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Abstract
Background: Parkinson disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms.
Recently, dance has started to be considered an effective intervention for people with PD. Several findings in the literature
emphasize the necessity for deeper exploration into the synergistic impacts of dance therapy and exergaming for PD man-
agement. Moreover, socially engaging robotic platforms equipped with advanced interaction and perception features offer
potential for monitoring patients’ posture and enhancing workout routines with tailored cues.
Objective: This paper presents the results of the Social Robotics for Active and Healthy Ageing (SI-Robotics) project,
aimed at designing an innovative rehabilitation program targeted at seniors affected by (early-stage) PD. This study therefore
aims to assess the usefulness of a dance-based rehabilitation program enriched by artificial intelligence–based exergames
and contextual robotic assistance in improving motor function, balance, gait, and quality of life in patients with PD. The
acceptability of the system is also investigated.
Methods: The study is designed as a technical feasibility pilot to test the SI-Robotics system. For this study, 20 patients with
PD were recruited. A total of 16 Irish dance–based rehabilitation sessions of 50 minutes were conducted (2 sessions per week,
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for 8 wks), involving 2 patients at a time. The designed rehabilitation session involves three main actors: (1) a therapist, (2)
a patient, and (3) a socially interacting robot. To stimulate engagement, sessions were organized in the shape of exergames
where an avatar shows patients the movements they should perform to correctly carry out a dance-based rehabilitation exercise.
Results: Statistical analysis reveals a significant difference on the Performance-Oriented Mobility Assessment scale, both
on balance and gait aspects, together with improvements in Short Physical Performance Battery, Unified Parkinson Disease
Rating Scale–III, and Timed Up and Go test, underlying the usefulness of the rehabilitation intervention on the motor
symptoms of PD. The analysis of the Unified Theory of Acceptance and Use of Technology subscales provided valuable
insights into users’ perceptions and interactions with the system.
Conclusions: This research underscores the promise of merging dance therapy with interactive exergaming on a robotic
platform as an innovative strategy to enhance motor function, balance, gait, and overall quality of life for patients grappling
with PD.
Trial Registration: ClinicalTrials.gov NCT05005208; https://clinicaltrials.gov/study/NCT05005208

JMIR Aging 2025;8:e62930; doi: 10.2196/62930
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Introduction
Parkinson disease (PD) is a progressive neurodegenerative
disorder characterized by motor symptoms, such as tremors,
bradykinesia, rigidity, and postural instability, as well as
nonmotor symptoms, including cognitive impairment, mood
disorders, and autonomic dysfunction [1]. These symptoms
can significantly impact patients’ quality of life and inde-
pendence as the disease progresses. While pharmacological
interventions, such as dopamine replacement therapy, remain
the mainstay of PD management, their efficacy may diminish
over time and they often fail to address the nonmotor
symptoms adequately [2]. Physical therapy represents the
key adjuvant treatment for PD, offering potential benefits in
improving motor function, balance, gait, and overall mobility
[3]. Among various forms of physical therapy, dance-based
interventions have gained attention due to their multiface-
ted approach targeting motor, cognitive, and psychosocial
aspects of the disease [4]. Dance therapy engages patients in
rhythmic movements, music, and social interaction, promot-
ing coordination, flexibility, and emotional well-being [5].

Exergaming, which involves interactive video games
requiring physical movement, has emerged as a novel
approach to delivering dance-based therapy in both home-
based and clinical settings [6]. Exergames offer the advan-
tages of personalized, adaptable, and enjoyable exercise
programs, potentially enhancing patient motivation and
adherence [7]. Recent research has highlighted the potential
of dance therapy and exergaming to address the complex
needs of PD patients. A randomized controlled trial by
Duncan and Earheart [4] demonstrated significant improve-
ments in motor function and balance among patients with PD
participating in community-based dancing compared with a
control group. Furthermore, a study by Barry et al [7] found
that exergaming interventions were effective in improving
mobility and reducing fall risk in patients with PD.

