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Abstract

Background: The atherosclerotic cardiovascular disease (ASCVD) is associated with dementia. However, the risk factors of
dementia in patients with ASCVD remain unclear, necessitating the development of accurate prediction models.

Objective: The aim of the study is to develop a machine learning model for use in patients with ASCVD to predict dementia
risk using available clinical and sociodemographic data.

Methods: This prognostic study included patients with ASCVD between 2006 and 2010, with registration of follow-up data
ending on April 2023 based on the UK Biobank. We implemented a data-driven strategy, identifying predictors from 316 variables
and developing a machine learning model to predict the risk of incident dementia, Alzheimer disease, and vascular dementia
within 5, 10, and longer-term follow-up in patients with ASCVD.

Results: A total of 29,561 patients with ASCVD were included, and 1334 (4.51%) developed dementia during a median follow-up
time of 10.3 (IQR 7.6-12.4) years. The best prediction model (UK Biobank ASCVD risk prediction model) was light gradient
boosting machine, comprising 10 predictors including age, time to complete pairs matching tasks, mean time to correctly identify
matches, mean sphered cell volume, glucose levels, forced expiratory volume in 1 second z score, C-reactive protein, forced vital
capacity, time engaging in activities, and age first had sexual intercourse. This model achieved the following performance metrics
for all incident dementia: area under the receiver operating characteristic curve: mean 0.866 (SD 0.027), accuracy: mean 0.883
(SD 0.010), sensitivity: mean 0.637 (SD 0.084), specificity: mean 0.914 (SD 0.012), precision: mean 0.479 (SD 0.031), and
F1-score: mean 0.546 (SD 0.043). Meanwhile, this model was well-calibrated (Kolmogorov-Smirnov test showed goodness-of-fit
P value>.99) and maintained robust performance across different temporal cohorts. Besides, the model had a beneficial potential
in clinical practice with a decision curve analysis.

Conclusions: The findings of this study suggest that predictive modeling could inform patients and clinicians about ASCVD
at risk for dementia.

(JMIR Aging 2025;8:e64148) doi: 10.2196/64148
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Introduction

Cardiovascular disease (CVD) is the leading cause of
noncommunicable disease and mortality worldwide [1].
Meanwhile, the epidemiology of the atherosclerotic
cardiovascular disease (ASCVD), which encompasses coronary
heart disease and cerebrovascular disease (CeVD), has
experienced substantial and rapid growth [2]. It is reported that
in 2016, ASCVD was responsible for approximately 2.4 million
deaths, representing 25% of all deaths and 61% of CVD-related
deaths in China [3].

Dementia is another devastating disease affecting more than 50
million individuals worldwide [4]. Given the high costs and
heavy burdens it imposes on families and society, scientists and
scholars around the world are dedicated to identifying
preventable interventions and reducing the incidence of
dementia. Recently, a growing body of evidence indicates that
lifestyle interventions early in life with a focus on reducing
cardiovascular risk factors are a promising strategy for
preventing dementia [5-9]. In particular, shared risk factors
between dementia and ASCVD have been identified [10].
According to the Lancet Commission, it is estimated that
approximately 40% of dementia cases can be prevented by
targeting modifiable, primarily cardiovascular risk factors [4].
However, these studies were restricted by their use of classical
statistical analyses (such as Cox or logistic regressions) and by
considering only widely studied prespecified CVD risks.
Therefore, the results were not sufficient in accuracy.

Machine learning (ML) is an emerging technical foundation of
artificial intelligence, which enables the leverage of information
from large and complex datasets [11]. Several studies have
applied ML-based models to dementia diagnosis and risk
prediction [12-15]. Nevertheless, the long-term risk of dementia

progression (5 or 10 years) in patients with ASCVD remains
uncertain.

In this study, we used comprehensive phenotypic and follow-up
data from a cohort of over 500,000 UK Biobank participants to
develop an ML-based model capable of predicting the 5- or
10-year risk of incident dementia in specific patients with
ASCVD. We anticipate that this ML-derived early warning
system will enhance clinician-patient counseling, enable targeted
follow-up, and facilitate the development of personalized
prevention strategies. This, ultimately, can optimize the health
and care of individuals with ASCVD.

Methods

Data Source and Study Population
We analyzed data from the UK Biobank, a longitudinal
prospective study that recruited over 500,000 participants
between 2006 and 2010 [16]. The participants were enrolled
from 22 recruitment centers across the United Kingdom and
were aged between 40 and 69 years at the baseline assessment.
Multiple data were collected from the participants, including
questionnaires, physical measurements, biological sample
assays, genotyping, imaging data, and ongoing hospital records.
Figure 1 illustrated the enrollment process, where we included
individuals with a prior history of any established ASCVD,
such as coronary artery disease (n=28,397), CeVD (n=28,141),
peripheral artery disease, or abdominal aortic aneurysm
(n=3740) [17]. Participants were excluded at the baseline
assessment if they met the following criteria: (1) had dementia
at baseline (n=64), (2) had no follow-up records (n=69), and
(3) death (n=8532). Ultimately, we included 29,561 participants
with ASCVD who had at least 10 years of follow-up until April
2023.
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Figure 1. Participant selection flowchart. UK Biobank participants were excluded if baseline dementia was self-reported or follow-up data were absent.
The remaining participants were categorized according to their first reported years of dementia, AD, or VD after the baseline. AAA: abdominal aortic
aneurysm; AD: Alzheimer disease; CAD: coronary artery disease; CeVD: cerebrovascular disease; PAD: peripheral artery disease; VD: vascular
dementia.

