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Abstract

Background: Patients with knee osteoarthritis (KOA) often present lower extremity motor dysfunction. However, traditional
radiography is a static assessment and cannot achieve long-term dynamic functional monitoring. Plantar pressure signals have
demonstrated potential applications in the diagnosis and rehabilitation monitoring of KOA.

Objective: Through wearable gait analysis technology, we aim to obtain abundant gait information based on machine learning
techniques to develop a simple, rapid, effective, and patient-friendly functional assessment model for the KOA rehabilitation
process to provide long-term remote monitoring, which is conducive to reducing the burden of social health care system.

Methods: This cross-sectional study enrolled patients diagnosed with KOA who were able to walk independently for 2 minutes.
Participants were given clinically recommended functional tests, including the 40-m fast-paced walk test (40mFPWT) and timed
up-and-go test (TUGT). We used a smart shoe system to gather gait pressure data from patients with KOA. The multidimensional
gait features extracted from the data and physical characteristics were used to establish the KOA functional feature database for
the plantar pressure measurement system. 40mFPWT and TUGT regression prediction models were trained using a series of
mature machine learning algorithms. Furthermore, model stacking and average ensemble learning methods were adopted to
further improve the generalization performance of the model. Mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE) were used as regression performance metrics to evaluate the results of different
models.

Results: A total of 92 patients with KOA were included, exhibiting varying degrees of severity as evaluated by the Kellgren
and Lawrence classification. A total of 380 gait features and 4 physical characteristics were extracted to form the feature database.
Effective stepwise feature selection determined optimal feature subsets of 11 variables for the 40mFPWT and 10 variables for
the TUGT. Among all models, the weighted average ensemble model using 4 tree-based models had the best generalization
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performance in the test set, with an MAE of 2.686 seconds, MAPE of 9.602%, and RMSE of 3.316 seconds for the prediction of
the 40mFPWT and an MAE of 1.280 seconds, MAPE of 12.389%, and RMSE of 1.905 seconds for the prediction of the TUGT.

Conclusions: This wearable plantar pressure feature technique can objectively quantify indicators that reflect functional status
and is promising as a new tool for long-term remote functional monitoring of patients with KOA. Future work is needed to further
explore and investigate the relationship between gait characteristics and functional status with more functional tests and in larger
sample cohorts.

(JMIR Aging 2024;7:e58261) doi: 10.2196/58261
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Introduction

Knee osteoarthritis (KOA) is a degenerative and irreversible
joint disease with typical symptoms including pain, stiffness,
decreased joint mobility, and gait disturbance [1,2]. These
symptoms worsen with the progression of the disease and may
lead to serious treatment consequences, such as total knee
replacement and the need for corresponding gait correction
rehabilitation training. In recent years, the number of individuals
diagnosed with KOA has rapidly increased owing to the aging
of the global population and the rising prevalence of obesity.
KOA is the primary cause of dysfunction among older adults,
placing an extensive burden on both socioeconomic and medical
systems [3]. Assessment of physical function in KOA is a crucial
component of documenting and evaluating rehabilitation
progress [4,5], which will accelerate the establishment of new
diagnostic criteria and effective rehabilitation methods [6-8].
Traditional radiography presents limitations as a static
assessment tool and cannot achieve long-term dynamic
functional monitoring [9]. Both patient-reported outcomes
(PROs) and performance-based measures (PBMs) have been
used to assess physical function in KOA, but there is no
universally recognized gold standard for evaluation [10].
Although PROs are convenient and cost-effective, their high
subjectivity and susceptibility to patient’s pain and emotions
can lead to biased results. Moreover, they are not suitable for
individuals with depression or cognitive impairment [5,11].
PBMs are objective and effective evaluation methods,
considering factors such as time, cost, equipment, space, and
management burden comprehensively. The OARSI
(Osteoarthritis Research Society International) recommended
a set of performance-based physical function tests, such as the
40-m fast-paced walk test (40mFPWT) and timed up-and-go
test (TUGT) [12], whose validity and reliability have been
validated by many research reports [13]. However, PBMs still
need to be conducted in specific locations, such as hospitals or
rehabilitation clinics, and under the supervision of well-trained
medical practitioners. Therefore, developing a simple, fast,
effective, and user-friendly method for functional assessment
is beneficial to relieve the burden on the health care system in
society.

Researchers are now able to easily acquire vast amounts of
biomedical data through wearable sensors, including pressure
sensors [14], inertial measurement units [15,16], and
electromyography sensors [17]. The application of machine

learning technology for the analyzing and processing of this
data facilitates the identification and prediction of human
physiological conditions and disease risks [18], thereby offering
new opportunities for attaining personalized health care and
health management [19]. Plantar pressure signal has shown
potential applications in the diagnosis and rehabilitation
evaluation of KOA. Studies [20-24] have shown that patients
with KOA are prone to abnormal gait or gait dysfunction due
to pain, stiffness, limited joint range of motion, and other
symptoms, and their gait patterns are specifically characterized
by unstable gait and high variability. Naili et al [1] found gait
deviations between patients with KOA and healthy population
through 3D gait analysis and suggested that PBMs may be more
closely associated with overall gait pattern deviations in patients
with KOA than PROs or perceived pain. In addition, statistical
analysis of foot pressure parameters measured by the F-Scan
(Tekscan, Inc) system showed that the pressure in the thumb
and heel area of patients with KOA as a percentage of weight
was significantly lower than that in healthy people, but the
central region was higher [25,26]. Moreover, the center of
pressure (COP) path range was smaller in the KOA group than
in the healthy group, which may be due to incomplete gait in
patients with KOA [27].