These findings underscore the importance of further
investigating the combined effects of dance therapy and
exergaming in PD management. Furthermore, the reliability
and performance of current sensing technologies provide

physiological data that are useful to monitor the state and
the quality of the exercises objectively performed by patients.
For example, commercial wearable devices could be easily
integrated during rehabilitation sessions to gather informa-
tion about the heart or breath rate of involved patients and
objectively evaluate the metabolic effort. Socially interac-
tive robotic platforms with their interaction and perception
capabilities (eg, onboard cameras) are well suited to monitor
the posture of patients and support the execution of the
exercises through tailored stimuli. A more comprehensive
approach may integrate advanced technologies, such as sensor
technology for real-time monitoring, artificial intelligence
(AI) techniques for personalized difficulty adjustments, and
robotic platforms to deliver personalized feedback and
enhance the rehabilitation experience.

In this context, the Social Robotics for Active and
Healthy Ageing (SI-Robotics) project designed an innova-
tive rehabilitation program targeted at seniors affected by
(early stage) PD [8]. The approach relies on the inte-
gration of several AI technologies ranging from knowl-
edge representation and reasoning, for user modeling and
personalization to machine learning and automated planning
(AP) for continuous proactive and adaptive assistance [9].
Leveraging the mentioned interventions based on different
types of dance [10,11], the idea is to develop a technol-
ogy-enhanced, dance-based rehabilitation program where
a socially interacting robot and several sensing devices
(wearable sensors and 3D cameras mainly) support thera-
pists and patients during the execution of the exercises.
This study therefore aims to assess the usefulness of a
dance-based physical therapy program enriched by AI-based
exergames and contextual robotic assistance in improving
motor function, balance, gait, and quality of life in patients
with PD. We hypothesized that the proposed technology-
enhanced dance therapy would lead to greater improvements
in PD symptoms.

Methods
The study is designed as a technical feasibility pilot to test
the SI-Robotics system. The entire protocol, including the
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description of scales, the platform functioning, the training
program, and procedures has been previously described in
detail [8].
Subjects
A total of 20 patients with PD were selected by the outpatient
department at the Clinical Unit of Physical Rehabilitation,
Istituto di Ricovero e Cura a Carattere Scientifico Istituto
Nazionale Ricovero e Cura per Anziani (IRCCS INRCA).
The patients were recruited if they were over 65 years old;
able to provide informed consent; had a stage of Hoen
and Yahr scale between 1 and 2 [12]; had a Functional
Ambulation Category score ≥2 [13]; had a Rankin Scale
score ≤3 [14]; had stability of drug treatment for at least
1 month; had a Geriatric Depression Scale 4-item score ≤1
[15]; had a Mini-Mental State Examination ≥24 [16]; and
could maintain an upright posture≥30 seconds, evaluated by a
trained physiotherapist during the recruitment. The evaluation
of compliance with the inclusion and exclusion criteria was
performed during the recruitment session. Once we completed

this phase, informed consent was obtained. The patient’s
clinical assessment was performed at the start and the end
of the treatment. In particular, the evaluation consisted
of the administration of the following scale: measurement
of functional state with the Barthel Index [17]; physical
performance with Tinetti’s Performance-Oriented Mobility
Assessment (POMA) [18], the Short Physical Performance
Battery (SPPB) [19], the 6-Minute Walking Test [20], and the
Timed Up and Go test (TUG) [21]; evaluation of the quality
of life with the 12-Item Short-Form Health Survey (SF-12)
[22]; fear of falling with Falls Efficacy Scale-International
(FES-I) [23]; and the assessment of the prognosis of PD with
the Unified Parkinson Disease Rating Scale – III (UPDRS-III)
[24].
Intervention
Figure 1 shows the experimental setting in a protec-
ted environment (gymnasium) and the positioning of the
technologies, the patient, and the physiotherapist, during the
dance-based rehabilitation sessions.

Figure 1. Technological components and actors of Social Robotics for Active and Healthy Ageing (SI-Robotics) rehabilitation sessions.

A total of 16 therapy sessions of 50 minutes were conduc-
ted (2 sessions per wk, for 8 wks), involving 2 patients
at a time. Cardiac and respiratory activity was monitored
during dancing treatments to detect heart rate and breathing
frequency. The participants were required to complete at least
80% of the sessions. Each session involved the following
activities: (1) breathing, relaxation, and postural harmoniza-
tion exercises (5 min); (2) active mobility and stretching
exercises (5 min); (3) the SI-Robotics intervention (35 min)
consisting of the AI-enhanced “Let’s Dance” game, and a
socially interacting robot monitoring the execution of the
physical exercises of patients; and (4) relaxation exercises (5
min).

