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Abstract
Background: Sarcopenia (loss of muscle mass and strength) increases adverse outcomes risk and contributes to cognitive
decline in older adults. Accurate methods to quantify muscle mass and predict adverse outcomes, particularly in older persons
with dementia, are still lacking.
Objective: This study’s main objective was to assess the feasibility of using deep learning techniques for segmentation and
quantification of musculoskeletal tissues in magnetic resonance imaging (MRI) scans of the head in patients with neurocogni-
tive disorders. This study aimed to pave the way for using automated techniques for opportunistic detection of sarcopenia in
patients with neurocognitive disorder.
Methods: In a cross-sectional analysis of 53 participants, we used 7 U-Net-like deep learning models to segment 5 different
tissues in head MRI images and used the Dice similarity coefficient and average symmetric surface distance as main assess-
ment techniques to compare results. We also analyzed the relationship between BMI and muscle and fat volumes.
Results: Our framework accurately quantified masseter and subcutaneous fat on the left and right sides of the head and tongue
muscle (mean Dice similarity coefficient 92.4%). A significant correlation exists between the area and volume of tongue
muscle, left masseter muscle, and BMI.
Conclusions: Our study demonstrates the successful application of a deep learning model to quantify muscle volumes in head
MRI in patients with neurocognitive disorders. This is a promising first step toward clinically applicable artificial intelligence
and deep learning methods for estimating masseter and tongue muscle and predicting adverse outcomes in this population.
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Introduction
Age-related muscle wasting and neurodegeneration, clinically
presented as sarcopenia and dementia, respectively, are the
major drivers of frailty, falls, and disability in older adults
worldwide [1]. Sarcopenia is characterized by loss of muscle
mass, strength, and function in older adults. Aging is the
leading risk factor, but conditions such as chronic disea-
ses, inflammation, sedentarism, and malnutrition promote
sarcopenia onset and progression [2]. Sarcopenia has a 10%
overall prevalence globally in older persons, 29% in the
community, 14%-33% in long-term care settings, and up
to 50% in the very old (>80) [3,4]. Despite being a com-
mon and relevant health-related condition, it is unseen and
underdiagnosed, particularly in older persons with cognitive
disorders. To diagnose sarcopenia, measurement of muscle
mass, muscle performance, and strength is necessary [2].
Estimating muscle performance and strength is accessible and
cheap with traditional methods, such as gait speed and grip
strength, respectively [5]. However, techniques such as dual
X-ray absorptiometry or body magnetic resonance imaging
(MRI) are necessary to accurately assess lean or muscle mass.
These methods can increase costs and time and are impracti-
cal in settings such as dementia clinics [6].

Dementia patients are highly affected by sarcopenia,
with a prevalence of around 60%‐70% [7,8]. People living
with neurodegenerative diseases are more prone to experi-
ence difficulties due to malnutrition, being sedentary, and
falling; therefore, having sarcopenia increases the risk of
adverse outcomes. Sarcopenia is not only a risk factor
for adverse outcomes for those with dementia but also
promotes cognitive loss in healthy older adults [9]. There-
fore, diagnosing sarcopenia in people with neurodegenerative
diseases is relevant and necessary.

Head MRI is a widely used diagnostic method for
assessing dementia and Alzheimer disease (AD), as it offers
intricate representations of the brain’s anatomy and physiol-
ogy. In clinical practice, MRI is often combined with other
imaging techniques and cognitive assessments to support the
diagnosis of these conditions. The utilization of MRI has
seen an upward trend in recent times, as it has become
an instrumental tool for the early detection and tracking
of the evolution of dementia and AD. According to esti-
mates, 60%‐80% of patients diagnosed with dementia or AD
undergo MRI as part of their diagnostic evaluation [6].