Ethical Considerations
Ethical approval was obtained from the North West Multi-Centre
Research Ethics Committee (11/NW/0382, 16/NW/0274, and
21/NW/0157). Written informed consent was provided by all
participants during the collection of primary data. The UK
Biobank data used were deidentified, and all personally
identifiable information of participants has been removed to
ensure privacy and confidentiality. Besides, the UK Biobank
offered nonfinancial compensation in the form of travel
reimbursements for attending the assessment centers and other
incidental expenses related to participation. Additionally,
participants were given feedback on their individual health data
upon request, which provided valuable insights into their health
status. This study adhered to the reporting guidelines of

Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis [18].

Outcome
The primary end point of this study was the occurrence of all
incident dementia, including Alzheimer disease (AD), vascular
dementia (VD), frontotemporal dementia, and dementia
associated with other neurodegenerative or specified diseases.
Due to the high rate of incidence worldwide, AD and VD were
examined as the secondary outcomes. To conduct a
comprehensive survey on the incidence time, we categorized
the patients into 5-year, 10-year, and all incident dementia, AD,
and VD. The outcomes were ascertained and categorized based
on the International Classification of Diseases and Read codes
(Table S1 in Multimedia Appendix 1), which were obtained
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from the “first occurrence” category in the UK Biobank
including the primary care data, the hospital inpatient data, the
death register records, and subsequent UK Biobank assessment
center visits. Follow-up visits continued until the earliest of the
following events: a dementia diagnosis, death, or the most recent
available data from either the hospital or the general practitioner,
whichever occurred first. What is noteworthy was that the
imaging data and lumbar puncture results were not available to
doctors to achieve the detailed diagnostic data.

Data Preparation
In this study, we included all clinically correlated variables
during the participants’ baseline visits. The assessment
procedure involved a manual examination of each variable to
determine its relevance to comprehensively understanding a
participant’s overall status. Variables not pertinent to these key
domains or lacking in additional insights were excluded. Data
screening was processed to exclude noninformative variables
with missing values exceeding 40% among all participants. To
prevent potential overfitting from oversampling, we applied
random undersampling to the majority class, balancing the
dataset more effectively. We also adjusted the class weights in
our ML algorithms to give more importance to the minority
class during model training. Overall, a total of 316 features were
adopted, including the participants’demographic characteristics
(n=2), touchscreen-recorded questionnaires (n=151), physical
measures (n=66), cognitive function tests (n=22), and biological
sample assays (n=59). Furthermore, to improve the informative
value of the dataset, we used the available data to generate
several variables (n=16) that were not directly extracted from
the UK Biobank (Table S2 in Multimedia Appendix 1).
Considering the significant impact of ASCVD on mortality, we
identified and coded deaths as competing events to ensure
accurate modeling of the primary outcome.

In this study, we used different missing data handling strategies
tailored to each ML algorithm to ensure the accuracy and
robustness of the models. Specifically, for the logistic regression
model, we used mean imputation to handle missing values. For
each variable with missing data, we calculated its mean in the
training dataset and replaced the missing data points with this
mean. This method is simple and efficient, making it suitable
for models like logistic regression that require complete datasets.
For other ML methods, including light gradient boosting
machine (LightGBM), extreme gradient boosting machine,
random forest, k-nearest neighbor, and artificial neural network,
we adopted automatic imputation techniques. These automatic
imputation methods leverage the inherent mechanisms of the
algorithms or advanced imputation strategies within the
preprocessing pipeline to dynamically estimate and replace
missing values. To evaluate the robustness of our results, we
conducted a sensitivity analysis using multiple imputation by
chained equations (Table S4 in Multimedia Appendix 1). This
approach generates several imputed datasets by modeling each
missing value conditionally based on other variables, thereby
accounting for the uncertainty associated with the imputations.
By comparing the outcomes across different imputation
methods, we assessed the stability and reliability of our
predictive models.

To evaluate the model’s stability and generalization across
different time periods, this study used a time validation approach
to partition dementia data from the UK Biobank database. First,
the recruitment date was selected as the primary temporal
variable, and all samples were sorted in ascending order based
on this date to ensure chronological arrangement and prevent
future data from leaking into the training process. Considering
previous research and data volume, the dataset was divided into
2 periods: the training and validation sets comprised samples
recruited from 2006 to 2009, while the test set included samples
diagnosed in 2010. This division ensures that only past data
were used for model training, and the model’s predictive
performance on future data was assessed during the validation
and testing phases. To further guarantee temporal independence,
feature selection and standardization were performed exclusively
on the training set, with identical transformations applied to the
validation and test sets, thereby avoiding the use of information
from these sets during training. Given the typically low number
of dementia cases, healthy samples with more than 5% missing
variables were excluded from the training set to balance the
class distribution and enhance model learning. Additionally,
multiple imputation methods were used to handle missing data,
ensuring data integrity. Through these steps, a time validation
framework was established, maintaining the temporal
independence and appropriate distribution of the training,
validation, and test sets, thereby improving the model’s
predictive performance across different time periods and the
credibility of the study’s findings.

