture
in clinical contexts [28-30]. For example, other studies
have employed the ActiGraph to predict hospital-acquired
disability [28] and demonstrated its accuracy in quantify-
ing postures and activity levels among hospitalized adults
[29]. This study supports the device’s reliability and validity
among older hospitalized patients with unique challenges
such as slower movement patterns and increased sedentary
behavior.

However, when planning a cohort study in a hospital
setting, it is crucial to consider multiple factors beyond
just device accuracy, including accessibility to raw data and
patient acceptability. During our study, the Fitbit Versa 1 was
a popular device choice but lacked the option to download
raw data directly. Instead, the download process relied on
a companion device, a tablet, and any miscommunication
between the 2 devices resulted in data lost. The MMC
was selected for its affordability and open-source platform.
However, we encountered challenges with the downloading
process, which was time-consuming, and we also noted
timestamp errors. The MATLAB function provided by the
MOX 1 also resulted in missing data and lack of time stamps.
Despite the challenges encountered with the MMC, MOX
1, and Fitbit devices in our study, it is plausible that these
issues have since been addressed and resolved, underscor-
ing the potential advancements made by these companies in
their software and device functionalities. Our study highlights
the importance of considering broader factors, such as data
accessibility and device functionality, when evaluating the
feasibility of wearable technology for hospital-based cohort
studies.

Studies have suggested the lack of physical activity and
immobilization during hospitalization may be more related to
aspects of hospital care rather than to the patient’s diag-
nosis [1,31]. While performance-based mobility tests can
predict functional decline and hospital discharge, they are
not commonly integrated into hospital measures [32-34].
Conducting a gait speed test, for example, is time-consum-
ing and might not be feasible on a day-to-day basis in
the hospital setting. Therefore, the use of wearable tech-
nology could be an attractive option, requiring minimal
time investment for both patients and health professionals.
There is a substantial body of literature on the utiliza-
tion of wearables in hospitalized patients [16,28,34,35].
However, the research on patient feedback regarding their

experiences and perceptions of wearing the devices while
hospitalized is limited [17], which is crucial for optimiz-
ing their use in health care settings. In addition, we were
particularly concerned about the potential interference of
these devices with patients’ medical conditions. Prolonged
sitting and fluid intake, common in hospitalized patients, can
lead to swelling, particularly in the ankles and wrists. We
observed instances of wrist and ankle swelling in patients
that resulted in the devices being removed, underscoring
the importance of considering these issues when implement-
ing wearable technology in hospital settings. Furthermore,
we also considered the possibility of the devices interfering
with medical equipment commonly used during hospitaliza-
tion, including colostomy bags, urinary catheters, and wound
dressings, as any disruption to these essential devices could
compromise patient care and safety. For instance, in our
first experiment, we applied an elastic band with pockets
to the patient’s waist, thigh, and ankle. We noticed that the
waistband was problematic because it would interfere with
heart sensor wires and colostomy bags. In addition, the thigh
elastic band would easily fall from the participant’s leg. Thus,
in the second experiment, we disregarded the waistband and
used an adhesive patch, which could also bring discomfort
due to skin itchiness, as observed in our study. Considering
these factors before launching a larger cohort is crucial and
might save time and effort for both patients and researchers.

Our findings highlight the importance of considering both
practical and contextual factors when selecting wear locations
for mobility monitoring in hospital settings. While the
literature supports the thigh for measuring postural behaviors
and the waist or ankle for step counts, these locations may
not always be feasible in clinical environments. Wrist-worn
devices, although convenient and widely accepted, presented
challenges such as patient discomfort due to swelling and skin
irritation. This study serves as a preliminary exploration of
acceptable and practical wear locations in a hospital setting,
emphasizing the need to balance feasibility with the specific
mobility metrics of interest.