Mastication and deglutition muscles such as the masseter
and tongue are visible in brain MRI scans [10,11]. These
muscles can reflect not only age-associated general muscle
decline but also systemic processes due to highly com-
plex interactions with the immune system and the inflam-
matory response, the nervous system, and the crossroads
of several components of the frailty syndrome [12,13].
Indeed, in a previous publication, we have reported that
manually segmented masseter predicts mortality and clinical
short-term and long-term outcomes in several contexts [14].
Moreover, head muscles such as the tongue and masseter
could be cost-effective alternatives to estimate muscle mass

in dementia and other common conditions such as head
cancer, stroke, or cranioencephalic trauma [14,15]. However,
manual and semi-automatic techniques are labor-intensive
and time-consuming, making the image processing task for
large studies difficult, expensive, and, most importantly,
impractical to apply in a clinical setting. Therefore, in the
present study, we aimed to use MRI scans of the head
opportunistically to develop an automated deep learning
method to evaluate sarcopenia.

Methods
Population and Data Source
The “Dementia Study of Western Norway” (DemVest)
is a long-term study between 2005 and 2013, with ongo-
ing follow-up assessments. Participants were referred from
dementia clinics in Hordaland and Rogaland and were
insured by the same national insurance scheme. The
study’s methodology is described elsewhere [15]. Those
with moderate or severe dementia, delirium, past bipolar or
psychotic conditions, terminal illness, or newly diagnosed
somatic diseases impacting cognition, function, or participa-
tion were excluded.

For this study, subjects with dementia with Lewy bodies
(DLB) or mild AD who had baseline MRI scans were
included. Out of 111 participants (85 AD and 26 DLB), 33
AD and 20 DLB participants with MRI images for brain and
muscle measurement were selected based on the quality of
the images and clear delineation of the regions of interest.
The diagnosis of dementia was made in accordance with
the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV) criteria, and patients were classified
as AD or DLB [16]. A mini-mental state examination score of
≥20 or a clinical dementia rating global score of 1 was chosen
as the definition for mild dementia. The diagnosis was based
on inclusion but could be modified with clinical evolution,
consensus, and autopsy [15]. Participants were evaluated
through structured assessments, and medical records were
used to gather complete medical history and comorbidity
data. In total, 56 participants had pathological diagnoses with
80% accuracy compared to clinical criteria, which reflects a
reliable initial clinical diagnosis [17].

Ethical Considerations
This study was approved by the regional ethics committee
(approval code: 2010/633) and the Norwegian authorities for
the collection of medical data. All data were handled and
kept following national data privacy protocols. All partici-
pants signed an informed consent form before inclusion in the
study.
Imaging
All images were acquired at baseline. A 1.5-T Philips
Intera-scanner was used to obtain MRI images. The acquisi-
tion protocol for 3D T1-weighted sequence was as follows:
flip angle of 30°, repetition time/echo time of 10.0/4.6
ms, number of excitations of 2, 2-mm slice thickness with
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1-mm spacing between the slices (1-mm slices with no
gap), matrix of 256×256 pixels, and field of view of 26
cm. Those with movement artifacts and inadequate image
quality were removed from the data using visual quality
checks. A standardized preprocessing method for harmo-
nizing multiple collections of MRIs was applied, which
consisted of movement correction and intensity normalization
following previously validated techniques [15].
Ground Truth Image Segmentation
Ground truth (GT) images were segmented using inter-
active pixel techniques made available by SliceOmatic

software (TomoVision) following a manual method previ-
ously reported [18]. The size of the masseter muscle was
used as a reference for the selection criteria of the slices. In
total, 5 slices were selected from the ones with both right
and left masseter muscles at their largest. For each slice, 5
tissues were segmented: left and right masseter muscles, left
and right subcutaneous fat, and tongue muscle (Figure 1).
The masseter muscle on each side was used as a reference to
segment subcutaneous fat.

Figure 1. Example of segmented tissues overlaid on the original MRI. (A) Right masseter muscle, (B) left masseter muscle, (C) right subcutaneous
fat, (D) left subcutaneous fat, and (E) tongue muscle.