Predictor Selection
The predictors for model development were identified through
a 2-step process: variable importance ranking and sequential
forward selection (SFS) [19,20]. First of all, the importance of
each variable was determined using a preliminary trained
LightGBM classifier. Gradient boosting machine is a type of
boosting that builds these simple models step-by-step, improving
the model at each step to better fit the data. LightGBM,
developed by Microsoft, is a faster and more efficient version
of gradient boosting machine designed to handle large-scale
data effectively. The “light” in LightGBM refers to its
lightweight nature, meaning it uses less memory and runs faster.
The top 50 variables were selected by LightGBM. Next, they
were inputted into a hierarchical clustering algorithm, which
used Spearman rank-order correlations to further identify and
eliminate redundant variables with multicollinearity. We
established a correlation threshold of 0.75, considering variables
with pairwise correlations above this value as highly redundant.
Within each cluster of such variables, we retained only the most
predictive variable for the model, effectively reducing
multicollinearity while preserving essential information. To
avoid overfitting and enhance the robustness of feature selection,
a nested cross-validation approach was used. Specifically, in
the outer loop, we divided the dataset into multiple folds,
selecting 1 fold as the test set and using the remaining folds for
feature selection and model training. Within the inner loop, the
training set was further split into inner training and validation
sets, where features were selected based on performance in the
inner validation sets. Finally, model performance was evaluated
on the outer test set to ensure fair feature selection and robust
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predictive capability. Then, an SFS approach was used, wherein
the features within the preselected subset underwent reranking
according to a newly developed classifier. Afterward,
preselected variables were reranked, and multiple ML classifiers
were used to sequentially add predictors one at each time.
Finally, the classifier was selected based on achieving the best
performance of area under the receiver operating characteristic

curve (AUC), and we selected the top 10 variables according
to the importance of each variable calculated by the LightGBM
model. After selecting these 10 variables, adding any other
variables did not significantly improve the model. The top 25
predictors are shown in Table 1. More details of predictor
selection could be obtained in the part of the Methods section
in Multimedia Appendix 1.

Table 1. Top 25 predictors for all incident dementia with light gradient boosting machine.

RankingImportance ratingVariablesNumber

10.133Forced vital capacity1

20.12Summed METa minutes per week for all activity2

30.09Age3

40.05Pairs matching time4

50.038Mean sphered cell volume5

60.037Glucose6

70.037Mean time to correctly identify matches7

80.035FEV1bz score8

90.033Age first had sexual intercourse9

100.031C-reactive protein10

110.029Average weekly red wine intake11

120.029Calcium12

130.028Vitamin D13

140.026Pulse rate automated reading14

150.025Father age at death15

160.025Systolic blood pressure automated reading array16

170.024FEV1/FVCc ratio z score17

180.023Neuroticism score18

190.023Red blood cell erythrocyte distribution width19

200.023Apolipoprotein B20

210.023Total bilirubin21

220.022Cystatin C22

230.018Alanine aminotransferase23

240.017Average weekly beer plus cider intake24

250.016Result ranking25

aMET: metabolic equivalent.
bFEV1: forced expiratory volume in 1 second.
cFVC: forced vital capacity.

Model Development
We implemented a range of ML techniques, including
LightGBM, extreme gradient boosting machine, random forest,
logistic regression, k-nearest neighbor, support vector machine,
and artificial neural network to classify participants into 2
classes: 0 (predicted to remain no dementia) or class 1 (to
develop all incident dementia, AD, or VD). The proposed model
was developed using patients with ASCVD without dementia
(n=28,227) and with all incident dementia (n=1334) from the

UK Biobank dataset. In total, 10 identified predictors were
incorporated into the model. We expanded our performance
evaluation metrics to include receiver operating
characteristic-AUC, precision, recall, and F1-score, ensuring a
comprehensive assessment of the models’ performance on
imbalanced data. Subsequently, LightGBM, the best-performing
method, was used to develop a dementia risk prediction model
of ASCVD, named the UK Biobank ASCVD risk prediction
model. The hyperparameter tuning was performed through
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exhaustive selection from 10,000 sets of candidate parameters,
and the optimal set was chosen based on the performance
measurement of AUC. Please refer to Table S8 in Multimedia
Appendix 1 for detailed information on the search space and
final adopted parameters. To evaluate the predictive performance
of the models, we constructed and compared the traditional Cox
proportional hazards model with the LightGBM model. Both
models used identical predictor variables to ensure fairness and
consistency in the comparison. The Cox model assessed hazard
ratios for each variable through multivariate regression analysis,
while the LightGBM model leveraged its robust ability to handle
nonlinear relationships and variable interactions for risk
prediction. Subsequently, the performance of both models was
systematically compared using consistent evaluation metrics
(such as AUC) to determine their predictive effectiveness within
the study dataset. This comparison aims to validate the potential
advantages of the LightGBM model in risk prediction and to
provide a reference for the application of the traditional Cox
model. The Cox proportional hazards model was also used to
account for competing risks, which ensured that the risk of death
did not bias the estimation of dementia event probabilities. To
enhance the model’s stability and applicability, a time validation
approach was used for data analysis. Additionally, we calibrated
the raw predicted probabilities into actual dementia risks
(Figures S12-S14 in Multimedia Appendix 1). Finally, to assess
the clinical utility of the prediction model, decision curve
analysis (DCA) was conducted. First, the model’s net benefit
was calculated across various threshold probabilities and then
compared with the baseline strategies of “treat all” and “treat
none.” The DCA curves were plotted using the rmda package
in R (R Foundation for Statistical Computing) to illustrate the
model’s potential value in clinical decision-making. The ML
algorithm was implemented using LightGBM library (version
3.3.2) and scikit-learn library (version 1.0.2) in Python (version
3.9; Python Software Foundation).

We also performed a 5-fold cross-validation to assess the
stability of feature importance, randomly dividing the dataset
into 5 equal parts. In each iteration, 4 folds were used for
training, and 1 fold for validation. The training involved 2
stages: model development and calibration. The 4 training folds
were split 3:1, with 3 folds for development and 1 fold for
calibration. Validation sets were exclusively for performance
evaluation. Results were averaged across folds with
corresponding SDs.