After selecting a difficulty level, players are presented
as dancers on the screen, along with footprints that suggest
the movement to be done. Each task can vary from simple
aerobic exercises (side steps, arm raising, hand clapping, etc)
to choreographies. At the end of the game session, a score is
presented to the patient. This would make a patient aware of
the quality of the performance. This score can also be used

by the therapist to assess the patient’s performance and the
possible increase in the difficulty level of the game.

The next sections describe the technological components
of the session in more detail.
The AI-Based Rehabilitation Session
The designed rehabilitation session involves three main
actors: (1) a therapist, (2) a patient, and (3) a socially
interacting robot. To stimulate engagement, sessions are
organized in the shape of exergames where an avatar shows
patients the movements they should perform to correctly carry
out a rehabilitation exercise (eg, dancing steps). Given a set
of data about the needs of a group of patients and about
stimulation capabilities of known exercise, a game engine
integrates an AI planner [25] and synthesizes exercises by
selecting a (sub)set of movements (ie, dancing steps) that best
fit the clinical objectives of the session (ie, of the current
patient). The exergame is enriched with AP to synthesize
suitable physical exercises, contextualized to the clinical
objectives of the rehabilitation sessions [25]. Many works
in the literature investigate the use of AI in health care and
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PD [11,26] AI is used for example to predict the wearing-off
of symptoms [27], support decisions [28], or early diagnosis
of PD [29]. The majority of these works adopt AI solutions
based on deep or machine learning and focus on the diagno-
sis of the disease. Few works investigate the use of AP to
support therapists in the synthesis of rehabilitation programs.
The study by Gonzalez et al [30], for example, integrates AP
into a control architecture to allow a social robot to phys-
ically show motions to a patient during physical rehabilita-
tion. Baschieri et al [31] uses AP to synthesize simulation
scenarios within a serious game for cognitive rehabilitation.
This work pursues an objective similar to ours but in a
different clinical scenario.

As shown in Umbrico et al [25] SI-Robotics proposes AP
to support the synthesis of physical rehabilitation programs
for patients with PD . A key aspect of the developed planning
framework is the combined reasoning about spatial and
clinical effects of stimuli (ie, motions or dancing steps)
needed to synthesize plans that are technically valid and
effective from a clinical point of view. Compared with a
manual definition of the rehabilitation session, the use of a
planner aims to improve the quality, accuracy, and engage-
ment of the resulting rehabilitation programs. A therapist
provides a planner with data about the rehabilitation session

(song time, song rhythm, and difficulty level) and the clinical
objectives. Given this input, the planner decides a sequence of
steps, optimized according to an objective function encod-
ing the specified clinical objective. Planned steps are thus
chosen according to the rehabilitation needs of the participat-
ing patient (personalization).

In addition, several devices enrich the session to extract
useful data about the health conditions and the performance
of patients. The generated data streams are gathered by
the robot that embodies the AI-based reasoning modules.
Overall, three types of perception components were consid-
ered: (1) wearable sensing devices (eg, sensorized shirts)
that constantly produce data streams about physiological
parameters of patients (eg, heart rate) [32]; (2) a video-pro-
cessing component elaborating 3D camera data to extract
kinematics about motions and produce data about body
posture and body equilibrium of patients and; (3) a video-pro-
cessing component elaborating 3D camera data to analyze
patients’ behaviors and produce data about the correctness of
performed motions (ie, feedback). Figure 2 below shows a
conceptual overview of the designed session pointing out a
subset of the main hardware and software components and the
data streams generated during the execution of a rehabilitation
session.

Figure 2. Automata describing the assistive behavior of the robot during a rehabilitation session. HR: Human-Robot

In addition, a socially interacting robot should support the
execution of a session by recognizing the current state of
a session according to data gathered from the environment,
autonomously detecting events that would trigger different
phases, and setting the behavioral goals needed to support

a session. The robotic platform consists of a novel social
robotic platform designed within SI-Robotics and developed
by Co-Robotics [33]. Figure 3 shows the lifecycle determin-
ing the assistive behavior of the robot during each rehabilita-
tion session.