Network Architecture
We studied and compared 6 different U-Net-like architec-
tures. The original U-Net architecture [19] was first designed
to segment medical images, and many other researchers have
tried to improve its performance by integrating additional
techniques into its architecture [20]. U-Net consists of a
contracting path (encoder) and an expansive path (decoder)
with skip connections between these 2 paths. The network
learns features from the provided image and the mask at
increasingly higher spatial scales by gradually down-sampling
to lower resolutions through the encoding path. The expan-
sive path then gradually increases the resolution of the output
from the encoding path to the original image size, resulting in
a probability map as an output, indicating the chance of each
pixel belonging to a specific tissue. One important feature of
U-Net is its skip connections, which concatenate feature maps
from the encoding path to the corresponding block in the

expansive path, making it possible to maintain small details
crucial in medical image segmentation.

We have included 5 variants of U-Net in this study,
including Attention U-Net, Dense U-Net, Residual U-Net,
Inception U-Net, and U-Net++. Attention U-Net is desirable
since it allows the model to focus on specific objects and
ignore unnecessary areas [21]. In Dense U-Net, the traditional
U-Net blocks are replaced with a dense block, enabling
the model to segment objects with greater distinction. This
feature is important in medical practice since tissues are
often very close and sometimes overlap [22]. Residual U-Net
architecture tries to tackle the vanishing gradient issue, a
common problem in designing deep neural networks [23]. In
most cases, the same organ’s size can vary between patients,
which can cause limitations on the segmentation capability
of the model. By using filters with different sizes, Incep-
tion U-Net attempts to overcome this problem [24]. Lastly,
U-Net++ aids the classic U-Net model to more accurately
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segment images by providing semantic information from a
dense network of skip connections as an intermediary grid
between the encoding and decoding paths [25]. We also
included a Wide U-Net architecture to eliminate the effect
of increased trainable parameters. This model has the same

architecture as U-Net but with more feature maps per layer
(30, 60, 120, 240, and 480) compared to the original U-Net
(16, 32, 64, 128, and 256). Hence, it will serve as a con-
trol to compare the models with larger numbers of trainable
parameters with the base U-Net (Table 1).

Table 1. Number of trainable parameters for each model.
Model Trainable parameters
U-Net 2,164,390
Attention U-Net 2,233,270
U-Net++ 2,555,702
Inception U-Net 5,529,526
Residual U-Net 6,877,110
Dense U-Net 7,666,320
Wide U-Net 7,596,306

Training Procedure
All models were trained with the mini-batch stochastic
gradient descent algorithm using the Adam optimizer. A
batch size of 8 was selected. The learning rate was 0.0001.
The training was done for 200 epochs. The values of
hyperparameters were empirically tuned for best perform-
ance. Categorical cross-entropy (CSE) was selected as the
loss function for this study [26]. The CSE loss function
minimizes the distance between 2 distributions (the predicted
labels and the GT labels). CSE is one of the most popu-
lar loss functions for image segmentation and has shown
excellent performance in muscle segmentation [27,28]. All
experiments were implemented with open-source software:
Python (version 3.7.13), TensorFlow (version 2.8.2), and
Keras (version 2.8.0).
Model Evaluation
The results of the experiments were evaluated using 2 main
measures: Dice similarity coefficient (DSC) and average
symmetric surface distance (ASSD). The DSC represents the
agreement between the GT labels and predicted labels that
models generate:

DSC P,G = 2 P ∩ GP + G
where ∩ is the intersection and P and G are the 2 labels. DSC
ranges between 0 and 1, where 0 indicates no agreement and
1 indicates perfect agreement. In our study, DSC is presented
as a percentage.

The ASSD measures the average distance from pixels on
the boundary of predicted labels to corresponding pixels on
the boundary of the GT labels:

where BP and BG are the boundaries of predicted labels and
corresponding reference labels, respectively. d v, B  is the
shortest Euclidean distance between voxel v and boundary B.
An ASSD of 0 indicates a perfect match between predicted
and reference labels. The ASSD was measured in mm.

We used k-fold cross-validation in evaluating the models.
This technique splits the data set into k subsets (folds). The
deep learning models are trained on all but one of the subsets
(k–1), and then the models are evaluated on the subset that
was not used for training. This process is repeated k times,
and the average of the results is reported. We used k=10.