Statistical Analysis
In an analysis of the variables of interest, continuous variables
were summarized using the median and IQR, while discrete
variables were summarized using frequency and percentage.
Group comparisons (no dementia vs incident dementia or AD
or VD) were conducted using chi-square tests for discrete
variables and 2-tailed Student t tests for continuous variables.
Multivariate analysis was used to calculate odds ratios based
on normalized data.

The model’s performance was evaluated using 2 accuracy
metrics: discrimination and calibration. Discrimination was
assessed using the AUC, which ranges from 0.5 for a
noninformative model to 1 for a perfectly discriminating model.
Calibration measures the agreement between predicted
probabilities and observed event proportions. It was evaluated
using the Kolmogorov-Smirnov test with 10 subgroups and
visually represented in calibration plots. A P value greater than
.05 signified an adequate goodness of fit.

Furthermore, we reported accuracy, sensitivity, specificity,
precision, and the F1-score, which were determined using the
cutoff that maximized the Youden index. Additionally, we used
Shapley Additive Explanations (SHAP) plots to visualize the
individual contributions of each predictor to the target variable.
All data analysis and visualizations were performed using
Python (version 3.9) with packages from the scikit-learn library
(version 1.0.2) and the SHAP library (version 0.40.0).

Results

Population Characteristics
After quality control, a total of 29,561 participants with ASCVD
were included in this study. The median age of the participants
was 62.0 (IQR 58.0-66.0) years. Among the participants, 36.63%
(10,829/29,561) were women, and 94.12% (27,822/29,561)
were White. During a median follow-up time of 10.3 (IQR
7.6-12.4) years, a subset of 1334 participants developed
dementia after their baseline visits. Specifically, 617 participants
had incidents within 10 years, and 136 had incidents within 5
years. Besides, the prevalence of all-cause dementia was 4.51%
(1334/29,561), AD was 1.44% (425/29,561), and VD was 1.81%
(536/29,561) in this study. The critical baseline predictors are
presented by incident dementia, AD, and VD status in Table 2,
and the percentage of missing values for the predictors is shown
in Table S3 in Multimedia Appendix 1.
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Table 2. The baseline characteristics of UK Biobank participants included in the study by dementia, Alzheimer disease (AD), and vascular dementia
(VD) status.

All incident VD
(n=536)

All incident AD
(n=425)

All incident dementia
(n=1334)

No dementia
(n=28,227)

Overall (n=29,561)Participants characteristics

66.0 (63.0-68.0)66.0 (64.0-68.0)66.0 (63.0-68.0)62.0 (57.0-66.0)62.0 (58.0-66.0)Age (years), median (IQR)

163 (30.41)170 (40.00)476 (35.68)10,353 (36.68)10,829 (36.63)Sex (female), n (%)

504 (94.03)404 (95.06)1257 (94.23)26,565 (94.11)27,822 (94.12)Ethnicity (White), n (%)

9.0 (9.0-10.0)9.0 (9.0-10.0)10.0 (9.0-11.0)10.0 (9.0-11.0)10.0 (9.0-11.0)Education (years), median
(IQR)

3.1 (2.6-3.9)3.2 (2.7-4.0)3.2 (2.6-3.9)3.5 (2.9-4.2)3.5 (2.9-4.2)Forced vital capacity (L),
median (IQR)

1308.0 (408.8-2942.6)1653.0 (660.0-3546.0)1398.0 (510.0-3288.0)1671.0 (698.0-3546.0)1662.0 (693.0-3546.0)Summed METa minutes per
week for all activity (min-
utes per week), median
(IQR)

496.0 (370.5-701.0)487.0 (372.0-673.5)487.5 (368.0-678.8)408.0 (324.0-529.0)411.0 (325.0-534.0)Pairs matching time (sec-
onds), median (IQR)

83.2 (79.2-87.3)82.5 (79.6-86.1)83.1 (79.5-86.7)82.4 (79.2-85.8)82.4 (79.2-85.9)Mean sphered cell volume
(fL), median (IQR)

5.2 (4.7-6.2)5.1 (4.7-5.6)5.1 (4.7-5.9)5.0 (4.7-5.5)5.0 (4.7-5.5)Glucose (mmol/L), median
(IQR)

602.0 (532.0-707.5)586.0 (527.0-684.0)594.0 (531.0-699.8)562.0 (500.0-641.0)563.0 (500.0-644.0)Mean time to correctly
identify matches (seconds),
median (IQR)

0.8 (0.2-1.6)0.5 (–0.0 to 1.4)0.7 (0.0-1.5)0.6 (–0.1 to 1.3)0.6 (–0.1 to 1.3)FEV1bz score (L), median
(IQR)

18.0 (16.0-21.0)19.0 (17.0-21.0)18.0 (17.0-21.0)18.0 (16.0-21.0)18.0 (16.0-21.0)Age first had sexual inter-
course (years), median
(IQR)

1.7 (0.8-3.4)1.5 (0.7-3.3)1.5 (0.7-3.2)1.5 (0.8-3.1)1.5 (0.8-3.1)C-reactive protein (mg/L),
median (IQR)

357 (66.60)325 (76.47)972 (72.86)20,763 (73.56)21,735 (73.53)CADc, n (%)

356 (66.42)324 (76.24)969 (72.64)20,738 (73.47)21,707 (73.43)CeVDd, n (%)

34 (6.34)23 (5.41)75 (5.62)1270 (4.50)1345 (4.55)PADe or AAAf, n (%)

aMET: metabolic equivalent.
bFEV1: forced expiratory volume in 1 second.
cCAD: coronary artery disease.
dCeVD: cerebrovascular disease.
ePAD: peripheral artery disease.
fAAA: abdominal aortic aneurysm.

