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Abstract

Background: To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive
impairment. There are currently no specific causes or conditions for this disease.

Objective: The purpose of this systematic review and meta-analysis was to assess AD prevalence across different stages using
machine learning (ML) approaches comprehensively.

Methods: The selection of papers was conducted in 3 phases, as per PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analysis) 2020 guidelines: identification, screening, and final inclusion. The final analysis included 24 papers that met
the criteria. The selection of ML approaches for AD diagnosis was rigorously based on their relevance to the investigation. The
prevalence of patients with AD at 2, 3, 4, and 6 stages was illustrated through the use of forest plots.

Results: The prevalence rate for both cognitively normal (CN) and AD across 6 studies was 49.28% (95% CI 46.12%-52.45%;
P=.32). The prevalence estimate for the 3 stages of cognitive impairment (CN, mild cognitive impairment, and AD) is 29.75%
(95% CI 25.11%-34.84%, P<.001). Among 5 studies with 14,839 participants, the analysis of 4 stages (nondemented, moderately
demented, mildly demented, and AD) found an overall prevalence of 13.13% (95% CI 3.75%-36.66%; P<.001). In addition, 4
studies involving 3819 participants estimated the prevalence of 6 stages (CN, significant memory concern, early mild cognitive
impairment, mild cognitive impairment, late mild cognitive impairment, and AD), yielding a prevalence of 23.75% (95% CI
12.22%-41.12%; P<.001).

Conclusions: The significant heterogeneity observed across studies reveals that demographic and setting characteristics are
responsible for the impact on AD prevalence estimates. This study shows how ML approaches can be used to describe AD
prevalence across different stages, which provides valuable insights for future research.

(JMIR Aging 2024;7:e59370) doi: 10.2196/59370
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Introduction

The progression of Alzheimer disease (AD) affects memory,
thinking, and behavioral functions over time [1]. Not only the

individuals affected by the condition but also their families and
caregivers, who have to cope with it daily. AD has become a
major health concern worldwide because of the aging population
in the last 3 decades [2,3]. The majority of cases of AD occur
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among older individuals, and increasing evidence suggests that
a combination of genetic, lifestyle, and environmental factors
is behind it [3,4]. The progression of the disease causes a slow
deterioration of memory and cognitive abilities.

AD is represented by different stages of progression such as
cognitively normal (CN) [5], significant memory concern (SMC)
[6], early mild cognitive impairment (EMCI) [7], mild cognitive
impairment (MCI) [8], and late mild cognitive impairment
(LMCI) [7,8]. Biomarkers could help detect individuals at risk
of AD before symptoms occur. Cerebrospinal fluid (CSF) testing
is considered the most reliable marker of progression of AD.
Brain neuroimaging like computerized tomography (CT),
magnetic resonance imaging (MRI), and positron emission
tomography (PET), blood tests, and genetic testing are attracting
increasing attention as important markers of this pathology
[1,9,10]. CSF biomarkers such as β-amyloid 42 and tau and
phosphor tau are key indicators of AD [11]. An MRI or CT scan
can reveal structural changes associated with AD, while a PET
scan can reveal amyloid plaques and tau tangles in the brain
[12]. The early diagnosis of AD can be aided by the
identification of novel biomarkers, the identification of hidden
data patterns, and the generation of hypotheses [13-16]. Machine
learning (ML)–based predictive models can help us detect early
signs of AD, improve diagnostic accuracy, and enable timely
interventions [16,17].

ML applications in medicine have received significant attention
for their potential in disease detection and diagnosis [18]. ML
models have been proposed in existing literature to improve
diagnostic accuracy for early detection of AD [19-21]. It is said
that ML algorithms aid in forecasting outcomes for patients
with AD, diagnosing illnesses, and tailoring treatments [15].
ML models have been reported to be able to predict patient
readmissions, which allows health care providers to allocate
resources more efficiently and improve patient outcomes
[15,22]. In addition, deep learning (DL) algorithms can examine
medical images, like CT scans or MRIs, to aid in identifying
abnormalities [23-25]. The application of DL techniques to
conventional MRI could reduce patient burden, risk, and cost
when extracting biomarker information [26,27].

DL-based neural networks contribute significantly to AD
detection [28,29]. Hierarchical representations can be learned
by neural networks and achieve promising results in AD,
especially when applied to neuroimaging data [30,31]. Their
role includes assisting in the discovery of new AD biomarkers
and analyzing large datasets to identify patterns and correlations
that are indicative of AD progression [32]. Convolutional neural
networks (CNNs) are used in the analysis of AD image data in
the form of MRI [33], PET [34], and CT scans [35]. CNNs can
automatically extract relevant features from complex imaging
data and learn hierarchical representations of subtle AD patterns.

Advanced techniques like Gradient-Weighted Class Activation
Mapping after CNN model training highlight important regions
of the input MRI brain image [36,37]. The brain areas in these
regions are responsible for influencing the model’s AD
prediction. These techniques bridge the gap between accuracy
and interpretability in AD detection. Moreover, recurrent neural
networks are capable of analyzing temporal data, such as

longitudinal studies examining cognitive decline over time [38].
Predicting cognitive decline trajectories and future outcomes
is possible through the capture of sequential dependencies in
data [38,39]. Multimodal data integration can enhance the
accuracy of AD detection models, resulting in a more
comprehensive view of the patient’s condition [40].