Additional metrics, including Jaccard coefficient,
precision, recall, sensitivity, specificity, and F1-score, are
presented in Multimedia Appendix 1. The results are shown
as mean and standard deviation and median and interquartile
range across k-fold (k=10) cross-validation.
Statistical Methods
We explored the association between the BMI and the muscle
and fat areas and volumes in the MRI images using individ-
ual linear regression models adjusted by sex and age. No
adjustments for multiple testing were made. All assumptions
were checked. All P-values were evaluated at a 5% level. The
analysis and graphs were carried out using R (version 4.2.2).

Results
Segmentation
DSC and ASSD were used to quantitatively analyze the
segmentation results (Figure 2 and Table 2). The Dense
U-Net model has a higher average DSC and lower ASSD
than other models. In contrast, Attention U-Net has the lowest
average DSC score compared to other models. This result is
confirmed by the higher ASSD for Attention U-Net for all
tissues. Other models have shown almost similar results for
all areas. Additional metrics have been presented in Multime-
dia Appendix 1. The results from these metrics confirm the
findings of the study mentioned in this section; hence, they
were omitted from the main manuscript.
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Figure 2. Box plot of k-fold (k=10) cross-validation results for attention U-Net, dense U-Net, inception U-Net, residual U-Net, U-Net, U-Net++, and
wide U-Net. Top: DSC in percentage. Bottom: ASSD in mm.

Table 2. Mean DSC and ASSD for test and validation results for k-fold (k=10) cross-validation. Standard deviation for the measurements in this table
is presented in Multimedia Appendix 1.

Model
Test set Validation set
Ta LMb RMc LSFd RSFe T LM RM LSF RSF

DSCf

(%)
Attention U-Net 93.57 93.4 93.19 90.9 91.26 93.43 93.38 93.23 91.05 91.43
Dense U-Net 94.12 94.66 94.4 91.76 92.22 94.07 94.7 94.49 91.89 92.42
Inception U-Net 94.07 94.12 93.69 91.36 91.59 93.85 94.27 93.73 91.45 91.81
Residual U-Net 93.71 94.03 93.53 91.05 91.46 93.74 94.1 93.67 91.35 91.68
U-Net 93.83 93.94 93.46 90.97 91.49 93.88 93.93 93.52 91.18 91.67
Wide U-Net 94 94.29 93.93 91.35 91.68 94.03 94.3 93.99 91.59 92.01

ASSDg

(mm)
Attention U-Net 1.47 0.63 0.66 0.59 0.62 1.53 0.67 0.65 0.6 0.59
Dense U-Net 1.3 0.52 0.53 0.53 0.54 1.37 0.51 0.53 0.52 0.54
Inception U-Net 1.33 0.57 0.61 0.59 0.61 1.44 0.56 0.63 0.6 0.59
Residual U-Net 1.39 0.58 0.62 0.61 0.61 1.38 0.58 0.63 0.58 0.6
U-Net 1.41 0.6 0.65 0.62 0.61 1.45 0.6 0.64 0.61 0.59
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Model
Test set Validation set
Ta LMb RMc LSFd RSFe T LM RM LSF RSF

Wide U-Net 1.35 0.55 0.58 0.56 0.6 1.34 0.55 0.58 0.56 0.57
aT: tongue muscle.
bLM: left masseter muscle.
cRM: right masseter muscle.
dLSF: left subcutaneous fat.
eRSF: right subcutaneous fat.
fDSC: Dice similarity coefficient.
gASSD: average symmetric surface distance.

Clinical Validation
To prove the clinical validity of the measurements, we
evaluated the association between the segmented muscles and
subcutaneous fat and BMI. We found a significant positive
association between tongue muscle, left masseter muscle, and

left and right subcutaneous fat and BMI (Figure 3). The area
of a single slice as well as the volume of 5 slices per patient
was calculated for this experiment. The results were adjusted
by age and sex with P<.05 (Multimedia Appendix 2).