Unlike inertial measurement units, plantar pressure sensors
provide stable and accurate plantar pressure distribution data,
which is essential for accurate gait analysis, without being
affected by changes in the wearing position or method. In
contrast to force platforms, instrumented treadmills, and 3D
gait analysis technologies [28], footwear systems with embedded
foot pressure sensors can overcome the limitations of laboratory
settings and enable long-term remote monitoring by
inconspicuously integrating them into everyday footwear.
Previous work on the functional evaluation of KOA using
wearable pressure sensors has focused on PROs such as the
Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC) [19,29] and Knee Osteoarthritis Outcome Score
[8]. However, the connection between KOA gait characteristics
and more objective PBMs has rarely been explored. Table 1
summarizes the differences between important relevant studies
and ours per methods, gait features, and objectives.

Therefore, in this study, a wireless in-shoe system integrating
a low-cost, high-durability foot pressure sensor was used to
collect plantar pressure data during walking for patients with
KOA. The performance of the shoe system used has been
validated in previous research, demonstrating its ability to
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effectively monitor human gait dynamics information in real
time for daily use, and has been applied to the detection of
diabetic feet [30] and fall risk assessment studies in older adults
[31,32]. We suggest that there is a mapping correlation between
functional performance and gait features in patients with KOA.
From the raw plantar pressure data, spatiotemporal parameters
were extracted to construct a KOA gait feature database
customized for wearable plantar pressure sensors. This
construction involved expanding the dimensionality of gait

features through mathematical methodologies. Effective feature
selection and analysis were performed for the 40mFPWT and
TUGT tasks, respectively. The objective of this study is to
develop a functional evaluation model using multidimensional
plantar pressure features to monitor and assess the functional
performance of patients with KOA, potentially serving as a
self-managed rehabilitation tool to provide long-term remote
dynamic functional monitoring and progress recording for
patients with KOA [33].

Table 1. Review of related works.

ObjectivesGait featuresMethodsReferences

Develop estimation models for WOMACa scores of

patients with KOAb

Kinetic, kinematic, and spatial-temporal
data

3D gait analysis and machine
learning

Kwon et al [19]

Predict common functional tests by spatiotemporal
gait parameters in patients post stroke

Spatiotemporal gait parameters3D gait analysis and multiple
regression analysis

Ofran et al [28]

Clarify the gait characteristics of patients with KOAScalar product and time featuresIMUsc and statistical analysisWada et al [24]

Clarified foot pressure patterns and hindfoot deformi-
ties in KOA and analyzed their associations with foot
pain

Walking speed, COPd, %PFPe, %Longf,

%Transg, navicular height ratio, etc.

Pressure sensors (F-Scan) and
statistical analysis

Saito et al [25]

Develop a functional assessment model for PBMsh

scores of patients with KOA

Multidimensional wearable plantar pressure
features

Pressure sensors and machine
learning

Ours

aWOMAC: Western Ontario and McMaster Universities Osteoarthritis Index.
bKOA: knee osteoarthritis.
cIMU: inertial measurement units.
dCOP: center of pressure.
e%PFP: partial foot pressure as the percentage of body weight.
f%Long: anteroposterior length of the center of pressure path as a percentage of foot length.
g%Trans: transverse width of the center of pressure path as the percentage of foot width.
hPBM: performance-based measure.

Methods

Recruitment and Data Collection
The research enlisted 92 adults diagnosed clinically as patients
with KOA, exhibiting varying degrees of severity as evaluated
by the Kellgren and Lawrence classification. These participants
demonstrated independent walking capability for a duration of
2 minutes. All participants were sourced from Zhujiang Hospital
of Southern Medical University, and the tests were administered
under the guidance of proficiently trained medical personnel.

Participants were thoroughly briefed on the procedures and
paradigm of the functional tests before they underwent the
assessments. Adequate intervals were implemented between
each test session to avoid the impact of fatigue. Successively,
the participants underwent the TUGT and 40mFPWT to
respectively evaluate the patients’ overall functional mobility,
balance capacity, short-distance walking performance, and gait
speed. The TUGT and 40mFPWT scores indicate the time taken
to complete the test, with higher scores representing worse
patient function. Table 2 summarizes the participants’

demographic characteristics and physical function tests. The
results of the Mann-Whitney U tests revealed no statistical
difference between male and female groups in the 40mFPWT
and TUGT outcomes (P=.48 and P=.50, respectively).

The footwear system used for the collection of plantar pressure
data has been detailed in prior studies [30]. Each shoe is
equipped with eight integrated pressure sensors capable of
detecting vertical ground reaction forces during walking. The
sensor position distributions and corresponding pressure-sensing
regions are illustrated in Figure 1A. Before formal data
collection, participants were required to wear suitable socks and
shoes. Ample time was provided for participants to adjust and
ensure proper fitting of the shoes before engaging in natural
walking. The participants were then asked to walk independently
back and forth in a 20 m corridor at a freely walking speed for
2 minutes to simulate everyday locomotor activities. The shoe
system collected plantar pressure signal data during walking at
a frequency of 20 Hz and transmitted it to a mobile phone in
real time via Bluetooth (Bluetooth Special Interest Group; Figure
1B).

JMIR Aging 2024 | vol. 7 | e58261 | p. 3https://aging.jmir.org/2024/1/e58261
(page number not for citation purposes)

Xie et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Participants’ characteristics.