The role of ML models in the early diagnosis of AD has not
been determined through extensive review of ML algorithms
and meta-analysis. The accuracy and efficiency of AD diagnosis
can be enhanced by using advanced algorithms and models as
well as careful feature selection and extraction. However, the
level of reliability of these techniques is a significant factor.
The objective of this study is to address the knowledge gap by
conducting a systematic review and meta-analysis of ML
applications for AD detection, which aim to establish their role
in improving diagnostic accuracy and patient outcomes. The
main contribution of this study is (1) assessing the role of image
feature selection methods in achieving competitive accuracy in
AD classification modeling, (2) examining the ML methods
that can be used to detect AD with the help of magnetic
resonance image modeling, and (3) identifying the best ML
classifier based on accuracy metrics.

Methods

This study was conducted by identifying, selecting, and
analyzing relevant studies, which included a literature search,
screening document inclusion criteria, and tools for risk bias
assessment.

Search Strategy
A systematic search was carried out using libraries such as
PubMed (MEDLINE), Scopus, and Web of Science. The search
followed the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analysis) 2020 guidelines to maintain
transparency, authenticity, and completeness of details of
reporting [41]. The PRISMA checklist of this paper can be
found in Multimedia Appendix 1. This search was carried out
over the last 15 years and was centered on published studies
specific to early-stage AD detection and classification (between
January 2010 and March 2024). Limiting our review to the last
15 years of publication allowed us to focus on papers reflective
of current trends in research.

The search strategy used the following keywords: “Alzheimer’s
disease,” “machine learning,” “early detection,” “diagnostic
accuracy,” “diagnosis,” “predictive models,” “biomarkers,”
“deep learning,” “diagnostic accuracy,” “feature selection,”
“AD biomarkers,” and “ML models.” The search strategy was
(“machine learning” OR “artificial intelligence” OR
“classification”) AND “Alzheimer’s disease” AND “MRI” AND
“diagnosis” AND “classification.”

Inclusion and Exclusion Criteria
Full-text papers in the English language were considered. We
have included in this study only published papers in
peer-reviewed journals. The majority of the papers analyzed
were centered on MRI data combined with ML models in AD
diagnosis. Selected studies included patients diagnosed with
early-stage AD and healthy controls. The papers published with
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a title or abstract containing at least 1 abovementioned keyword
were considered for inclusion.

Papers written in a language other than English were excluded.
We excluded studies that were not specifically conducted in the
context of AD diagnosis using MRI and were not primarily
focused on ML models. Papers published before 2010 were not
considered. Studies in which ML in MRI was not explicitly
linked to clinical diagnosis, medical training, or initiatives to
improve AD diagnosis were excluded. This review excluded
studies using PET and CT scans because the primary focus was
on ML in MRI, which is specifically linked to clinical diagnosis,
medical training, and initiatives to enhance AD diagnosis. The
selection process excluded review papers, conference
proceedings, and gray literature reports.

Paper Screening
Multiple stages were involved in the paper selection process.
The results of the systematic search were documented in a
spreadsheet using the above strategy. The selected papers were
equally distributed among the authors, and each paper was
screened by examining titles and abstracts to identify potentially
relevant publications. The selected papers were then reviewed
comprehensively according to predefined inclusion and
exclusion criteria in the subsequent phase. To facilitate
synthesis, relevant information was extracted and organized in
a tabular format, covering study design, datasets, performance
metrics, model validation, and feature selection. As a result, a
summary of each study’s main findings to discern trends,
patterns, and common themes was done.

Quality and Publication Bias
The Newcastle-Ottawa Scale [42] was used to assess the study
quality based on different factors such as selection,
comparability, and outcome, providing a structured approach
to gauge the risk of bias. In terms of quality, scores ranged from
very poor (0-3) to moderate (4-6) to excellent (7-9). The papers
meeting the score (Newcastle-Ottawa Scale≥7) were only
considered for final review. Two authors (GB and NC)
independently assessed the quality, and any discrepancies were
resolved through discussion or consultation with a third author
(FA).

Statistical Analysis
The statistical tests Egger regression [43] and Begg rank
correlation [44] were used to address the potential bias of
publications. To assess the strength of our findings against
potential biases or variations in study characteristics, sensitivity
analyses were performed. Lower methodological quality or
different study designs were excluded. To identify the effect
size measures and quantify the strength or magnitude of the
relationship between variables or the magnitude of differences
between AD groups, we applied the “PLOGIT” function to the
logit transformation of the proportion [45]. The logit
transformation is commonly used when dealing with proportions
or probabilities, especially when they are bounded between 0
and 1. An inverse variance method has been applied that

specifies the method for pooling effect sizes. There were 2 types
of models considered in the meta-analysis: fixed effects and
random effects. Using the fixed effects model when we observed
a low level of heterogeneity, the test is not statistically
significant.