Data-Driven Predictors Selection
Among the 316 candidate variables, we initially selected the
top 50 variables based on the LightGBM classifier and
performed the hierarchical clustering to eliminate the
multicollinearity [21]. As shown in the bar chart of Figure 2A,
a total of 29 variables were sorted according to their importance
in the prediction task. The SFS strategy was used to strike a

balance between model performance (AUC on the right axis)
and the number of variables selected, as depicted in the line
chart. The line chart showed that the model’s performance
experienced a sharp increase when incorporating the first few
variables and eventually reached a plateau with the inclusion
of additional variables. Ultimately, the top 10 variables were
chosen as the final predictors for ML model development. Their
summary statistics are displayed in Table 2.
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Figure 2. Predictive variable selection and interpretation on all incident dementia. (A) Sequential forward selection from a preselected predictor pool.
A bar chart ranked predictor importance by their contribution to classification, while a line chart depicted cumulative AUCs with each iterative predictor
inclusion. The top 10 predictors, marked red, were selected for machine learning model construction. (B) SHAP-based visualization of salient predictors.
Horizontal bar widths correspond to predictor impact on model predictions, with wider ranges indicating greater influence. Predictor intensity was
color-coded, graduating from blue (low) to red (high), as per the color bar on the right. The x-axis orientation signified the probability of either dementia
(right) or health (left). AUC: area under the receiver operating characteristic curve; FEV1: forced expiratory volume in 1 second; FVC: forced vital
capacity; MET: metabolic equivalent; SHAP: Shapley Additive Explanations.

Model Interpretation of Selected Predictors
To interpret the influence of each selected predictor, we used
SHAP values and visualized them in Figure 2B. The predictors
were interpreted based on value magnitude (coded by gradient
colors) and tendency on the horizontal axis (indicting the
likelihood of developing dementia). Take the predictor forced
vital capacity (FVC) as an example. Patients with ASCVD with
lower FVC values (colored blue) were more likely to develop
dementia (right side) compared to those with higher FVC values
(colored red). Similarly, for the remaining predictors, patients
with ASCVD who spend less time engaging in activities, being

older, who take longer time to complete pair matching tasks,
and who have higher mean sphered cell volume (MSCV), forced
expiratory volume in 1 second z score, C-reactive protein, and
glucose levels tend to have an increased risk of developing
dementia. Interestingly, we found that patients who engaged in
sexual intercourse at an earlier age were more likely to develop
dementia. Moreover, a 5-fold cross-validation stability analysis
of feature importance was conducted. The results indicated that
most features exhibited high stability across different data
subsets. Figure 3 shows the distribution of key feature
importance across all folds.
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Figure 3. Stability analysis of feature importance across different data subsets in the model of all incident dementia. The stability of feature importance
in the model of all incident dementia was assessed across different data subsets, providing insights into the robustness of identified predictors. Each
line represented the variability of feature importance in a specific subset, illustrating how consistent the predictive factors are across varying conditions.
FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; MET: metabolic equivalent.

Model Performance Across Different Populations and
Algorithms
Compared with other ML algorithms, it can be seen in Table 3
that LightGBM demonstrated superior performance across
various metrics. We used the AUC metric to evaluate the
discrimination performance of the UK Biobank ASCVD risk
prediction model. As depicted in Table 4, the model achieved
a mean AUC of 0.866 (SD 0.027) for all incident dementia
cases. Furthermore, the model demonstrated promising results
for the prediction of 10-year and 5-year incident dementia, with
mean AUCs of 0.876 (SD 0.024) and 0.903 (SD 0.076),
respectively. The model for all incident dementia exhibited a
mean accuracy of 0.883 (SD 0.01), mean sensitivity of 0.637
(SD 0.084), mean specificity of 0.914 (SD 0.012), mean
precision of 0.479 (SD 0.031), and mean F1-score of 0.546 (SD
0.043). Apart from the 5-year AD and VD predictions, the model

also displayed valuable discrimination abilities for different AD
and VD population groups. Specifically, the mean AUCs for
all and 10-year incident AD were 0.836 (SD 0.043) and 0.828
(SD 0.112), respectively, while the mean AUCs for all and
10-year incident VD achieved 0.870 (SD 0.029) and 0.881 (SD
0.031), respectively. For specific metrics of all, 10-year, and
5-year dementia, AD, and VD predictions, please refer to Table
4 and Figures S3-S11 and S15 in Multimedia Appendix 1. We
also compared the performance of the traditional Cox
proportional hazards model and the LightGBM-based model in
risk prediction. The AUC of all incident dementia, AD, and VD
for the Cox model were 0.67, 0.67, and 0.71, respectively
(Figure S1 in Multimedia Appendix 1). After competing risk
analysis with death, the prediction power of the Cox model did
not show a significant difference in predicting AD and VD
(Tables S5-S7 and Figure S2 in Multimedia Appendix 1).

Table 3. Model performance metrics for different machine learning classifiers on all incident dementiaa.