JMIR AGING Bevilacqua et al

https://aging.jmir.org/2025/1/e62930 JMIR Aging 2025 | vol. 8 | e62930 | p. 4
(page number not for citation purposes)

https://aging.jmir.org/2025/1/e62930


Figure 3. Architectural structure of the artificial intelligence–based cognitive control of the robot.

A rehabilitation session starts with a welcoming state where
the robot introduces patients to the session. Patients do not
know the structure of the rehabilitation and are not familiar
with the involved technology. The objective of this state is
therefore to prepare patients for the therapy by explaining
the structure of the session and the technology used. When
all patients are ready to start a session, the robot enters into
a “monitoring” state gathering data from the environment
to monitor the performance and health state of patients.
When a rehabilitation exercise ends the robot enters into the
“reporting” state to interact with the therapist to comment
on the exercise and the observed performance. This state is
especially useful to enrich the subjective experience of the
therapist by enhancing the awareness of the therapist with
objective feedback on the quality of the exercises. It is indeed
meant as a support for the decisions on how to proceed with
the session (eg, change or repeat the exercises, difficulty of
the next exercise, etc). If the therapist decides to start a new
exercise, then the robot enters again into the monitoring state.
Otherwise, the robot enters into the “closing” state to finalize
the session. In this latter case, the robot interacts with patients
to ask their personal feelings about the session and to show a
qualitative assessment of their session.

Different types of interaction are foreseen during an
exercise, depending on the type of situation recognized by
the robot. Two types of interactions have been considered
characterized by the motivating and the alerting states in
the automata. The motivating phase allows the robot to play
the role of a coach during the session stimulating patients
to perform better or correcting their behavior. The robot is

supposed to enter the motivating phase when it detects a
heart rate below some minimum “training threshold” or when
it detects a wrong posture of the body, for example, bad
alignment or asymmetrical motion of lower or upper limbs.

The alerting phase allows the therapist (and the robot) to
intervene when some critical situation concerning the health
state of a patient is detected during the session. In such case,
the robot is supposed to warn the therapist about the danger
and simultaneously interact with the involved patient, even
interrupting the exercise if necessary. Specifically, the robot
enters the alerting phase when it detects the risk of a fall or
an anomalous heart rate for a patient. Both these situations are
critical for the considered target of patients and need a prompt
intervention.
AI-Based Control of Robotic Skills
A key aspect (and still an open challenge) in the design
of autonomous robotic agents is the integration of different
AI technologies and Robotics [34,35]. SI-Robotics proposes
an AI-based control architecture with twofold objectives:
(1) to support the abstraction and reasoning capabilities
needed to recognize health-related situations and assistive
objectives and (2) to coordinate robotic skills to “act” in
the environment and (autonomously) achieve contextualized
assistive objectives. Figure 4 shows an overview of the
designed architecture with the main functional components
involved in the control process. Two main architectural layers
are considered and are organized according to a cognitive
architecture inspired by the Dual Process Psychological
Theory [36].
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Figure 4. Designed architecture.

A skill control layer encapsulates the control components
responsible for providing the robot with the “low-level”
capabilities needed to perceive the environment and interact
with the environment. The Navigation Skills component
encapsulates functionalities that allow a robot to robustly
navigate within the environment and autonomously reach
known locations. The Dialog Skills encapsulate natural
language processing functionalities that allow a robot to talk
with patients and therapists. This component in particular
enables an affective interaction [37] by adapting the way the
robot talks with a patient to the detected emotional state and
known personality traits.

While some level of perception is needed for both
navigation and dialogue skills, the Perception Skills compo-
nent emphasizes the additional capability needed to process
data from deployed environmental devices. It encapsulates
low-level data processing to provide the higher decisional
level with refined information. A behavior control layer
supports AI-based control features to contextualize obser-
vations, trigger assistive goals, and coordinate underlying
skills to implement the desired assistance. The Autonomy
and Skill Coordination component encapsulates an AI plan–
based controller that supports behavior continuity coordinat-
ing robotic skills. The Goal Reasoning component instead
is in charge of contextualizing observations to automatically
set assistive goals. The combination of goal reasoning and a
plan-based controller is the key architectural feature enabling
proactive and autonomous goal-oriented behaviors of the
robot [38].