The random effects model (REM) was considered for the
heterogeneity test with statistical significance [46]. By

calculating T2, the amount of heterogeneity between the true
effect sizes of different studies was quantified. An estimation
method using a restricted maximum likelihood estimator that
maximizes the likelihood function while accounting for other

parameters of the model was used [47]. I2 and Cochran Q
statistic tests were conducted to assess the heterogeneity among
the effect sizes of individual studies [48,49]. The measures of

heterogeneity (T2 and I2) indicate the variability in AD
prevalence estimates across the studies [50].

The prevalence of patients with AD across different subgroups
within the overall population was also investigated. Subgroup
analysis enables the identification of factors that can influence
prevalence estimates and provide insight into the sources of
heterogeneity [51]. A subgroup-specific meta-analysis model
was used to calculate the pooled prevalence estimates for each
subgroup, followed by a comparison of the prevalence estimates
across subgroups to assess whether there were any significant
differences. Data were subgrouped into 4 category-based AD
classifications namely, 2-group classification, 3-group
classification, 4-group classification, and 6-group classification.
The 2-group classification involved individuals either without
dementia (nondemented, ND) or with dementia (demented,
AD). The 3-group classification includes CN, MCI, and AD.
The 4-group classification comprises ND, mildly demented
(MD), moderately demented (MoD), and AD. Meanwhile, the
6-group classification involves CN, SMC, EMCI, MCI, LMCI,
and AD. Each subgroup data was recorded separately into a
Microsoft Excel spreadsheet, which was further supplied as
input to R software (version 4.3.3; R Foundation for Statistical
Computing). For prevalence and summary meta-analysis, we
used the “meta prop” functions available in the meta package.

Results

Search Outcomes
During the identification phase, 5049 records were obtained
from 3 major scientific databases using the given search strategy.
Following the removal of duplicates (n=2355) and the
assessment of ineligibility using tools (n=218), 2446 records
were included in the screening stage. The inclusion and
exclusion criteria determined that 2037 records were ineligible.
We further screened 409 records, with 134 being excluded due
to lack of full-text availability. In total, 251 records from the
remaining 275 were excluded due to low-quality scores and
publication bias. A total of 24 papers were included in the final
analysis. Details on the procedures for selecting papers are
summarized in Figure 1.
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Figure 1. Paper screening procedure flowchart.

Data Sources
The data collected for this study were collected from various
geographical locations and may have included memory clinics

and neurology departments, suggesting a focus on cognitive
impairment and related conditions. Table 1 displays the
distribution of AD imaging sample data along with data sources.
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Table 1. Participants’ data collected from different sources.

ReferenceADa, n/N (%)Data source

[52]33/204 (16.17)ADNIb

[53]27/56 (48.21)Tianjin First Central Hospital, China

[54]1673/3335 (50.16)ADNI and AIBLc

[55]1077/3979 (27.06)OASISd 3

[56]70/210 (30)ADNI

[57]193/818 (23.59)ADNI

[58]3200/6400 (50)ADNI

[59]186/805 (23.10)ADNI

[60]3200/6400 (50)Kaggle

[61]231/432 (50)ADNI

[62]3200/6400 (50)Kaggle

[63]55/119 (46.21)Shanghai Pudong New Area People’s Hospital

[64]268/1048 (25.57)ADNI

[65]1170/4644 (25.19)ADNI and NACCe

[66]390/1310 (29.77)Kaggle and ADNI

[67]584/1421 (41.1)ADNI

[68]25/138 (18.11)ADNI

[69]78/150 (52)OASIS 1

[70]3200/6400 (50)Kaggle

[71]44/180 (24.44)Memory clinic of the neurology department in Nanfang Hospital

[72]118/245 (48.16)ADNI

[73]24/142 (16.90)ADNI

[74]1077/3979 (27.06)ADNI

[75]260/560 (46.42)ADNI

aAD: Alzheimer disease.
bADNI: Alzheimer’s Disease Neuroimaging Initiative.
cAIBL: Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing.
dOASIS: Open Access Series of Imaging Studies.
eNACC: National Alzheimer’s Coordinating Center.

The analyzed studies collected image data from various sources
such as Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[76], Open Access Series of Imaging Studies (OASIS) [77],
Australian Imaging Biomarkers and Lifestyle Flagship Study
of Ageing [78], and public domains like Kaggle [79]. ADNI
datasets were used more often for image collection
[52,54,56-59,61,64-68,72-75,80]. The purpose of ADNI is to
develop biomarkers for early detection and AD tracks through
a multicenter study involving clinical imaging, genetics, and
biochemistry. The studies that use ADNI datasets aim to detect
AD at its prime stage. One study jointly applied 2 image datasets
from ADNI and Australian Imaging Biomarkers and Lifestyle
Flagship Study of Ageing [54].