ValuesVariable

62.95 (8.4)Age (years), mean (SD)

Gender, n

17Male

75Female

158.08 (7.85)Height (cm), mean (SD)

61.33 (10.47)Weight (kg), mean (SD)

24.51 (3.43)BMI (kg/m²), mean (SD)

11.39 (2.99)TUGTa(s), mean (SD)

28.61 (6.19)40mFPWTb (s), mean (SD)

aTUGT: timed up-and-go test.
b40mFPWT: 40-m fast-paced walk test.

Figure 1. (A) Location of sensor deployment. (B) The composition of plantar pressure shoe measurement system. DAQ: data acquisition; PU:
polyurethane.

Feature Extraction

Overview
Feature extraction is a crucial step in gait data analysis and
should adhere to the following principles. First, the features
should have clear biomechanical meaning and be objectively
observable. This ensures the physiological relevance of the
extracted variables. Second, these features should exhibit
generality across all participant types. The second principle is
particularly pivotal because generalization directly affects the
robustness of machine learning techniques [34]. Human gait is
a periodic activity composed of the stance phase and the swing

phase. In the stance phase, the pressure sensors in the
corresponding regions of the heel, middle foot, and forefoot are
activated successively as the gait advances. Before feature
extraction, gait cycle segmentation is performed on the acquired
temporal signal data of plantar pressure. A single gait cycle is
divided by identifying the rise point of the total pressure curve
from the 8 sensors when the heel strikes the ground, representing
a gait cycle from heel strike to the end of the swing phase. When
the toe is off the ground, the total pressure curve drops to its
minimum value as the dividing point of the terminal stance and
preswing phases, as shown in Figure 2. Excluding the starting
step of the first 2 steps, the next 50 gait cycles with the left and
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right feet adjacent were selected as a sample for feature
extraction and analysis.

Multidimensional features would be extracted based on the
weight-normalized plantar pressure data obtained by the shoe
system. The basic features include the single-foot feature
extracted for each foot and the bipedal feature. Then the
symmetry coefficient feature, SD feature, and the weak foot
feature were calculated based on the single foot feature, which
greatly enrich the plantar pressure feature database. We refer

to some common plantar pressure feature extraction methods
reported in previous studies [25,30,31] and perform
corresponding feature extraction according to the sensor
deployment position of our plantar pressure shoe measurement
system. In addition, we not only focus on the extreme value
features of a single sensing unit but also analyze the plantar
pressure features corresponding to the transition of different
stages in the gait cycle. The relevant features of the single
sensing region and the combined sensing region corresponding
to the subphases of the stance phase were extracted.

Figure 2. The total VGRF of the left and right feet in a gait cycle and the segmentation points of gait stages are shown. VGRF: vertical ground reaction
forces.

Peak Plantar Pressure
Peak plantar pressure (PPP) represents the maximum load on
the underfoot area during one step. Taking the left foot as an
example, the calculation formula for each sensor’s PPP is
expressed as equation 1. The maximum pressure values for the
eight regions of both the left and right feet are extracted
respectively within one step. Here, s ∈ (1,8) denotes the sensor
number, Ps(n) represents the pressure data sequence of the
corresponding sensor s, and n indicates the time sampling points.
L1-4PPP, L5-6PPP, and L7-8PPP represent the peak pressure
combination of the sensors corresponding to the left forefoot,
middle foot, and heel in one gait cycle, respectively. The total
vertical ground reaction forces in a gait cycle exhibit a bimodal
pattern, where the first vertical force peak (L_peak1) is caused
by a heel strike, and the second peak (L_peak2) is attributed to
the forward movement of the center of gravity during walking.
The L4/2PPP and L8/7PPP represents the ratio of peak pressure
in the lateral and medial regions of the left forefoot and heel,
respectively. In this part, a total of 30 left and right foot features
were extracted.

Pressure Gradient
Pressure gradient (PG) quantifies the rate of change of pressure
over time, reflecting the rapidity of pressure curve fluctuations
beneath the foot during locomotion. Positive PG indicates rapid
pressure rises during foot-floor contact phases, while negative

PG corresponds to swift pressure declines. The maximum and
minimum PG of each sensing curve of both feet can be
calculated by equations 2 and 3, where Δt is the sampling time
interval. Partial region combination sensing can be used to
describe the characteristics of state transition between substages
of the gait cycle. For instance, L1-4MaxPG represents the
maximum gradient change upward when the center of gravity
shifts to the forefoot of the left foot. On the other hand,
L1-4MinPG signifies the maximum negative gradient change
when the toes lift off the ground, corresponding to the downward
pressure curve. The L5-6MaxPG and L5-6MinPG in the midfoot
region reflect the pressure change during the foot flat and
heel-off phases, respectively. Similarly, L7-8MaxPG and
L7-8MinPG in the heel region denote the changes during the
heel strike and foot flat phases, respectively. The loading rate
(L_loadr) is PG calculated by the first peak pressure and the
initial contact pressure of the stance phase. The off-loading rate
(L_unloadr) is PG calculated by the second peak pressure and
the end pressure of the stance phase. The L_valleyPG represents
the sum of the absolute values of the gradient at each sampling
point between the 2 peaks for the total pressure curve, describing
the degree of pressure variation of the 2 peaks. This section
extracts a total of 50 features from both feet.
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Temporal Features
As depicted in Figure 2, the gait cycle can be divided into the
stance and swing phases. Taking the left foot as an example,
the single-foot temporal features include the ratio of time
between the stance and swing phases (Ltst/sw), the gait cycle
time (LtT), the ratio of stance phase to gait cycle time (Ltst/T),
and the proportion of the time to reach the first (Ltt1/T) and
second peaks (Ltt2/T) in the total gait cycle time. Bipedal
temporal features include single-limb support time and
double-limb support time [35]. This section extracts a total of
12 temporal features.