The AI-based architectural elements composing the
coordination layer of Figure 4 have been embedded into the

robotic platform and integrated through the Robot Operating
System (ROS) using the ROS Melodic distribution [39]. The
coordination component responsible for the synthesis of the
assistive behavior has been implemented in the shape of an AI
plan–based controller relying on AP. The component uses the
open-source framework ROXANNE [40], which implements
goal-oriented acting capabilities into an ROS [41]. ROX-
ANNE allows the robot to receive high-level assistive goals
and (autonomously) synthesize and execute navigation and
dialogue commands or tasks to realize a desired assistive
behavior. The goal reasoning component correlates data
received from the perception component with the autonomous
behavior of the robot. It endows the robot with the cognitive
capabilities needed to understand the evolution of a rehabil-
itation session autonomously select suitable planning goals
and consequently decide the assistance needed in a particular
context.

Embedded AP models the behavioral constraints needed
to correctly support a rehabilitation session. Behavioral
constraints are specified in the shape of temporal constraints
and require interacting tasks performed through available
skills. In this regard, Table 1 shows the modeled assistive
goals and the parameters defined to contextualize interac-
tions. Furthermore, the table briefly describes the behavioral
constraints specified in the model to correctly implement
the desired assistance and support the associated goal. It is
worth noting that AI planning facilitates robot programming
since it supports an “easy specification” of desired behavioral
dynamics without hard-coding the implemented skills.

Table 1. Acting goals supported by the robot-embedded controller to synthesize assistive behaviors during a rehabilitation session.
Goal Interaction parameters Interaction parameters
Welcoming • Therapist: string

• Patient: string
• Gender: string
• Novel: boolean

The robot moves from its current location to the welcoming area to call the
specified patient and take patient to the dressing area to wear the sensorized
shirt. Then it guides the patient to the rehabilitation area to start the session.
If the patient is new to the session (flag novel set to true) the robot explains the
organization of the rehabilitation and the functioning of the devices. Other-
wise, the robot shows data about the last session to motivate the patient for the
current one.

Exercise start —a When an exercise begins the robot starts moving around the rehabilitation area
and monitoring patients’ state by collecting physiological, body posture, and
performance data.
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Goal Interaction parameters Interaction parameters
Exercise report • Patient: string

• Gender: string
• Score: double
• Past_score: double
• Global_score: double

When an exercise ends the robot moves close to a patient to show a brief
report about the patient performance. The robot shows the achieved score and
(if available) compares it to the average score of the patient in the past and the
average score of other patients. This would make a patient aware of the quality
of the performance.

Low heart rate and high
heart rate

• Therapist: string
• Patient: string
• Gender: string
• Heart_rate: double

The robot periodically analyzes trends of gathered data about the heart rate of
a patient. Thresholds are parametric and computed according to the age of the
patient as follows:
HR_max=80% (220 – age)
HR_min=40% h_max
The objective of the session is to keep the heart rate of patients within
HR_max and HR_min to stimulate a proper metabolic effort. In the case of
low heart rate (i.e., value below HR_min) the robot implements a motivational
behavior asking a patient to improve the performance. In case of high heart
rate (i.e., value above HR_max), the root implements an assistive behavior
alerting the therapist and asking the patient to reduce the performance

Bad posture • Patient: string
• Gender: string
• Tilt: integer in [0, 1]
• Arms: integer in [–1, 1]
• Legs: integer in [–1, 1]

The robot constantly monitors the motions and the inclination of patients. If
anomalous kinematics parameters are detected, for example, wrong
inclinations of the body or wrong alignment of arms or legs, the robot
implements a motivational behavior to correct the body posture of a patient
and thus stimulate correct motions.

Bad equilibrium • Therapist: string
• Patient: string
• Gender: string
• Lateral: integer in [–1,1]
• Frontal: integer in [–1,1]

In addition to the body posture, the robot constantly monitors the equilibrium
of patients to prevent dangerous falls during physical therapy. If dangerous
equilibrium conditions are detected from camera data (eg, the center of mass is
outside the patient’s base) the robot implements an assistive behavior to
promptly notify the therapist and warn the patient about the danger or falling.

aNot applicable.