AUCb, mean
(SD)

F1-score, mean
(SD)

Precision, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Accuracy, mean
(SD)

0.866 (0.027)0.546 (0.043)0.479 (0.031)0.914 (0.012)0.637 (0.084)0.883 (0.010)LightGBMc

0.853 (0.02)0.444 (0.024)0.323 (0.018)0.826 (0.01)0.709 (0.045)0.814 (0.01)XGBoostd

0.859 (0.02)0.463 (0.024)0.345 (0.02)0.844 (0.012)0.703 (0.047)0.829 (0.01)Random forest

0.765 (0.024)0.407 (0.041)0.32 (0.033)0.86 (0.012)0.561 (0.059)0.829 (0.014)KNNe

0.795 (0.035)0.378 (0.031)0.27 (0.022)0.802 (0.016)0.627 (0.071)0.783 (0.014)Logistic regression

0.833 (0.025)0.46 (0.102)0.377 (0.174)0.859 (0.125)0.638 (0.145)0.836 (0.1)ANNf

aThe cutoff for binarization was established by maximizing the Youden index (YI=sensitivity+specificity–1).
bAUC: area under the receiver operating characteristic curve.
cLightGBM: light gradient boosting machine.
dXGBoost: extreme gradient boosting machine.
eKNN: k-nearest neighbor.
fANN: artificial neural network.
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Table 4. Model performance metrics for the prediction on different types of dementiaa.

AUCb, mean
(SD)

F1-score, mean
(SD)

Precision, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Accuracy, mean
(SD)

0.866 (0.027)0.546 (0.043)0.479 (0.031)0.914 (0.012)0.637 (0.084)0.883 (0.01)All incident dementia

0.836 (0.043)0.241 (0.012)0.148 (0.01)0.855 (0.035)0.656 (0.125)0.847 (0.029)All incident ADc

0.870 (0.029)0.315 (0.053)0.206 (0.045)0.868 (0.043)0.683 (0.045)0.859 (0.039)All incident VDd

0.876 (0.024)0.374 (0.063)0.255 (0.057)0.886 (0.037)0.709 (0.059)0.877 (0.033)10-Year incident demen-
tia

0.828 (0.112)0.07 (0.012)0.036 (0.006)0.666 (0.065)0.814 (0.214)0.668 (0.061)10-Year incident AD

0.881 (0.031)0.173 (0.029)0.098 (0.02)0.841 (0.055)0.757 (0.1)0.839 (0.051)10-Year incident VD

0.903 (0.076)0.211 (0.069)0.125 (0.045)0.942 (0.033)0.694 (0.155)0.939 (0.031)5-Year incident demen-
tia

0.775 (0.243)0.061 (0.047)0.039 (0.049)0.98 (0.006)0.4 (0.5)0.979 (0.006)5-Year incident AD

0.803 (0.11)0.172 (0.102)0.106 (0.063)0.957 (0.012)0.471 (0.288)0.952 (0.012)5-Year incident VD

aCutoffs were established by maximizing the Youden index (YI=sensitivity+specificity–1).
bAUC: area under the receiver operating characteristic curve.
cAD: Alzheimer disease.
dVD: vascular dementia.

DCA demonstrated that our prediction model exhibited a higher
net benefit within the threshold probability range of 0.04 to 0.97
across different time periods, significantly outperforming both
the “treat all” and “treat none” baseline strategies (Figure 4).
The Kolmogorov-Smirnov test was conducted to assess the

calibration of the model. A P value greater than .05 indicates
sufficient goodness of fit. Satisfactory calibrations for the
development of all population groups, including 5-year or
10-year or all incident dementia, AD, and VD, were observed
(Table 5 and Figures S12-S14 in Multimedia Appendix 1).
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Figure 4. Clinical applicability of dementia risk prediction with a decision curve analysis. (A-C) The decision curve analysis of the UK Biobank
atherosclerotic cardiovascular disease risk prediction model on all incident and 10-year incident and 5-year incident times.
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Table 5. Calibration data of the UK Biobank atherosclerotic cardiovascular disease risk prediction modela.

All incident VDb,dAll incident ADb,cAll incident dementiabDecile groups (10%
quantile each)

Preserved probabil-
ity (‰)

Observed probabil-
ity (‰)

Preserved probabil-
ity (‰)

Observed probabil-
ity (‰)

Preserved probabil-
ity (‰)

Observed probabil-
ity (‰)

1.451.792.102.833.534.711

4.600.985.462.1711.729.402

8.378.038.9315.5821.9824.783

12.7210.9812.1312.8833.5535.914

17.3917.9115.2314.8445.9641.655

22.3622.7918.9718.4759.9053.926

28.8130.7523.7219.9577.2377.657

37.5835.7930.4328.01101.1296.518

52.2647.4243.3142.09141.49132.959

283.14293.58209.58213.22606.99627.3610

aCalibration data of the UK Biobank atherosclerotic cardiovascular disease risk prediction model on different types of dementia at all incident times.
The 5-fold cross-validation strategy was performed to calculate the results. A P value less than .05 indicated the statistical significance of the results.
bGoodness-of-fit P value >.99.
cAD: Alzheimer disease.
dVD: vascular dementia.

A Temporal Validation of the Constructed Model
To assess the stability and generalizability of our dementia
prediction model, we used a time validation approach using
data from the UK Biobank. The model was trained and validated
on samples recruited between 2006 and 2009 and tested on the
2010 cohort. In the training and validation set, the model
achieved a mean AUC of 0.866 (SD 0.027) in predicting all

incident dementia, indicating strong discriminatory ability.
When applied to the test set from 2010, the model maintained
robust performance with an AUC of 0.819, suggesting good
generalization to future data. Other performance metrics in the
test set: accuracy was 0.851, sensitivity was 0.691, specificity
was 0.866, precision was 0.315, and the F1-score was 0.433
(Table 6).

Table 6. Model performance metrics for the prediction on the test data divided by time perioda.