Pressure Time Integral
By quantifying the accumulated pressure over the duration of
the stance phase beneath discrete foot regions, the pressure time
integral (PTI) depicts the total mechanical dose imparted to soft
tissues during one step. However, PTI shows a high concordance
with PPP [36]. To avoid redundancy, only the PTI of the global
region is extracted here. PTI from heel strike to the first peak
pressure (LPTI_1) and PTI of the stance phase (LPTI_st) were
extracted from equation 4. In this part, a total of 4 left and right
foot features were extracted.

COP Features
COP is a commonly used dynamic parameter to track weight
transfer. During the gait cycle from heel strike to toe-off, a series
of coordinates for the COP trajectory can be obtained by
calculating the weighted average of all pressure inputs acting
on the foot, as defined by equation 5. Here xs and ys represent
the sensor coordinates, which are converted into a unified
coordinate system before computation, considering different
shoe sizes [31]. Take the left foot during one step, for example,
the mean and SD of COP trajectory in the medial-lateral
direction (Lxcopmean, Lxcopstd) and for anterior-posterior
direction (Lycopmean, Lycopstd) were calculated. Length of the
COP trajectory (Lcoplen) can be calculated by equation 6. The
resultant distance (RD) is the Euclidean distance between 2
points in COP coordinates. The mean (LcopMRD) and SD of
RD (LcopSRD) can be calculated by equations 7 and 8,
respectively [31]. In this part, 14 features of the left and right
feet were extracted.

So far, a total of 54 single-foot features and 2 bipedal temporal
features during one step have been extracted, and these will be
averaged over 50 gait cycles. The following feature construction
is to further expand the dimension of gait features through
mathematical methods.

Symmetry Index
Asymmetrical gait patterns may be present in patients with KOA
with functional impairment [37]. The symmetry index (SI) for
the mentioned 54 single-foot features can be calculated by
equation 9, where Lf and Rf represent the corresponding left
and right foot features, respectively. In this part, 54
corresponding SI features are extracted and named with SI
prefixes.

SD Feature
Patients with KOA often exhibit an unstable and highly variable
gait pattern. Therefore, it is essential to extract the variability
of relevant features across consecutive gait cycles. In this
session, the SDs of 108 single foot features on both sides during
50 gait cycles were calculated and named with the suffix STD.

Weak Foot Feature
In previous studies [38], values reflecting lower performance
were chosen from the features calculated separately for each
leg. To further enhance the value of the extracted data variables
and reduce the dependence of predictive models on extraction
sides, this study refers to previous research on fall risk prediction
in older adults [31] and extracts the weak foot features, that is,
the features of the foot with weaker functional performance
between the 2 feet. Features derived from the weaker side are
posited to perhaps carry more predictive value for functional
estimations. Weak foot features can be identified by
anterior-posterior direction variability:

In this part, 108 weak-foot features named with the W prefix
are extracted from the mean and SD of both foot single-foot
features.
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Physical Characteristics
Physical characteristics correlate with functional performance,
so age, height, weight, and BMI are also included in the feature
database.

All extracted features contained in the feature database are listed
in Table 3. The related features of the left foot are named with
the prefix L and the right foot with the prefix R.
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Table 3. List of features.

NumberFeaturesKinds of features

Single foot features

15×2LsPPPb,c, s ∈ (1,8)d; L1-4PPPe; L5-6PPPf; L7-8PPPg; L_peak1h; L_peak2i; L4/2PPPj; L8/7PPPk;

RsPPPl, s ∈ (1,8); R1-4PPP; R5-6PPP; R7-8PPP; R_peak1; R_peak2; R4/2PPP; R8/7PPP

PPPa

25×2LsMaxPGm, LsMinPGo, s ∈ (1,8); L1-4MaxPGp; L1-4MinPGq; L5-6MaxPGr; L5-6MinPGs;

L7-8MaxPGt; L7-8MinPGu; L_loadrv; L_unloadrw; L_valleyPGx; RsMaxPG, RsMinPG, s ∈ (1,8);

PGm

R1-4MaxPG; R1-4MinPG; R5-6MaxPG; R5-6MinPG; R7-8MaxPG; R7-8MinPG; R_loadr; R_unloadr;
R_valleyPG

5×2Ltst/swy-aa; LtT
ab; Ltst/T; Ltt1/Tac; Ltt2/Tad; Rtst/sw; RtT; Rtst/T; Rtt1/T; Rtt2/TTemporal

2×2LPTI_1; LPTI_st; RPTI_1; RPTI_stPTIae

7×2Lxcopmeanag; Lxcopstdah; Lycopmeanai; Lycopstd; Lcoplenaj; LcopMRDak; LcopSRDal; Rxcopmean;
Rxcopstd; Rycopmean; Rycopstd; Rcoplen; RcopMRD; RcopSRD

COPaf

2Single limb support time; double limb support timeBipedal features

54SIf
amSymmetry index features

108Lf_STD; Rf_STDSD features

108Wf
an; Wf_STDaoWeak foot features

4Age; height; weight; BMIPhysical characteristics

aPPP: peak plantar pressure.
bL: left foot.
c
s: sensor.

ds: sensor.
e
1-4: forefoot.

f
5-6: middle foot.

g
7-8: heel.

hpeak1: first vertical force peak.
ipeak2: second vertical force peak.
j
4/2PPP represents the ratio of peak pressure in the lateral and medial regions of the forefoot.