Outcomes
All assessment procedures adhere to a standardized protocol.
Specifically, the primary focus of the study revolves around
enhancing balance, and gait, and alleviating the fear of falling
among elderly patients with PD. This is gauged through the
utilization of the 3 POMA scales (POMA balance, POMA
Gait, and POMA Total) after the 10 treatment sessions, as
a result of the Irish dance intervention. In addition, secon-
dary measures include evaluating the gait speed of elderly
patients with PD, their fear of falling (assessed via FES-I),
their physical performance (SPPB), their autonomy in daily
living activities (UPDRS-III), and their overall physical and
psychological well-being (SF-12) together with the evaluation
of the Unified Theory of Acceptance and Use of Technology
(UTAUT) that is composed by 10 subscales (anxiety; attitude;
facilitating conditions; intention to use; perceived adaptabil-
ity; perceived enjoyment; perceived ease of use; perceived
usefulness; social influence; and trust).

Statistical Analysis
Continuous variables were presented as either mean and
SD or median and IQR, depending on their distribution,
which was determined using the Kolmogorov-Smirnov test.
Categorical variables were expressed as absolute numbers
and percentages. To test statistically significant differen-
ces (P<.050) between pre- and postconditions, Wilcoxon
signed-rank test (for non-normal distribution) or paired

test (for normal distribution) were used, alongside simple
descriptive statistics such as means, medians, and SDs as
appropriate. The statistical analysis was performed using
SPSS software.

Ethical Considerations
The study was approved by the Ethics Committee of the
Istituto Nazionale Ricovero e Cura per Anziani, (IRCCS
INRCA) on June 17, 2021 (CE INRCA 21004). The protocol
is registered on ClinicalTrials.gov with trial registration
number NCT05005208 (October 23 , 2023). All participants
signed the informed consent and data processing consent. The
data are anonymised so that the identity of the subject cannot
be traced. No compensation is provided for participation in
the study.

Results
Demographic and clinical data of the patients are reported in
Table 2. Two participants dropped out because they did not
complete the rehabilitation program.

The CONSORT (Consolidated Standards of Reporting
Trials) flowchart is shown in Figure 5.

Gender differences were not statistically significantly
different in all scales used to select the sample.
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Table 2. Baseline demographic and clinical profile.
Total (n=18) Male (n=10) Female (n=8) P value

Age (years), mean (SD) 75.3 (5.5) 73.7 (5.4) 77.2 (5.2) .18
Marital status, n (%) .48

Married 15 (83.3) 9 (90) 6 (75)   
Single 1 (5.5) 0 (0) 1 (12.5)   
Widowed 2 (11.2) 1 (10) 1 (12.5)   

Educational level, n (%) .17
Primary education 4 (22.2) 1 (10) 3 (37.5)   
Secondary education 10 (55.6) 6 (60) 4 (50)   
University or more 4 (22.2) 3 (30) 1 (12.5)   

Hoehn and Yahr score, mean (SD) 1.8 (0.3) 1.9 (0.3) 1.7 (0.4) .42
Rankin Scale score, mean (SD) 1.6 (0.9) 1.4 (0.8) 1.8 (1.1) .33
GDSa, mean (SD) 3.0 (0.7) 2.9 (0.7) 3.2 (0.7) .33
FACb, mean (SD) 4.6 (0.6) 4.7 (0.4) 4.5 (0.74) .50
MMSEc, mean (SD) 29.4 (0.9) 29.7 (0.6) 29.1 (0.7) .22
Barthel Index score, mean (SD) 95.5 (5.6) 94.5 (6.8) 96.8 (3.7) .39

aGDS: Geriatric Depression Scale.
bFAC: Functional Ambulation Category.
cMMSE: Mini-Mental State Examination.

Figure 5. The CONSORT (Consolidated Standards of Reporting Trials) flowchart.

Table 3 shows differences between pre- and postintervention
on the functional state scales with the UPDRS-III and the
SPPB, gait and balance performance on Tinetti POMA Gait
and POMA Balance, evaluation of quality of life with SF-12
and its subscores (physical component score and mental
component score), fear of falling (FES-I) together with the
TUG execution time, the meters covered during the 6-Minute
Walking Test and the gait speed.