AUCbF1-scorePrecisionSpecificitySensitivityAccuracy

0.8190.4330.3150.8660.6910.851All incident dementia

0.7180.2670.1820.9330.5000.921All incident ADc

0.8380.3220.2180.9260.6190.916All incident VDd

0.8240.4350.3500.9430.5760.92510-Year incident demen-
tia

0.8040.1570.0930.9220.5170.91610-Year incident AD

0.8340.3070.2070.9530.5900.94610-Year incident VD

0.8820.4360.40.9910.4800.9845-Year incident dementia

0.6050.0020.0010.18110.1815-Year incident AD

0.5950.0040.002010.0025-Year incident VD

aCutoffs were established by maximizing the Youden index (YI=sensitivity+specificity–1).
bAUC: area under the receiver operating characteristic curve.
cAD: Alzheimer disease.
dVD: vascular dementia.
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Discussion

Principal Findings and Comparisons With Prior Work
In this study, we developed a predictive model using the
LightGBM algorithm and leveraging big data from the UK
Biobank to assess the risk of dementia in patients with ASCVD.
To the best of our knowledge, this is the first model that uses
big data to predict the risk of dementia specifically in patients
with ASCVD. Our model incorporates 10 clinical predictive
factors, selected based on their importance, to accurately
estimate the risk of dementia. Notably, our model demonstrates
particularly strong performance in predicting all-cause dementia
and VD, with AUC values exceeding 0.85. Furthermore, the
model effectively calibrates the predicted probabilities and
aligns well with the observed event ratios, indicating its
reliability and accuracy in estimating the risk of dementia in
patients with ASCVD.

The ASCVD has long been recognized as one of the most
significant risk factors for dementia, especially VD [22].
Although previous studies have primarily concentrated on the
influence of atherosclerotic CeVDs on dementia, emerging
research suggests that systemic atherosclerotic diseases beyond
CeVDs also significantly contribute to the development of
dementia [23]. To the best of our knowledge, no prior studies
have used big data to predict the risk of dementia in patients
with ASCVD. Unlike models based on variables obtained from
intricate neuroimaging and neuropsychological tests, the
predictors in this model are more accessible and can be applied
in various clinical settings and medical institutions.

Recent studies have indicated the importance of vascular risk
factors in the development of dementia, which should be taken
into consideration by clinical practitioners. During the
establishment of a dementia risk model in the population with
ASCVD, we identified several key and distinctive risk factors
that differ from other longitudinal studies. Age was identified
as one of the most significant influencing factors in this study.
Other factors include low exercise time, high fasting blood
glucose, and reaction time including pair matching time and
mean time to correctly identify matches. These risk factors have
been shown to have a close relationship with the overall health
of the vascular system and are critical in the development of
ASCVD events [24,25]. Besides, high plasma levels of
C-reactive protein at baseline were associated with a high risk
of all incident dementia in this study, which is corresponded
with the result of the latest research [26]. Furthermore, we found
that MSCV should be considered as a new and significant factor
in assessing the risk of dementia in patients with ASCVD.
MSCV is primarily a parameter in hematology used to assess
changes in the volume of spherocytes. Currently, there is no
evidence to suggest a direct relationship between MSCV and
dementia. However, overall blood health can indirectly affect
cognitive function, especially in the presence of chronic anemia
or other systemic diseases [27]. If an abnormal MSCV is
observed in clinical practice or research, it is important to
consider the patient’s overall health status comprehensively,
including but not limited to neurological function, to fully
evaluate the patient’s dementia risk. Recent studies have also

gradually found that lung function may play a role in the onset
of dementia by influencing brain structure [28]. Our model
indicated FVC and forced expiratory volume in 1 second z score
as protective factors in decreasing dementia risk. Finally, age
first had sexual intercourse, also known as age at first intercourse
(AFS), was first identified as one of the significant risk factors
for dementia in populations with ASCVD, which is interesting
and worth attention. Compared to other biological traits,
reproductive behaviors, especially sexual factors, have long
been neglected when it comes to the study of CVDs and
neurological disorders. Recent studies show that the earlier the
age of first sexual intercourse, the higher the likelihood of
developing hypertension and CVDs [29,30]. The specific
processes driving this relationship are not yet fully understood,
but they may include a mix of environmental and genetic
influences. For instance, early sexual activities are often
accompanied by adverse environmental factors, including lower
educational attainment, increased smoking and alcohol
consumption, and the use of illicit drugs [31], which are all
closely associated with CVDs. Recent studies have identified
a causal relationship between AFS and CVDs at the genetic
level [30,32]. Although AFS has no direct impact on dementia,
it might be induced from our study that AFS is indirectly related
to dementia through intriguing CVDs especially in patients with
ASCVD.

In our study, we performed a stability analysis of feature
importance using 5-fold cross-validation to ensure the robustness
of the identified predictors. The analysis revealed that several
key features consistently ranked highly across all folds,
indicating their strong and reliable association with the outcome.
Specifically, FVC, summed metabolic equivalent minutes per
week, age, and pair matching time maintained relatively high
importance scores in every subset, underscoring their role as
robust predictors. Although these 4 variables exhibited
significant variation compared to other variables, the impact of
this variation is minimal relative to their importance.

We acknowledge that the Cox proportional hazards model, as
a mature and interpretable method, holds a significant position
in survival analysis. However, our study results show that the
LightGBM-based ML model significantly outperforms the Cox
model in predictive performance metrics such as AUC,
demonstrating its advantages in handling nonlinear relationships
and complex interactions between variables. LightGBM
effectively captures patterns in high-dimensional data, thereby
enhancing the accuracy of risk prediction. Although ML models
face certain challenges in terms of computational resources and
interpretability, their substantial improvement in predictive
performance illustrates their added value in practical
applications. Future research could explore combining traditional
Cox models with ML methods to balance predictive performance
and model interpretability, thereby meeting diverse clinical
application needs. Besides, our study indicated that mortality
had a minimal impact on the primary outcomes, and the overall
conclusions of the study remained largely unchanged. This
suggested that the prediction power of our model remained
robust even after accounting for competing risks.