OASIS brains aim to make it possible for anyone to access
neuroimaging datasets of the brain through an initiative known
as Open Access to Neuroimaging Datasets. Through this project,

researchers can access and use a variety of brain imaging data
for free. This resource assists neuroscience researchers in
advancing their research by providing a comprehensive
collection of brain imaging datasets. Cross-sectional OASIS 1
data were used by researchers for hypothesis-driven analysis,
neuroanatomical atlases, and segmentation algorithms [69]. In
another study, OASIS-3 was integrated with longitudinal
neuroimaging, clinical, cognitive, and biomarker data [55]. The
use of public datasets or participation in Kaggle competitions
related to AD research helps as a platform for data science
competitions and datasets [70]. Three studies collected data
from 3 hospitals in China [53,63,71]. The findings indicate that
a diverse dataset from multiple sources, such as clinical settings
and publicly available datasets, could provide a comprehensive
basis for AD research and analysis.
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Study Characteristics

AD Stages
Table 2 presents a summary of various studies, which includes
authors, publication year, AD stages, preprocessing techniques,
classifiers, validation methods, and the best-performing model.
Four studies have examined the progression of AD over 6 stages
to gain a better understanding of how diseases develop and
change [52,54,68,73]. Seven studies examined 4 groups of AD
stages analyzing neurobiological mechanisms behind cognitive
decline or exploring nonpharmacological treatments
[55,58-60,64,66,70]. Similarly, 7 works associated with 3-stage

classification studies involved patients with CN, MCI, and AD
[56,57,62,65,67,71,74]. These studies were mainly focused on
the early detection of dementia with subtle differences in
biomarkers and cognitive performance. Moreover, the ML
models used in the study predicted AD progress in estimating
the transition from MCI to dementia. Finally, 6 studies
associated a binary or 2-stage classification of AD with ML
models to identify biomarkers that predict treatment response
or disease progression [53,61,63,69,72,75]. This enables more
effective targeted therapies and biomarker-driven clinical trials
to be developed.
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Table 2. Machine learning models and their characteristics.

Best model
Diagnosis
accuracy (%)Validation

MLb models
incorporated

Image preprocessing
methodsADa stagesYearAuthor

BC-GCNd84.03K-fold (10)GLMICAcNormalization and
smoothing

62022Alorf and Khan [52]1

SVM with

DKIg
96.23K-fold (10)SVMfDiffusivity and kurtosis

mapping and ROIe
22017Chen et al [53]2

SVC69-75K-fold (15)SVCiLMEh for ROI extrac-
tion

62021Mofrad et al [54]3

Customized

CNNm model

99.68K-fold (10)DenseNet121j,

ResNet50k,

Image normalization42023EL-Geneedy et al [55]4

VGG16l, Effi-
cientNetB7,
and Incep-
tionV3

DenseNet12190.22K-fold (10)20 Different

DLn models

Histogram-based ap-
proach

32022Hazarika et al [56]5

SVM with DKI90.24K-fold (10)16 Different
ML models

SMOTEo32022Khan et al [57]6

CNN-LSTM99.92K-fold (10)CNN, LSTMp,
SVM, and
VGG16

Image normalization
and labeling

42024Sorour et al [58]7

CNN98.22K-fold (10)CNNInterpolation42021Abdelaziz et al [59]8

VGG1690.4K-fold (10)Neural net-
work with

VGG1642022Sharma et al [60]9

VGG16 fea-
ture extractor

XGB96.20K-fold (5)3D-ResNet,

XGBq
Augmentation22022Nguyen et al [61]10

DenseNet20196.05K-fold (10)DenseNet121,
169, and 201

CNN feature extraction32023Saleh et al [62]11

RF97K-fold (10)Recursive ran-
dom forest
(RF)

Recursive feature elimi-
nation

22022Yang et al [63]12

RF87.76K-fold (10)SVM, KNNr,

DTs, NBt, RF

SMOTE42021El-Sappagh et al [64]13

3D CNN85.12Holdout and
external valida-
tion

3D CNNUnified segmentation32022Liu et al [65]14

KNN99.4Multifractal
geometry

KNNGeneralization42022Elgammal et al [66]15

SVM90K-fold (100)SVMSkull stripping, intensi-
ty normalization, cor-

32021Das et al [67]16

pus callosum segmenta-
tion

MLP99.44Evaluation
metrics

RF, XGB, DT,

SVM, MLPu
Gray-level co-occur-
rence matrix

62023Chelladurai et al [68]17

Gradient boost-
ing

97.58K-fold (10)RF, GNBv,

LRw, SVM,

Outliers’ detection22021Battineni et al [69]18

gradient
boosting, and
Ada boosting

SVM89.89Not men-
tioned

SVM, XGB,
GNB

Normalization and aug-
mentation

42022Sharma et al [70]19

JMIR Aging 2024 | vol. 7 | e59370 | p. 7https://aging.jmir.org/2024/1/e59370
(page number not for citation purposes)

Battineni et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Best model
Diagnosis
accuracy (%)Validation