Statistical analysis revealed a significant effect on
UPDRS-III and TUG together with improvements in the

POMA scale, both on balance and gait aspects, and in SPPB.
However, for the POMA and SPPB scales, there was a low
Cohen d coefficient, underlining a probable effect of the
low sample size on these results. In contrast, the effect size
for UPDRS-III and TUG was high (>0.70), highlighting the
usefulness of the rehabilitation intervention on the motor
symptoms of PD also in our small sample.
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Table 3. Mean (SD) values of the mean of pre- and postintervention scores on the UPDRS-IIIa, SPPBb, POMAc (total, gait and balance), SF-12d

(total, physical, and mental component score), FES-Ie, TUGf execution time, 6MWTg, and gait speed. Pre-post and between-group comparisons are
reported for each score (P<.05). The effect size (Cohen d) is also reported.

Preintervention scores,
mean (SD)

Postintervention scores,
mean (SD) P value Cohen d

UPDRS-III 13.56 (1.85) 13.83 (1.85) .01h −0.73
SPPB 8.83 (2.61) 10.39 (2.45) .02h 0.10
POMA

  POMA Total 24.11 (3.92) 26.28 (2.74) .001h −0.07
  POMA Gait 9.83 (2.30) 10.94 (1.55) .01h −0.02
  POMA Balance 14.28 (2.16) 15.33 (1.37) .01h −0.10

SF-12
  SF-12-Toti 31.28 (1.99) 32.33 (2.42) .10 −0.20
  PCS-12j 13.56 (1.84) 13.83 (1.85) .49 −0.23
  MCS-12k 17.72 (1.22) 18.50 (1.91) .12 −0.16

FES-I 10.78 (1.92) 10.67 (2.22) .83 −0.29
TUG (s) 11.0 (3.91) 9.19 (3.14) .002h −0.82
6MWT (m) 361.50 (99.33) 373.72 (98.67) .40 −0.19

aUPDRS-III: Unified Parkinson Disease Rating Scale – III.
bSPPB: Short Physical Performance Battery.
cPOMA: Performance Oriented Mobility Assessment.
dSF-12: 12-Item Short-Form Health Survey.
eFES-I: Falls Efficacy Scale–International.
fTUG: Timed Up and Go test.
g6MWT: 6-Minute Walking test.
hP values from matched-pairs Student t test.
iSF-12-Tot: 12-Item Short-Form Health Survey total score.
jPCS-12: 12-Item Short-Form Health Survey physical component score
kMCS-12: 12-Item Short-Form Health Survey mental component score.

Table 4 reports the scores of the subscales of UTAUT.
The analysis of the UTAUT subscales provided valua-

ble insights into users’ perceptions and interactions with

the system. In particular, attitude, perceived adaptability,
enjoyment, ease of use, usefulness, and social influence were
generally positive.

Table 4. Mean (SD) of the mean of the Unified Theory of Acceptance and Use of Technology (UTAUT) subscales scores.

UTAUT subscales
Score, mean
(SD) Range

Anxiety (ANX) Evoking anxious or emotional reactions when using the system. 7.4 (4.2) 0‐20
Attitude (ATT) Positive or negative feelings about the appliance of the technology 11.2 (2.5) 0‐15
Facilitating conditions (FC) Objective factors in the environment that facilitate using the system 2.6 (1.7) 0‐15
Intention to use (ITU) The outspoken intention to use the system over a longer period in time 3 (0) 0‐10
Perceived adaptability (PAD) The perceived ability of the system to be adaptive to the changing needs of the user. 10.5 (3.0) 0‐15
Perceived enjoyment (PENJ) Feelings of joy or pleasure associated by the user with the use of the system. 18.2 (2.2) 0‐25
Perceived ease of use (PEOU) The degree to which the user believes that using the system would be free of effort 18.1 (3.8) 0‐25
Perceived usefulness (PU) The perceived ability of the system to perform sociable behavior. 11.4 (2.9) 0‐15
Social influence (SI) The user’s perception of how people who are important to him think about him using the

system
8 (2.4) 0‐10

Trust The belief that the system performs with personal integrity and reliability. 7.5 (1.8) 0‐10