It is well-established that sedentary behavior in hospital-
ized older adults is associated with a heightened risk of
hospital-acquired disability (HAD) and functional decline
[28,29]. Therefore, accurately measuring sedentary behav-
ior in this population is essential for timely intervention
and management strategies within the hospital setting. Body
posture poses a challenge in accurate measurement, ideally
requiring the use of at least 2 devices. For instance, thigh-
worn devices have been reported as optimal for placing
accelerometers to determine sedentary behavior (ie, lying
and sitting). In this regard, the thigh-worn inclinometer
algorithm provided by ActiGraph uses a movement thresh-
old and thigh angular orientation to distinguish lying and
sitting from standing and stepping [36]. Compared with
other algorithms such as the activPAL, the ActiGraph’s
thigh angular parameter improves the classification of sitting
posture, even when the participant has their legs crossed
or stretched, in both laboratory and free-living conditions
[22,37]. Waist-worn devices are effective for differentiating
lying from sitting but not from sitting and standing, while
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ankle-worn devices distinguish lying and standing. In our
study, we tested the ActiGraph on the waist, thigh, and ankle,
and in experiment 1, all wear locations performed well for
lying and standing but poorly for sitting. We believe that the
thigh elastic band likely changed position when participants
transitioned from lying to sitting, changing the orientation
of the ActiGraph, thus affecting the algorithms’ ability to
detect sitting posture. In experiment 2, we incorporated a
wrist-worn device due to its user-friendly nature. To mitigate
the issue encountered in experiment 1 with the elastic band,
we adopted adhesive patches to secure the devices on the
thigh and ankle. The thigh device exhibited the highest
performance across various postures, followed by the ankle
device, which showed adequate accuracy in detecting lying
and standing postures. However, the wrist device, despite its
ease of use, performed poorly in detecting all body postures.
Our findings are supported by the literature [17,29], and we
recommend using an accelerometer on the thigh and ankle to
capture more detailed information on sedentary behavior.

Our investigation on step counts showed that the ankle
is the most accurate body position to capture this metric.
This finding aligns with previous research examining the
validity of ankle-worn ActiGraph devices in conjunction with
the lower frequency extension filter for step counting among
hospitalized older adults [16,38]. In their study, Webber and
St John [38] demonstrated that the ActiGraph positioned on
the ankle was comparable with direct observation (ICC=0.94,
median absolute error=2.5%) for monitoring step counts
during the 10-meter walk test in hospitalized older adults.
In addition, Anderson et al [16] reported that the Acti-
Graph positioned on the ankle (mean difference=−0.85 steps,
ICC=0.99) accurately records step counts in hospitalized
adults during free self-selected walking. By leveraging the
ankle and thigh as the placement site for capturing mobility,
researchers and health care practitioners can enhance the
accuracy of monitoring and promote more effective inter-
ventions aimed at improving mobility and overall health
outcomes in hospitalized adults and similar populations.

A potential limitation of this study is the bias intro-
duced by patients wearing multiple devices simultaneously
in experiment 1. The discomfort or inconvenience of wearing
several devices may have influenced their feedback, as they
were likely focused on the overall experience rather than
evaluating each device individually. However, the primary
goal of experiment 1 was to assess the feasibility of using
multiple devices in a hospital setting, with a focus on
understanding the practical and real-world challenges of
device wearability, data retrieval, and integration in a clinical
environment. While this may introduce some bias in the
acceptability results, it does not diminish the value of these
insights into how devices function together in practice.

Building on these findings, our study has several strengths,
including identifying optimal devices and placement sites
for wearable data collection, as well as validation through
comparison with a gold-standard observer. However, it is
important to note that our free-living protocol in experiment 2
was limited to a 24-hour duration. Despite this constraint, we
were able to gather valuable insights, particularly regarding
the feasibility and integration of wearable technology in
hospital settings.

In conclusion, our study found that the ActiGraph
wGT3X-BT was the most feasible device for assessing
and monitoring mobility among older hospitalized patients.
The ActiGraph’s thigh-worn algorithm accurately detects
sedentary behavior under supervised conditions and, when
paired with a device at the ankle, provides detailed informa-
tion on lying and sitting postures. In addition, our findings
indicate that step counts can be accurately detected using the
low-frequency extension with devices on the ankle. There-
fore, we recommend the use of two devices, at the thigh
and ankle, to accurately measure sedentary behavior and step
count among older people in a hospital setting. Longer-term
studies are warranted to evaluate the use of wearable data
for predicting health outcomes after hospitalization and for
informing clinical decision-making and efforts to promote
early mobility among older hospitalized patients.
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