The time validation results demonstrate that our dementia
prediction model maintains robust performance across different
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temporal cohorts. Specifically, in the population of all incident
dementia, the AUC remained consistently high, with a slight
decrease from 0.866 in the training set to 0.819 in the test set.
Similarly, other performance metrics such as accuracy,
precision, recall, and F1-score showed only minor declines over
time. This stability suggests that the model effectively captures
underlying patterns associated with dementia risk that are
persistent across the studied time periods. The consistency of
performance metrics across the training and test sets indicates
that the model’s predictive capabilities are not significantly
affected by temporal shifts in the data. The stable performance
of the model over different time periods enhances its long-term
applicability in clinical and public health settings. A model that
maintains its predictive accuracy over time is invaluable for
ongoing and future dementia screening programs, enabling early
identification of at-risk individuals with confidence in its
sustained reliability. However, it is also essential to acknowledge
the significant performance decline observed in the test set when
predicting the risk of 5-year AD and VD, which may be
attributed to the low prevalence in patients with ASCVD during
a relative short period. To ensure continued efficacy, periodic
retraining and validation of the model with new data may be
necessary. This approach would allow the model to adapt to
any emerging trends or shifts in risk factors that may influence
dementia incidence over time.

In clinical practice, the LightGBM model can be applied during
the initial diagnosis or follow-up stages to early identify
individuals with high dementia risk among patients with
ASCVD, thus promoting timely intervention and treatment. For
instance, using this predictive model during a patient’s initial
visit can assist physicians in swiftly identifying patients at high
risk and arranging further diagnostic tests or interventions.
Moreover, integrating the model’s predictions into electronic
health record systems can generate alerts and recommend further
evaluations, thereby enhancing diagnostic accuracy and
personalized treatment plans. To effectively communicate the
predicted risk, doctors should use easily understandable
language to explain the model results and their implications to
the patient while also providing clear next steps and support
resources to alleviate patient anxiety. Consider a hypothetical
example: a 55-year-old male patient with hypertension and high
cholesterol who recently experienced a heart attack. After using
the LightGBM model for assessment, the results indicate a high
dementia risk. Based on this, the doctor decides to schedule
detailed cognitive function tests and recommends a
comprehensive plan that includes cognitive training, a healthy
diet, and regular exercise. Through these interventions, the
patient can better manage his cardiovascular health while taking
steps to reduce the likelihood of developing dementia.

However, the application of such predictive models raises
potential ethical issues. First, there may be prediction bias due
to training data, leading to unequal care, so continuous
monitoring and validation are needed to ensure fairness. Second,
doctors need to carefully communicate the model’s predictions
to avoid causing unnecessary anxiety for patients. Additionally,
patient data use should require clear consent and ensure privacy
protection. Finally, caution against overreliance on model

predictions is necessary, with doctors maintaining primary
responsibility for care decisions.

Limitations
Several limitations should be considered when interpreting the
results. First, our study focused on a specific population of
patients with ASCVD. Due to the relatively small sample size,
we observed a lower AUC value when predicting the 5-year
incidence rates of dementia, especially for AD and VD incidence
over a 5-year period. This issue can be addressed by further
expanding the sample size. Additionally, this study primarily
used samples of European descent, which may restrict the
generalizability of our findings to other populations. Genetic,
environmental, and lifestyle differences across diverse ethnic
groups could influence the model’s performance and predictive
accuracy. The limited diversity of the sample may affect the
model’s applicability to non-European populations. To ensure
broader relevance and robustness, future research should include
diverse ethnic backgrounds to validate and potentially refine
the model for varied demographic groups. While the time
validation results are promising, the model currently relies on
static features collected at baseline. Integrating longitudinal
data and time-varying covariates could potentially improve
predictive performance and adaptability over extended periods.
Despite incorporating death as a primary competing risk, there
might still be other unrecognized or unadjusted competing
factors, such as other chronic diseases or lifestyle changes, that
could influence the results to some extent. The application of
competing risk models relied on the correct specification of
models and assumptions; any biases in model setup might affect
the accuracy of the analysis. Therefore, future research should
further explore additional potential competing risk factors and
use more sophisticated statistical methods to comprehensively
assess the prediction power. Regarding the ML algorithms
chosen for our study, the use of LightGBM may lead to data
overfitting because it generates deep decision trees. To mitigate
overfitting, a maximum depth limit should be imposed during
the use of LightGBM. Furthermore, it is important to
acknowledge that LightGBM is a bias-based algorithm and can
be sensitive to noise in data processing, which may potentially
affect the final data analysis results. Additionally, it should be
noted that the predictive variables identified in this study were
derived from data-driven analytical models, which may induce
some bias compared to actual clinical diagnostic and treatment
experiences. While advanced predictive models and results have
been obtained, their applicability to clinical practice remains
uncertain. Therefore, future research should focus on validating
the analysis results using other independent cohorts with larger
sample sizes and extending the study methodology to
populations from different countries, regions, and ethnicities.
The integration of clinical practice experiences will contribute
to the development of more universally applicable and practical
models.

Conclusions
This study has identified several practical and novel predictors
for dementia screening in patients with ASCVD. It is worthy
of testing and evaluating the applicability of these factors in
clinical practice. Future studies should focus on investigating
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whether intervening in these factors can help prevent the
incidence of dementia in patients with ASCVD. By exploring
these possibilities, we can potentially improve the management

and outcomes of patients with ASCVD and reduce the burden
of dementia in this population.
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