k
8/7PPP represents the ratio of peak pressure in the lateral and medial regions of the heel.

lR: right foot.
mPG: pressure gradient.
nMin: minimum.
oMax: maximum.
p
1-4MaxPG represents the maximum gradient change upward when the center of gravity shifts to the forefoot.

q
1-4MinPG signifies the maximum negative gradient change when the toes lift off the ground, corresponding to the downward pressure curve.

r
5-6MaxPG in the midfoot region reflect the pressure change during the foot flat phase.

s
5-6MinPG in the midfoot region reflect the pressure change during the heel-off phase.

t
7-8MaxPG in the heel region denote the changes during the heel strike phase.

u
7-8MinPG: in the heel region denote the changes during the foot flat phase.

vloadr: loading rate.
wunloadr: off-loading rate.
xvalleyPG: the sum of the absolute values of the gradient at each sampling point between the 2 peaks for the total pressure curve, describing the degree
of pressure variation of the 2 peaks.
y
t: time.

zst: stance phase.
aasw: swing phase.
abT: gait cycle time.
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act1: first peak.
adt1: second peak.
aePTI: pressure time integral.
afCOP: center of pressure.
ag

x: medial-lateral direction.
ahstd: SD.
ai

y: anterior-posterior direction.
ajlen: length of the center of pressure trajectory.
akMRD: mean of resultant distance.
alSRD: SD of resultant distance.
amSIf: The corresponding symmetry index features of both feet.
anWf: mean value of weak foot features.
aoWf_STD: SD of weak foot features.

Feature Selection

Overview
In the feature extraction process, a total of 380 gait features and
4 physical characteristics were extracted to form the feature
database. For machine learning model training, high-dimensional
data not only increases computational workload but also results
in severe overfitting, leading to poor generalization performance
of the model. Therefore, before developing regression prediction
models, it is necessary to undertake feature selection from the
extensive feature database to alleviate the curse of
dimensionality [39]. If the data of all participants is used during
the feature selection process, it may lead to premature use of
the testing set in feature selection, causing information leakage
and inflating the model’s performance. Therefore, before feature
selection, we used a holdout method by randomly partitioning
33% (31 cases) of the data as an external testing set, while the
remaining 67% (61 cases) of the data is designated as the
training set for feature selection, model development, and
performance comparison. The testing set is strictly excluded

from both the feature selection and model development
processes, ensuring that the model exhibits objective and
genuine generalization performance when confronted with new
participants. Figure 3 illustrates the pipeline of feature selection
and model development.

There are various methods for feature selection, mainly
categorized into filter, embedded, and wrapper methods. This
study used correlation analysis and the filter method, specifically
the Minimum Redundancy and Maximum Relevance (mRMR)
[40], as a preliminary feature selection. Subsequently, the
wrapper methods were used to further determine the optimal
feature subset. The stepwise reduction of the feature space
through the combination of multiple methods proved effective
in identifying valuable features. Meanwhile, principal
component analysis [41], a popular feature dimensionality
reduction method, was used as a benchmark for comparison to
evaluate the effectiveness of the stepwise feature selection
approach. The same machine learning model was trained on the
reduced datasets and cross-validation was used to evaluate the
performance of different methods.

Figure 3. Pipeline of feature selection and model development. MAE: mean absolute error; MAPE: mean absolute percentage error; mRMR: Minimum
Redundancy and Maximum Relevance; RMSE: root mean squared error; SBFS: Sequential Backward Floating Selection; SFFS: Sequential Forward
Floating Selection.
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Spearman Correlation Coefficient
Conducting Spearman correlation analysis between each feature
and the corresponding task labels on the training set, features
with low correlation (|r|<0.2) are eliminated to enhance
computational efficiency.

About mRMR
Owing to the possible information redundancy between
single-foot features and weak-foot features, it is not conducive
to the speed, accuracy, and interpretability of the training results.
The mRMR is a minimal-optimal feature selection algorithm
that can find a subset of features in a machine learning task that
has the greatest correlation with the target variables and the
least redundancy between them [40]. Choose the optimal feature
for the next feature selection, ensuring that its number does not
exceed the number of samples in the training set.

Wrapper Methods
After feature preselection using statistical analysis methods, the
wrapper methods based on the machine learning model are used
for a more comprehensive feature selection. The wrapper
methods determine the optimal feature subset through the
average performance of cross-validation. This paper uses
Sequential Feature Selection algorithms, including Sequential
Forward Floating Selection and Sequential Backward Floating
Selection, to automatically determine the optimal feature subset
based on their impact on the performance of a user-defined
model [42]. These 2 algorithms are implemented using mlxtend
(version 0.20.0 for Python 3.7; Python Software Foundation)
[43].

Regression Model Development and Evaluation
After stepwise feature selection, a subset of features most
relevant to the current problem is identified for developing
machine learning models. The models considered include linear
regression (LR), support vector machine (SVM), random forest
(RF), Adaptive Boosting (AdaBoost), Extreme Gradient
Boosting (XGBoost), and Light Gradient Boosting Machine
(LGBM). Hyperparametric tuning of each model was performed
using Optuna (Preferred Networks, Inc) [44] and 5-fold
cross-validation was used to evaluate the results.