MLb models
incorporated

Image preprocessing
methodsADa stagesYearAuthor

SVM80.36K-fold (10)SVM, ANNzMRMRx algorithm in
combination with the

SFCy method

32023Long et al [71]20

CNN98.86K-fold (5)CNNDeep features extrac-
tion

22023Wang et al [72]21

Custom CNN96.2Not men-
tioned

VGG16,
ResNet18,
Alex Net, In-
ception V1,
Custom CNN

Augmentation62023Tajammal et al [73]22

Multimodal AD
diagnosis
framework

96.88K-fold (3)MultimodalUnified hyperparameter
tuning

32022Golovanevsky et al [74]23

VGG Net,
ResNet

95K-fold (5)SVM, VGG

Netaa, ResNet

Transfer learning22021Li and Yang [75]24

aAD: Alzheimer disease.
bML: machine learning.
cGLMICA: generalized linear model incorporating covariates analysis.
dBC-GCN: brain connectivity–based graph convolutional network.
eROI: region of interest.
fSVM: support vector machine.
gDKI: diffusion kurtosis imaging.
hLME: linear mixed-effects model.
iSVC: support vector classifier.
jDenseNet: dense convolutional network.
kResNet: residual network.
lVGG: Visual Geometry Group.
mCNN: convolutional neural network.
nDL: deep learning.
oSMOTE: Synthetic Minority Oversampling Technique.
pLSTM: long short-term memory.
qXGB: extreme gradient boosting.
rKNN: k-nearest neighbor.
sDT: decision tree.
tNB: Naïve Bayes.
uMLP: multilayer perceptron.
vGNB: Gaussian Naive Bayes.
wLR: logistic regression.
xMRMR: minimum redundancy maximum relevance.
ySFC: sparse functional connectivity.
zANN: artificial neural network.
aaVGG Net: Visual Geometry Group network.

Feature Engineering Techniques
Feature engineering plays an important contribution in brain
image analysis [81]. Various feature techniques were discussed
to tackle challenges in AD classification, such as class
imbalance, feature extraction, robustness, and generalization.
ConvNet or CNN was designed for processing grid-like data,
such as images, using convolutional layers to learn spatial
hierarchies of features automatically [62]. Visual Geometry
Group (VGG16) uses 3×3 convolution filters to construct a

16-layer CNN architecture and is known for its simplicity and
high performance in image classification tasks [60]. Models
like multilayer perceptron, Dense Net, Efficient Net, and residual
network in AD classification lie in their ability to effectively
handle deep neural networks for feature extraction and
classification, which is crucial in analyzing complex brain
magnetic resonance images for AD detection. Support vector
machine (SVM) is a supervised learning algorithm used for AD
classification, and it constructs hyperplanes in a
high-dimensional space to separate different classes. In contrast,
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diffusion kurtosis imaging (DKI) is an MRI procedure that
captures non-Gaussian diffusion, giving insight into tissue
microstructure and facilitating better brain mapping. These
techniques range from basic normalization [55,58,70], outlier
detection [69], interpolation [59], and transfer learning [75] to
more advanced methods such as data augmentation [61,70,73],
feature extraction using DL models like VGG16 [60], deep
feature extraction [72], ConvNet [62], and statistical modeling
for region of interest extraction [54]. Another paper extracted
features related to corpus callosum atrophy for AD diagnosis
[67]. A single study investigated texture analysis in brain images
using the Gabor and gray-level co-occurrence matrix [52]. For
feature selection and analysis of functional connectivity patterns,
another investigation used the minimum redundancy maximum
relevance algorithm alongside the sparse functional connectivity
method [55]. Unified hyperparameter tuning was applied to
optimize model parameters across algorithms and settings [58].

Classifiers
Supervised models like SVM were used by several studies for
classification tasks due to their effectiveness in handling
high-dimensional magnetic resonance image data and nonlinear
relationships [53,54,58,64,67-69,71,75]. The generalized linear
model incorporating covariates analysis was used by Alorf and
Khan [52] to assess a model’s performance and generalization
ability by ensuring that all data points are used during both
training and validation, reducing overfitting risk and allowing
more reliable model performance estimates. The authors
demonstrated that MRI data can be fine-tuned to capture subtle
differences in brain morphology associated with AD by using
pretrained models [55].

Similarly, to learn discriminative patterns, other models like
logistic regression (LR), decision tree, Gaussian Naive Bayes,
and k-nearest neighbor (KNN) largely contribute to the
MRI-based AD classification. The combination of these
multimodal classifiers was adopted among 6 works to leverage
AD early diagnosis [63,64,66,68-70]. Alternatively, CNN-based
DL models have the capability of autonomous learning and
represent complex patterns in magnetic resonance images. In
this review were identified 2 studies that used dense
convolutional network (DenseNet) [55,62] and Inception
[55,73]. In total, 4 studies applied residual network
[55,61,73,75], 5 studies used VGG [55,58,60,73,75], and 1 study
the EfficientNet [55]. The multimodeling approaches
(comparison of 16 and 20 classifiers) of CNN models were
incorporated in 2 works [56,57]. Long short-term memory,
another DL framework largely used in the context of MRI
classification, can be used to analyze sequential data, such as
time-series MRI scans, to detect temporal changes in brain
structures characteristic of AD progression [58]. One study used
a different approach, the multimodal neural networks for
analyzing data from multiple sources or modalities [74].
Ensemble learning techniques like extreme gradient boosting
(XGB), gradient boosting, and Ada boosting combine weak
learners to create a more powerful classification. MRI data in
4 studies were successfully handled by the XGB classifier,
which captured nonlinear relationships between features and
predicted AD status accurately [61,68-70].