Figure 3. Individual linear regression repressing the relationship between quantitative results (area of a single slice and volume of 5 slices) from the
Dense U-Net model and BMI.
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Discussion
In this study, we evaluated the performance of six deep
learning models for segmentation of the masseter muscles,
subcutaneous fat, and tongue muscle in MRI images of
the head. Several variations of the U-Net architecture were
trained and tested using k-fold cross-validation. The use
of deep neural networks for segmenting musculoskeletal
tissues in patients with AD and LBD is a novel experi-
mental contribution to the deep learning-based segmentation
literature as well as the clinical literature.

Our study demonstrated that the Dense U-Net model
performed superiorly to the other models in all evaluated
regions by achieving an overall DSC of 93.43% and ASSD
of 0.68 mm on the test data. The remaining models demon-
strated comparable outcomes, except the Attention U-Net,
which achieved slightly less accurate results in all regions
with an overall DSC of 92.46% and ASSD of 0.79 mm on
the test data. Notably, despite having a comparable number
of trainable parameters, the Dense U-Net model demonstrated
a higher DSC and lower ASSD than the Wide U-Net model.
The Dense U-Net model achieves superior performance with
a similar number of parameters, suggesting that its architec-
tural efficiency, rather than parameter quantity alone, drives
this improvement.

The validation set produced similar results to the training
set, indicating that the trained models did not suffer from
overfitting. Although we applied data augmentation to the
training data set (results not shown), it did not significantly
improve the accuracy of the segmentation models.

Furthermore, we observed a significant correlation
between the results and BMI, a well-established measure of
nutrition and body composition. This underscores the validity
and clinical relevance of this method. If these localized
muscle measurements correlate with BMI, it suggests that
they may reflect broader nutritional and body composition
states.

Sarcopenia is a relatively newly recognized condition for
which neuromuscular degeneration, central nervous system
alpha motor unit loss, and fat infiltration into muscle are
the most distinctive proven and observed pathogenic features,
leading to loss of muscle mass and strength and predispos-
ing to physical frailty [2]. We have proposed that non-inva-
sive assessment of intermuscular adipose tissue and muscle
mass by image analysis could constitute a viable method to
diagnose sarcopenia and predict its associated outcomes, the
clinical impact of which is also under study by our group
[29].

The validity and clinical implications of measuring the
masseter muscle have been shown in previous studies
[30,31]. In recent work by our group, we compared the
diagnostic capacity for sarcopenia between the gold-standard
dual X-ray absorptiometry and our measurements of head
muscles. The results showed that both methods had equiv-
alent accuracy [32]. In older adults with glioblastoma, a
decreased masseter diameter on preoperative imaging was

associated with shorter overall survival and 90-day mor-
tality after surgical resection [33]. In addition, low mass-
eter muscle was significantly associated with worse overall
survival in patients aged 65 years or older, diagnosed with
squamous cell carcinoma of the head and neck and treated
with curative intent [34]. Another study evaluated post-opera-
tive results after carotid endarterectomy; low masseter mass
was associated with a prolonged hospital stay and recurrent
stroke within 5 years [35]. In another study, preoperative
masseter mass was a predictor of postoperative pneumonia
in patients with esophageal cancer [36]. Additionally, other
studies have shown that the masseter muscle can be used
as a nutritional biomarker. The masseter muscle, analyzed
via computed tomography (CT) anthropometry, showed a
statistically significant association with systemic nutritional
biomarkers [37]. On the other hand, the tongue has shown
to be a good marker of prognosis, as tongue strength has
shown to be helpful in diagnosing sarcopenia [38]. Previous
studies from our group also report that tongue muscle volume
is correlated with malnutrition and even brain structures in
patients with dementia [18,29].

Therefore, the approach we present in this paper can
be opportunistically used to quantify muscle volumes and
investigate the implications of having low muscle mass in the
masseter or the tongue in people with brain, head, and neck
diseases. Thus, it is an important first step toward develop-
ing a more efficient method to estimate masseter and tongue
muscle with a better capacity to be implemented in clinical
practice. Manual and semi-automatic techniques have been
employed in several studies for masseter muscle segmentation
in MRI [39]. A recent study used shape determination to
segment the masseter muscle in MRI images [40]. In this
approach, a manual contour for 8 slices must be defined by
the user, and the model then determines the shape for the
remaining scans, reducing the time and labor required for
segmentation. However, this technique still requires manual
segmentation, which can be time-consuming and prone to
user error compared to our approach.