Based on the training results of each model and referring to
previous studies [45], the 2-level ensemble learning model was
constructed using the stacking regression method [46], as shown
in Figure 4A. The training data were randomly partitioned into
5 mutually exclusive subsets, 4 of which were used as 5-fold
cross-validation of the inner loop to train the models. At the

first level, 4 decision-tree-based regressors including RF,
AdaBoost, XGBoost, and LGBM were used to fit the training
folds, respectively, and then predict the validation fold. The
predictions from these 5 rounds were stacked to form the input
features for the second-level regressor, which uses a simple
model such as LR or SVM. The validation set of the external
loop is used to evaluate the performance of the stacking model
and hyperparameter tuning. Additionally, for comparison
purposes, simple average ensemble (SAE) and weighted average
ensemble (WAE) were also adopted to construct 2-level models
for these 4 tree-based models. The final prediction of the SAE
model is obtained by taking the average of the predictions from
all individual models, while WAE assigns different weights to
the predictions of each model according to their performance,
allowing models with better performance to have a greater
influence on the final prediction, as shown in Figure 4B. The
ensemble model can reduce variance, enhance robustness, and
improve generalizability by combining the prediction results
from multiple models.

Mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE) were used as
regression performance metrics to evaluate the results of
different models [47,48]. To avoid deceiving performance
caused by data bias, the average of the known training set labels
is used as the prediction of the unknown test set to calculate
these metrics as the performance of the baseline model. The
improvement of each metric for each model relative to the
baseline model is calculated and normalized into a regress
relative index (RI) to comprehensively evaluate the model
performance [49,50], as shown in equation 11.

Where modeli and baselinei represent the performance metrics
corresponding to each model and the baseline model,
respectively.

Models with high RI values will be considered as candidate
regressors for 2-level ensemble learning models. The
contribution of each model in WAE prediction was weighted
according to the proportion of their RI value. The final predicted
value ŷWAE of the WAE model can be calculated by equation
12.
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Figure 4. (A) Flowchart of stacking regressors with nested 5-fold cross-validation. (B) The prediction process of the WAE model. Ada: Adaptive
Boosting; LGBM: Light Gradient Boosting Machine; LR: linear regression; MAE: mean absolute error; P: prediction; RF: random forest; RMSE: root
mean squared error; MAPE: mean absolute percentage error; SVM: support vector machine; W: weight; WAE: weighted average ensemble; XGB:
Extreme Gradient Boosting.

Ethical Considerations
All experimental procedures were approved by the institutional
review board of Zhujiang Hospital of Southern Medical
University (IRB 2019-KY-016-02). This study ensures informed
consent with the right to withdraw. Participants’ privacy is
safeguarded through data anonymization. Compensation for
human subjects involved a payment of CN ¥200 (CN ¥1=US
$0.14) per individual.

Results

Feature Selection Results
Table 4 shows the benchmark experimental results of feature
selection, comparing the performance of various algorithms

using the RF regressor as the base model, and it can be seen
that the method using stepwise feature selection performs better
than the principal component analysis algorithm in both tasks.

After applying the Spearman correlation coefficient to filter out
low-correlation noise features, the 40mFPWT task retained 161
features and the TUGT task retained 131 features. Then select
an optimal subset of 61 features with mRMR, which was set to
not exceed the number of training samples. For 40mFPWT, the
subset of 11 features identified by the Sequential Backward
Floating Selection method yields the best performance. For
TUGT, the optimal feature subset determined by the Sequential
Forward Floating Selection method consists of 10 features. The
optimized feature subsets and Spearman correlation coefficients
for both tasks are depicted in Figure 5.
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Table 4. Results of benchmark experiment on the feature selection algorithm.

RMSEc (s)MAPEb (%)MAEa (s)Tasks and methods

40 mFPWTd

6.02315.2234.638PCAe

3.7919.1672.813SFFSf

3.668.8542.698SBFSg

TUGTh

2.77117.1212.063PCA

2.28512.8011.589SFFS

2.23613.381.643SBFS

aMAE: mean absolute error.
bMAPE: mean absolute percentage error.
cRMSE: root mean squared error.
d40mFPWT: 40-m fast-paced walk test.
ePCA: principal component analysis.
fSFFS: Sequential Forward Floating Selection.
gSBFS: Sequential Backward Floating Selection.
hTUGT: timed up-and-go test.

Figure 5. The optimized feature subsets and Spearman correlation coefficients for (A) the 40mFPWT task and (B) the TUGT task. 1-4MinPG: the
maximum negative gradient change when the toes lift off the ground, corresponding to the downward pressure curve; 2: medial region of the forefoot;

4/2PPP: ratio of peak pressure in the lateral and medial regions of the forefoot; 40mFPWT: 40-m fast-paced walk test; 5-6: middle foot; 7-8: heel;

7-8MinPG: changes during the foot flat phase in the heel region; 8: lateral region of the heel; 8/7PPP: ratio of peak pressure in the lateral and medial
regions of the heel; COP: center of pressure; L: left foot; Max: maximum; Min: minimum; MRD: mean of resultant distance; PG: pressure gradient;
PPP: peak plantar pressure; R: right foot; SI: symmetry index; SRD: SD of resultant distance; st: stance phase; std: SD; STD: SD; t: time; T: gait cycle
time; TUGT: timed up-and-go test; valley: the sum of the absolute values of the gradient at each sampling point between the 2 peaks for the total pressure
curve, describing the degree of pressure variation of the 2 peaks; W: weight; y: anterior-posterior direction.