Discussion
Principal Findings
This study aims to investigate the usefulness of the SI-Robot-
ics intervention based on AI robotic assistance and exer-
game stimulation, in the context of PD. This study aims to

assess the ability of a dance-based physical therapy pro-
gram enriched by AI-based exergames and contextual robotic
assistance in improving motor function, balance, gait, and
quality of life in patients with PD. The findings of this
study demonstrate the potential usefulness of a dance-based
physical therapy program using a robotic platform to deliver
exergames in improving motor function, balance, gait, and
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quality of life in patients with PD. Results suggest that
integrating dance therapy with engaging technology may lead
to greater improvements in PD symptoms compared with
conventional physical therapy alone. Although the statistical
analysis revealed significant improvements in motor function,
balance, and gait (eg, UPDRS-III, POMA, and TUG scores),
the effect sizes for several outcome measures were relatively
small (Cohen d<0.2 for POMA and SPPB scales). This
suggests that, while the observed changes were statistically
significant, the practical impact of the intervention on certain
motor and functional outcomes may be limited. These small
effect sizes could be partly attributed to the small sample size,
which may have reduced the power to detect larger effects.

This study adds to the growing body of research support-
ing the use of dance therapy and exergaming as adjunctive
treatments for PD. Previous studies have shown that both
dance therapy and exergaming can independently improve
motor function, balance, and mobility in patients with PD
[4,7]. By combining these approaches, our intervention aimed
to target the multifaceted nature of PD symptoms, including
motor, cognitive, and psychosocial aspects.

The results are consistent with previous findings demon-
strating the benefits of dance therapy and exergaming in
PD management. For example, Duncan and Earheart [4]
reported significant improvements in motor function and
balance among patients with PD participating in commun-
ity-based dancing, while Barry et al [7] found that exergam-
ing interventions were effective in improving mobility and
reducing fall risk in patients with PD. These studies, along
with ours, highlight the potential of integrating dance therapy
with exergaming to address the complex needs of patients
with PD.

One novel aspect of our intervention is the use of the
SI-Robotics system, a robotics-based platform designed to
engage patients with PD in Irish set dancing. This innova-
tive approach combines the physical and cognitive benefits
of dance therapy with the interactive and adaptable nature
of exergaming. By incorporating personalized avatars and
choreography, the “Let’s Dance” game provided a stimulating
and enjoyable exercise experience for participants, potentially
enhancing motivation and adherence to the intervention.

Regarding the analysis of technology acceptance among
the population studied, the results indicate a generally
positive perception and interaction with technology. In

particular, users displayed a positive attitude towards the
technology, indicating favorable feelings toward it. They
also found the system adaptable, enjoyable, easy to use and
useful showing that users experienced pleasure while using
the system. Finally, trust in the system was moderately high,
indicating that users believed it to be reliable and trustwor-
thy. These highlight how the system successfully meets user
expectations by offering an engaging, straightforward, and
beneficial experience.

Our study focused on elderly patients with PD with mild
to moderate disease severity, as reflected by their scores on
the Hoen and Yahr scale, Functional Ambulation Category,
Rankin Scale, Geriatric Depression Scale, and Mini-Mental
State Examination. These inclusion criteria aimed to ensure
that participants were physically and cognitively capable of
engaging in the intervention safely and effectively. Future
research could explore the applicability of our intervention
to a broader range of patients with PD , including those with
more advanced disease stages.

Limitations of our study include the small sample size
and lack of a control group for comparison. While our
results provide preliminary evidence of the usefulness of
the intervention, larger-scale randomized controlled trials are
needed to confirm these findings and establish the optimal
dosage and timing of dance-based physical therapy with
exergames for PD management. In addition, longer-term
follow-up assessments could help evaluate the sustainability
of the intervention effects over time.
Conclusions
In conclusion, this study highlights the potential of integrating
dance therapy with exergaming integrated with an interactive
robotic platform as a novel approach to improving motor
function, balance, gait, and quality of life in patients with
PD. The SI-Robotics intervention offers a promising avenue
for future research and clinical practice in the management
of PD symptoms. To strengthen the validity of the current
findings and ensure their broader applicability, future research
will focus on replicating the study with a larger sample. This
will help to verify the generalizability of the results provid-
ing a more comprehensive understanding of the observed
effects. Moreover, further studies are warranted to explore
the long-term effects and feasibility of implementing this
intervention in diverse clinical settings.
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