Model-based techniques have also been explored for the
segmentation of the mastication muscle [41,42]. Although
these techniques have shown high accuracy (>90%), there
must be a distinct boundary between the masseter muscle and
surrounding tissues to ensure accuracy. This distinct boundary
refers to visible differences in intensity, texture, or anatomical
structure on imaging, which enable the models to accurately
separate the muscle from adjacent tissues, such as fat or bone.

Machine and deep learning approaches have been widely
used to segment muscles in various body parts. CT scans
and cone beam CT scans have primarily been investigated
for measuring the head organs, including masseter muscle
using these techniques [43-45]. In a previous study, a basic
U-Net model was applied to segment the masseter muscle
in head CT scans to investigate hemifacial microsomia [46].
The mean DSC reported in that study was 79.4% for the
experimental group and 82.4% for the group with mandi-
ble deformities, which are lower compared to the results
obtained in our study. In a study using CT scan of the
head for segmentation of masticatory muscles, deep learning
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techniques were superior to atlas-based techniques, achieving
a mean DSC of 83% [47]. To the best of our knowledge, the
techniques considered in our study have not yet been used to
segment musculoskeletal tissues in MRI images of the head.

Our study had some limitations. The Attention U-Net
model demonstrated the lowest DSC values and the
highest ASSD values among the evaluated models, indi-
cating suboptimal segmentation accuracy across tissues.
This underperformance may be attributed to the Attention
mechanism’s inability to effectively focus on the target
tissue, leading to dispersed attention, particularly in smaller
structures or regions with indistinct boundaries. To address
this limitation, future work could involve refining the
Attention mechanism to enhance its specificity and focus
on regions of interest. Alternatively, exploring models that
prioritize multi-scale feature extraction and detail preser-
vation may provide improved segmentation performance,
particularly for small or complex anatomical regions.

The DemVest study had some limitations that may have
impacted the results. Selection bias might have been present if
patients with more complex health conditions were included,
as primary care referrals were used. The study was not
specifically designed for the paper’s purpose, which could
limit the data analysis and interaction control. For example,
the absence of a healthy control group prevents us from
determining whether the observed muscle volume character-
istics are specific to individuals with AD or neurocognitive
disorders, or if they represent normal variations associated
with aging. However, the primary objective of this study
was to demonstrate the feasibility and accuracy of our deep
learning model in quantifying muscle volumes using head
MRI, rather than to establish definitive differences between
diseased and healthy populations. In addition, the sample

size is relatively small, and there is a risk that our results
may not generalize to larger populations. Additionally, the
MRI scans were obtained from a single center using a single
MRI machine, which may affect the model’s generalizability.
Longitudinal analyses were not conducted because imaging
was only performed at baseline, in line with the initial
primary objectives of the DemVest study and the resources
allocated for image acquisition.

These limitations should be considered when interpreting
this study’s results and addressed in future studies seek-
ing broader application of the proposed approach. Whether
masseter and tongue volumes in these muscles correlate with
lean body mass and inflammaging and could be predictors
of neurocognitive conditions and their associated outcomes
remains unknown.

On the other hand, this study has several strengths,
including well-characterized data, detailed and exhaustive
diagnosis to correctly identify people with dementia, and an
automated quality control and analysis pipeline. Additionally,
the results fill a gap in the literature and provide insights
into a possible method to efficiently diagnose sarcopenia in
context when a head MRI is already available.

In summary, to our knowledge, this is the first study
that validates deep learning methods that could be easily
implemented in clinical practice to measure masseter and
tongue muscle volumes with a solid potential to become
biomarkers with strong predictive value for adverse outcomes
in older persons with dementia. Since imaging is widely used
in memory clinics worldwide, this opportunistic approach
to image analyses could become standard practice in those
settings. However, further large longitudinal studies are still
required.
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