Validation Techniques
K-fold cross-validation is a common method used by most
studies, where the dataset is divided into K subsets, and the
model is trained and tested for K times. Testing was conducted
on each subset, while the remaining ones served as training.
This method can be used to assess model performance and
generalization across different subsets of data. The K-fold has
been used in most studies with varying values of K including
3 [74], 5 [61,72,75], 10 [52,53,55-60,62-64,69,71,72], 15 [54],
and 100 [67], indicating that the total partitioning of data varies
depending on the level of validation. It is important to take into
account the differences between different methods of validation.
A recent study used a holdout technique and external validation,
dividing the dataset into training and testing sets and performing
an additional test on completely new, from-scratch datasets
[65]. A unique approach to data analysis that uses multifractal
geometries has been introduced by Elgammal et al [66] and is
likely to involve characterizing complex patterns in data using
fractal-based techniques. The findings above show that many
validation methods need to be considered. Therefore, adaptable
methodologies are necessary when it comes to datasets and
objectives. On the other hand, there are a few mentions of
specific evaluation metrics [68]. The use of K-fold
cross-validation remains common, but the inclusion of
alternative methods such as holdout and multifractal geometry
suggests a willingness to explore new approaches to evaluating
model performance and ensuring the robustness of ML and data
analysis tasks.

Prevalence-Based Participant Pooling
There was no evidence of publication bias with Eggers (P=.49)
or Begg (P=.38) tests. Figures 2-5 present the forest plot with
the prevalences of participants with AD for 2, 3, 4, and 6 AD
stage subgroups, respectively. Six studies with 1562 participants
were identified among disease diagnoses with 2 stages including
CN and AD [53,61,63,69,72,75]. The overall pooled prevalence

of the REM reported 49.28% (95% CI 46.12%-52.45%; I2=15%;
P=.32). Studies do not differ significantly in their estimates of
prevalence, and the test of heterogeneity does not reveal
substantial differences between them. Seven studies were
identified with a total sample of 17,588 patients with AD with
3-stage AD classification including CN, MCI, and AD
[56,57,62,65,67,71,73]. The overall prevalence of AD diagnosis

is estimated at 29.75% (95% CI 25.11%-34.84%; I2=97%;
P<.001). Each study provides an estimate of the AD prevalence
among their respective populations with 95% CI. For example,
Hazarika et al [56] found AD prevalence at 33.33% (95% CI
27%-40.15%). This indicates that if we were to combine the
results of all the studies, this would be the estimated AD

prevalence. I2=97% indicates that a large proportion of the total
variation in prevalence estimates is due to true differences
between study populations rather than random error. The
significant P value (<.01) for the test of heterogeneity indicates
that there is substantial variability in AD diagnostic prevalence
estimates among the studies.
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Figure 2. A forest plot AD diagnosis prevalence (%) among 2-stage classification using random effects model [53,61,63,69,72,75]. AD: Alzheimer
disease.

Figure 3. A forest plot AD diagnosis prevalence (%) among 3-stage classification using random effects model [56,57,62,65,67,71,74]. AD: Alzheimer
disease.

Figure 4. A forest plot AD diagnosis prevalence (%) among 4-stage classification using random effects model [55,59,64,66,70]. AD: Alzheimer disease.
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Figure 5. A forest plot AD diagnosis prevalence (%) among 6-stage classification using random effects model [52,54,68,73]. AD: Alzheimer disease.

Five studies with 14,839 participants were included for the
meta-analysis of 4-stage AD classifications as ND, MoD, MD,
and overt AD [55,59,64,66,70]. This systematic review included
7 studies, but we excluded 2 studies [58,60] because they used
the same dataset with 6400 ADNI participants. Overall
prevalence estimation with REMs is 13.13% (95% CI

3.75%-36.96%; I2=99%; P<.001). There is significant

heterogeneity in the studies based on the high I2 and significant
P value and a considerable variation in the prevalence of AD
across these studies, according to these estimates. Different
research studies have found prevalence estimates ranging from
1% [55] to 30.43% [66]. The CIs indicate the degree of
uncertainty in these estimates. As a result of the high degree of
heterogeneity observed in the study, the true prevalence of AD
may vary significantly between populations and settings. Four
studies with 3819 were considered for the calculation of the
overall prevalence of AD diagnosis of 6 stages such as CN,
SMC, EMCI, MCI, LMCI, and AD [52,54,68,73]. The estimated
prevalence for each study is ranging from 16.18% [52] to
50.16% [54]. The overall estimate of prevalence from the REM

stands at 23.77% (95% CI 12.22%-41.12%; I2=0.8020; P<.001).
One study has a substantially greater estimated proportion of
AD prevalence diagnosis than the other studies [54]. Compared
to others, it reported the highest prevalence of 50.16% (95% CI
48.45%-51.88%) but does not differ weights (26.3%)
significantly from other studies.

Meta-analysis through forest plots provides a comprehensive
way of understanding meta-analysis results. It can be argued,
however, that forest plots can only display CIs by assuming a
fixed significant threshold (P<.05). It causes a replication crisis
when hypothesis tests are conducted using P values. Based on
P value functions, drapery plots were proposed to resolve this
problem [82]. Using a drapery plot, an average effect and a
confidence curve can be identified. The x-axis shows the effect
size metric, and the y-axis shows the assumed P value.
Multimedia Appendix 2 presents the drapery plots. There is a
red curve showing the overall REM, which shows the P values
for various effect sizes. Compared to the CI of pooled effects,
the shaded area represents the prediction range. The prediction
range is noticeably wider than the CI for the pooled effect. It
indicates that the overall pooled effect does not fully capture
the variability or uncertainty across different effect sizes.