Evaluation of Machine Learning Regression Model
After feature selection, six regression models were trained and
their hyperparameters were tuned using Optuna with 5-fold
cross-validation for both the 40mFPWT and TUGT tasks,
respectively. RF, AdaBoost, XGBoost, and LGBM were used
as first-level regressors for the stacked model, and the
performance of LR and SVM as second-level regressors were

compared, respectively. SAE combines the predictions from 4
trained tree-based models equally, while WAE weighs the
contribution of each ensemble member proportionally based on
RI value. The performance of each model compared with the
baseline model is shown in Table 5 for 40mFPWT and Table
6 for TUGT. Among individual models, the LGBM model
achieved the best predictive performance in the 40mFPWT task,
while the XGBoost model performed best in the TUGT task.
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The performance of the stacking model using SVM as the
second-level regressor is better than that using LR in both tasks.

The average integration model using the WAE strategy has
better performance than that using SAE in both tasks.

Table 5. Results of cross-validation of regression models in the 40mFPWTa training set.

RIeRMSEd (s)MAPEc (%)MAEb (s)Model

06.21916.4614.925Baseline

Individual models

0.6764.96612.4263.793LRf

0.9514.52610.6533.318SVMg

1.3933.5468.4072.59RFh

1.423.5468.1372.541AdaBoosti

1.4553.5277.7582.495XGBoostj

1.521l3.381l7.473l2.373lLGBMk,l

Stacked model

1.4563.4327.9212.518Stack (linear)

1.621l3.152l6.929l2.223lStack (SVM)l

Average ensemble

1.5373.3347.422.345SAEm

1.54l3.329l7.399l2.34lWAEn,l

a40mFPWT: 40-m fast-paced walk test.
bMAE: mean absolute error.
cMAPE: mean absolute percentage error.
dRMSE: root mean squared error.
eRI: relative index.
fLR: linear regression.
gSVM: support vector machine.
hRF: random forest.
iAdaBoost: Adaptive Boosting.
jXGBoost: Extreme Gradient Boosting.
kLGBM: Light Gradient Boosting Machine.
lthe optimal result in the various model methods.
mSAE: simple average ensemble.
nWAE: weighted average ensemble.
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Table 6. Results of cross-validation of regression models in the TUGTa training set.

RIeRMSEd (s)MAPEc (%)MAEb (s)Model

03.26720.9692.475Baseline

Individual model

0.9222.28514.1741.739LRf

0.9362.31813.8591.717SVMg

1.1262.1612.3961.538RFh

1.2742.04311.2181.399AdaBoosti

1.399k1.891k10.365k1.306kXGBoostj,k

1.3151.94411.0121.397LGBMl

Stacked model

1.2212.03311.7751.473Stack (linear)

1.415k1.873k10.2k1.3kStack (SVM)k

Average ensemble

1.351.94510.7011.347SAEm

1.359k1.936k10.633k1.339kWAEn,k

aTUGT: timed up-and-go test.
bMAE: mean absolute error.
cMAPE: mean absolute percentage error.
dRMSE: root mean squared error.
eRI: relative index.
fLR: linear regression.
gSVM: support vector machine.
hRF: random forest.
iAdaBoost: Adaptive Boosting.
jXGBoost: Extreme Gradient Boosting.
kthe optimal result in the various model methods.
lLGBM: Light Gradient Boosting Machine.
mSAE: simple average ensemble.
nWAE: weighted average ensemble.

Prediction Outcomes for Functional Tests
The best-performing trained models obtained from optimizing
hyperparameters on the training set were used to generate
predictions for the holdout test set, including the individual
model, stacked model, and average ensemble model. The results
in the holdout test set for the 40mFPWT are shown in Table 7

and for the TUGT are shown in Table 8. Among all models, the
WAE model using 4 tree-based models has the best
generalization performance in the test set, with MAE of 2.686
seconds, MAPE of 9.602%, and RMSE of 3.316 seconds for
the prediction of 40mFPWT, and for TUGT with MAE of 1.280
seconds, MAPE of 12.389%, and RMSE of 1.905 seconds.
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Table 7. Results of the models in the 40mFPWTa testing set.

RMSEd (s)MAPEc (%)MAEb (s)Model

4.51514.6643.9Baseline

3.57810.4042.918LGBMe

3.5149.772.787Stack (SVMf)

3.3169.6022.686WAEg

a40mFPWT: 40-m fast-paced walk test.
bMAE: mean absolute error.
cMAPE: mean absolute percentage error.
dRMSE: root mean squared error.
eLGBM: Light Gradient Boosting Machine.
fSVM: support vector machine.
gWAE: weighted average ensemble.

Table 8. Results of the models in the TUGTa testing set.

RMSEd (s)MAPEc (%)MAEb (s)Model

1.99915.6371.608Baseline

2.12813.7141.437XGBooste

2.113.911.465Stack (SVMf)

1.90512.3891.280WAEg

aTUGT: timed up-and-go test.
bMAE: mean absolute error.
cMAPE: mean absolute percentage error.
dRMSE: root mean squared error.
eXGBoost: Extreme Gradient Boosting.
fSVM: support vector machine.
gWAE: weighted average ensemble.

Discussion

Principal Findings
This study developed a functional evaluation model using
multidimensional plantar pressure features to predict the
functional performance of patients with KOA. The plantar
pressure data collected by the shoe system were preprocessed
through feature engineering. These features were then input into
the trained model to enable prediction and thereby realize
functional assessment and monitoring of patients with KOA.