Discussion

Principal Findings
In this work, we conducted a systematic review and
meta-analysis based on the prevalence of patients with AD
among different disease progression stages. For the systematic
review, 24 studies were selected, among 22 selected for the
meta-analysis. Due to their association with the same dataset
of ADNI and similar sample size of patients with AD, these 2
studies avoid bias in the analysis [58,60]. The studies included
in this review have explored the ML applications for AD
diagnosis and intended to provide an understanding of AD
progression, potentially with a focus on biomarker identification.

Different preprocessing techniques used to extract relevant
features including cortical thickness [83], hippocampal volume
[84], and brain activity patterns [85] from magnetic resonance
images associated with AD were examined. According to the
research objectives and AD stages being investigated, each
study applied specific image preprocessing techniques. The
progression of AD has been evaluated across multiple stages
in our work. An accuracy range of 69%-75% is achieved with
linear mixed-effects models that account for region of interest
features with interparticipant variability of hierarchical structures
[54]. Using image normalization, 1 study classified AD stages
with different labeling with 84.03% accuracy by ensuring
consistency in intensity and spatial properties [52,86].
Combining DL models with imaging techniques like MRI and
PET has shown that structural and functional changes in the
brain associated with AD can be detected [87,88]. Water
molecules’ diffusion properties in brain tissue can be measured
using diffusivity and kurtosis mapping. The results provided
insight into microstructural changes for a maximum accuracy
of 96.23% [53]. By conducting magnetic resonance image
normalization, the authors proposed an MRI-based DL technique
for 99.68% accurate AD detection [55]. Magnetic resonance
images were investigated for pixel intensity distributions to
detect AD abnormalities [56].

These techniques encompass diverse methodologies ranging
from normalization and smoothing to advanced mapping and
feature extraction methods [89-91]. Several approaches have
demonstrated high accuracy in identifying AD features,
including image normalization, histogram-based approaches,
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and diffusion mapping [92-95]. Techniques like recursive feature
elimination and outlier detection showcase promising results,
emphasizing the importance of feature selection and data quality
assessment in enhancing classification performance [57,63]. A
similar study analyzed and segmented different tissue types
within MRI scans using unified segmentation. A magnetic
resonance image of the brain was segmented simultaneously
into different tissue types with 85.12% accuracy [65,96].
KNN-trained data can be used to classify AD with 99.4%
accuracy using the generalization method [66]. Moreover, the
use of advanced DL architectures such as VGG16 [60] and
ConvNet [62] for feature extraction underscores the significance
of leveraging sophisticated computational tools in AD research.
Augmentation methods, interpolation, and transfer learning also
emerge as valuable strategies for improving classification
accuracy and robustness [73-75].

By integrating statistical and ML algorithms with preprocessing
techniques, AD diagnosis research further enhances its
interdisciplinary nature. The CNN-long short-term memory
model had an accuracy of 99.92%, followed by the multimodal
AD diagnosis framework model with a precision of 96.88%.
The accuracy of a customized CNN model was 99.68%, SVM
with DKI was 96.23%, XGB was 96.20%, and multilayer
perceptron was 99.44%. In addition, DenseNet121, CNN,
DenseNet201, random forest, and gradient boosting achieved
accuracy levels between 90% and 97%. While some models
demonstrated higher accuracy, such as 3D CNN and SVM,
others demonstrated lower accuracy, 85.12% and 80.36%,
respectively.

Many ML modeling techniques have been explored, including
SVM, LR, and DenseNet. Ensemble methods like gradient
boosting and Ada boosting have highlighted the importance of
aggregating multiple models to improve predictive accuracy
and robustness, especially when dealing with complex
neurological disorders like AD [69,97]. The identification of
specific best-performing models further underscores the
importance of optimization of methods and model selection to
improve diagnostic accuracy. The use of SVM along with DKI
or DenseNet201 in different studies illustrates the researchers’
tailored approach to leveraging each algorithm’s and feature
representation’s strengths [98-100]. AD diagnosis is a nuanced
process, where the choice of ML model can have a significant
impact on model reliability and efficacy.

Data from magnetic resonance images have been analyzed using
various ML models and validation techniques. To ensure
robustness and generalization, the common technique used is
K-fold cross-validation. Additionally, some authors have applied
specific DL models along with traditional ML techniques,
reflecting the diversity of approaches for modeling and
validation [72,73]. Different mechanisms and approaches are
used in each of these models to detect AD using magnetic
resonance images. We have observed that SVM classifiers are

largely used for 2-stage classification such as CN and AD
[53,54,67,71]. Similarly, LR classifiers were used in other
studies to assess MRI-based AD status interpretation and
predictive factors for disease risk assessment. Based on learned
discriminative patterns from magnetic resonance images, these
models, as well as others mentioned, produce accurate AD
detection predictions. Additionally, KNN can be used to identify
magnetic resonance images with feature vectors similar to those
associated with AD helping to detect patterns.

The meta-analysis shows that there is a great deal of variation
between studies when it comes to estimating AD prevalence.
The reason for this is probably because the study involved a
wide range of diagnostic criteria and populations, not just
prevalence rates. The prevalence estimates are diverse due to
some studies focusing on specific AD stages while others cover

a wider spectrum. The significant P values and I2 statistics show
that the diagnosis of AD is highly heterogeneous and requires
a nuanced understanding of its epidemiology. The challenges
associated with synthesizing prevalence data from disparate
sources are revealed by this analysis. The prevalence of AD is
subject to complex and variable research, which leads to wider
CIs in some studies. Even after trying to use REMs to account
for this heterogeneity, significant variation persists, suggesting
that variables like demographics, study design, and diagnostic
methodology may play a significant role. The provision of more
reliable estimates requires the adoption of standardized protocols
and collaboration in future research efforts, which stresses the
importance of rigorous methodology and careful interpretation
of results.

Comparison With Existing Reviews
There have been a few systematic reviews and meta-analyses
about the importance of ML models in AD diagnosis. Table 3
summarizes the comparison between our work and the reviews
that have already been published. In our analysis, we
concentrated on using ML for AD diagnosis, while other studies
were focused on using it for dementia forecasting [101]. In a
similar study [102], the authors explored the effectiveness of
both ML and DL models in AD diagnosis. In this study, the
authors did not examine multistage AD cases but only the binary
classification of AD. A single study [103] conducted a
meta-analysis based on Wilcoxon signed rank tests and
discussed multiple imaging modalities, including MRI, PET,
and CSF. Despite this, there is a lack of discussion about feature
selection techniques and their potential impact on ML accuracy.
A prevalence-based meta-analysis on MRI-centered AD
discussions is presented in our study along with an in-depth
description of subcategories of AD. Our study stands out
because it covers all aspects of ML in AD diagnosis, including
imaging modalities and stages of AD. We reviewed and
analyzed various imaging modalities, talked about feature
selection methods, and delved deeper into AD subcategories in
our research.
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Table 3. Comparison of this review with existing systematic reviews.

Alzheimer disease stagesFeature selectionImaging modalitiesMeta-analysisSystematic reviewStudy

4✓✓[101]

2✓✓[102]

6✓✓✓[103]

6✓✓✓✓Our study

Future Directions and Study Limitations
Data from open-access libraries such as ADNI, Kaggle, and
others were used in studies, as evidenced by the analysis of
datasets. Prospective validation studies should be carried out
in the future to assess the accuracy of ML models for AD
diagnosis across diverse populations and clinical settings. The
incorporation of multimodal data, including imaging, genetics,
and clinical information, into ML models can improve their
accuracy and robustness in diagnosing AD and distinguishing
it from other brain disorders [89]. To enhance their clinical
utility and acceptability, ML models must be interpretable and
explainable. It may be possible to use these models to predict
the onset and AD progression based on longitudinal studies that
track individuals over time [14,101]. Future research must
incorporate ML models into diagnostic workflows and assess
their influence on patient outcomes and health care delivery.

Despite its comprehensiveness, this study is characterized by
some shortcomings. The availability and quality of data are
essential for the effectiveness of ML approaches. The outcome
of the meta-analysis may have been influenced by the limitations
in access to complete datasets with different levels of quality.
The potential for publication bias, in which studies with positive
findings are more likely to be published, may lead to an
overestimation of the effectiveness of ML approaches for
diagnosing AD. The included studies may have experienced
heterogeneity due to variations in study designs, patient
populations, imaging modalities, and ML algorithms, making
it difficult to draw definitive conclusions. Despite our best
efforts to conduct a thorough review, some relevant studies may
have been mistakenly excluded, potentially creating gaps in the

analysis. The generalizability of ML models for AD diagnosis
may be limited by their development and validation on specific
datasets.

Conclusions
A summary comparison of current literature on ML approaches
in AD diagnosis, along with a systematic review and
meta-analysis, helps to understand the prevalence of disease at
different stages. Our analysis of 24 relevant papers shows a
significant difference in AD prevalence estimates, as individuals
progress from CN to MCI and ultimately to overt AD. We
observed a pooled prevalence of 49.28% during the CN to AD
transition. This was followed by 29.75% for CN, MCI, and AD,
13.13% for CN, MoD, MD, and AD, and 23.75% for CN, SMC,
EMCI, MCI, LMCI, and AD. Our analysis reveals the
importance of adjusting diagnostic and management strategies
to minimize the impact of demographic and setting
characteristics on AD prevalence estimates. Due to the
heterogeneity observed across studies, it is necessary to consider
various factors to accurately estimate the prevalence of AD.
Our study is different from other studies by comparing it to
existing systematic reviews and meta-analyses, which provide
an original contribution to the topic under evaluation. Unlike
previous studies that have focused on imaging modalities and
AD stages, our study has comprehensively analyzed ML in AD
diagnosis. Multiple imaging modalities were reviewed and
analyzed, feature selection techniques were discussed, and AD
subcategories were explored, focusing particularly on MRIs.
Although none of the biomarkers currently available can provide
a precise diagnosis of AD, using ML approaches to identify
prevalence patterns across disease stages will lead to progress
in AD diagnosis.
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