The results of feature selection indicated that age was the most
relevant predictor of functional performance on the 2 tasks. It
is reasonable that higher age correlated with a longer duration
to finish the function tests, and therefore poorer function (Figure
5). Notably, 4 features showed negative correlations with
40mFPWT outcomes (Figure 5A). Specifically, higher values
of the L7-8PPP feature were associated with better functionality,
aligned with previous findings that individuals with KOA tend
to exhibit diminished plantar pressure in the heel region [25,26].
Four SI features were selected for the TUGT task. This is likely
because diseases or impairments that impact proprioception or

postural stability could thereby influence balance performance
on the TUGT by altering one’s symmetry [51]. The results
showed that plantar pressure–derived features in the forefoot
and rearfoot regions, specifically PG and PPP values, exhibited
relatively strong correlations with functional test outcomes. In
addition, COP-derived features, SI features, and weak foot
features were selected and exhibited relatively strong
correlations with functional test outcomes. These observed
relationships are biologically plausible and concordant with
existing understandings of pathological gait patterns in
populations with KOA.

The performance of the baseline model, which uses the mean
of known labels in the training set as predictions for the test set,
provides an unbiased evaluation metric without issues of
overfitting or overoptimism. The model-free nature of this
design ensures a fair assessment of predictive gains attributable
to model architecture rather than data traits. The RI value of
each model was obtained by calculating the sum of the
improvement of each performance metric relative to the baseline.
A higher RI value represents better overall model performance.
The results demonstrate that tree-based models outperform LR
and SVM models significantly (Tables 3 and 4). Using SVM
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as the second-level regressor in the stacked model yields better
results than LR, primarily attributable to SVM’s ability to handle
nonlinear relationships and demonstrate robustness against
outliers in the data. Within the averaged ensemble framework,
the WAE model outperformed the SAE model, possibly due to
its weighted aggregation mechanism. The WAE model produced
superior outcomes by assigning higher weights to individual
models with higher predictive power, thereby generating more
refined ensemble predictions.

Due to feature selection being performed on the training set,
the models may still overfit the training set even with the use
of cross-validation techniques, resulting in overly optimistic
performance estimates. Therefore, in general, the model
performs better on a training set than on a holdout test set
containing unknown samples. The performance on the test set
provides a more robust evaluation of the models’generalization
capability when encountering new data. The results indicate
that the WAE model demonstrated the best generalization
performance in both tasks, rather than the stacked model that
used SVM as the second-level regressor (Tables 5 and 6). This
aligns with the principle of Occam razor in model selection
which is to prefer the more parsimonious model when
performance is otherwise comparable [52].

Based on the prediction results from the 2 functional tests, the
features we extracted appear to have a reasonably close
correlation with functional performance. The models
demonstrated good generalization for predicting traditional
clinical function tests. In the future, the model could be
integrated into a terminal application to longitudinally monitor
patients’ functional status. The identified plantar pressure
features could serve as an evaluation tool to guide the
rehabilitation and assessment of progress for patients with KOA,
offering clear advantages per time efficiency, longitudinal
documentation, and accuracy compared to conventional
functional tests.

The findings of this study have significant clinical implications
for the management and rehabilitation of patients with KOA.
The proposed techniques enable continuous, real-time
monitoring of patients’ functional status beyond clinical settings.
This capability facilitates more personalized and timely
interventions. By accurately assessing functional performance,
patients gain greater insight into their condition thereby
improving overall management. Additionally, the system’s
ability to decrease the frequency of hospital visits and extensive
clinical assessments contributes to cost-effectiveness, alleviating
the burden on health care systems.

Limitations and Strengths
Several limitations of this study should be noted. First, this
study’s cohort consisted exclusively of patients diagnosed with

KOA without the inclusion of data from healthy control
participants for comparative analysis. The validity of the model
prediction is limited to the patients’ population with KOA. The
participant data of this study are mostly female, and the validity
of the model may be biased toward female patients. Second,
this was a cross-sectional study without long-term longitudinal
monitoring of patients in their daily living environments. Third,
it only conducted a feasibility study on functional estimation
based on wearable plantar pressure features for 2 clinical
functional tests recommended by OARSI for KOA. Hence, the
proposed techniques require further validation in larger
prospective cohorts and preferably multicenter trials to
corroborate generalizability.

Despite its limitations, we believe that this wearable plantar
pressure technique captures objective quantitative indicators of
functional status and has great application value. The
preliminary findings indicate this methodology holds promise
for enabling remote, quantitative monitoring of rehabilitation
progress over time. Further work will refine the system for
broader clinical application and validation.

Conclusions
This study aims to develop a lower extremity motor function
evaluation model for patients with KOA based on
multidimensional gait features, which was suitable for a
wearable plantar pressure measurement system. The average
performance and variability of left and right foot features were
extracted from the raw plantar pressure data. An extensive
feature database including 380 gait features and 4 physical
characteristics was established by mathematical methodologies.
Optimal feature subsets for both tasks are selected after stepwise
feature selection including Spearman correlation coefficient,
mRMR, and wrapper methods. Individual regression models
and a 2-level ensemble learning model were trained for the
40mFPWT and TUGT tasks, respectively. The WAE model
that weighs the contribution of each ensemble member
proportionally based on RI value has the best performance in
the testing set, with an MAE of 2.686 seconds, MAPE of
9.602%, and RMSE of 3.316 seconds for the 40mFPWT and
an MAE of 1.280 seconds, MAPE of 12.389%, and RMSE of
1.905 seconds for the TUGT. The proposed technique has the
potential to be a novel approach for objectively quantifying the
functionally dependent gait features, which could be developed
as a tool for the rehabilitation evaluation of motor function in
individuals with KOA. This study fills the vacancy in dynamic
functional assessment for patients with KOA based on wearable
devices. In future work, a variety of sensing technologies will
be integrated to evaluate and predict more functional tests,
providing more accurate and scientific support in fields such as
sports medicine and rehabilitation therapy.
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