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Abstract

Background: With the aging global population and the rising burden of Alzheimer disease and related dementias (ADRDs),
there is a growing focus on identifying mild cognitive impairment (MCI) to enable timely interventions that could potentially
slow down the onset of clinical dementia. The production of speech by an individual is a cognitively complex task that engages
various cognitive domains. The ease of audio data collection highlights the potential cost-effectiveness and noninvasive nature
of using human speech as a tool for cognitive assessment.

Objective: This study aimed to construct a machine learning pipeline that incorporates speaker diarization, feature extraction,
feature selection, and classification to identify a set of acoustic features derived from voice recordings that exhibit strong MCI
detection capability.

Methods: The study included 100 MCI cases and 100 cognitively normal controls matched for age, sex, and education from
the Framingham Heart Study. Participants' spoken responses on neuropsychological tests were recorded, and the recorded audio
was processed to identify segments of each participant's voice from recordings that included voices of both testers and participants.
A comprehensive set of 6385 acoustic features was then extracted from these voice segments using OpenSMILE and Praat
software. Subsequently, a random forest model was constructed to classify cognitive status using the features that exhibited
significant differences between the MCI and cognitively normal groups. The MCI detection performance of various audio lengths
was further examined.

Results: An optimal subset of 29 features was identified that resulted in an area under the receiver operating characteristic curve
of 0.87, with a 95% CI of 0.81-0.94. The most important acoustic feature for MCI classification was the number of filled pauses
(importance score=0.09, P=3.10E–08). There was no substantial difference in the performance of the model trained on the acoustic
features derived from different lengths of voice recordings.

Conclusions: This study showcases the potential of monitoring changes to nonsemantic and acoustic features of speech as a
way of early ADRD detection and motivates future opportunities for using human speech as a measure of brain health.

(JMIR Aging 2024;7:e55126) doi: 10.2196/55126
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Introduction

Alzheimer disease and related dementias (ADRDs) constitute
a significant public health issue, impacting an estimated 6.2
million individuals in the United States, with projections
indicating the number of cases to grow to 12.7 million and 150
million globally by 2050 [1,2]. Emerging evidence suggests
that the functional, psychological, pathological, and
physiological alterations associated with ADRD may manifest
many years prior to the clinical onset of cognitive dysfunction
[3-6]. This increasing awareness has sparked interest in early
detection and monitoring of ADRD, with the goal of
implementing timely preventive and therapeutic strategies to
slow the progression of the disease. As effective as they are in
identifying individuals at high risk of ADRD, conventional
diagnostic methods, such as cerebrospinal fluid biomarkers and
neuroimaging, face accessibility limitations primarily due to
their high costs [7] and high subject burden. This limits their
applicability to other groups, particularly populations in
lower-resourced settings, in effectively monitoring the dynamic
progression of the disease. Therefore, there is an urgent need
for an effective detection method that has a much broader and
more inclusive reach for the early detection of ADRD.

Producing speech is a cognitively complex task that engages
various cognitive domains [8], and the ease of audio data
collection underscores the potential cost-effectiveness and
noninvasiveness that using human speech-based features may
offer to facilitate early identification of cognitive impairment,
including mild cognitive impairment (MCI). Studies have
indicated that language deficits may manifest in the prodromal
stages of cognitive impairment, often years before the clinical
diagnosis of dementia [9,10]. Speech, however, is far richer in
characterizing cognition than just language. Audio recordings
can yield a variety of attributes, encompassing both acoustic
and linguistic features. Acoustic features, given their language
independence, have the potential for broader global applicability.
Previous studies from the Framingham Heart Study (FHS)
demonstrated significant associations between acoustic features
extracted from voice recordings and 2 primary clinical indices
of neurodegeneration: neuropsychological (NP) test performance
[11] and brain volumes [12]. Moreover, acoustic-based models
can be readily deployed on devices such as hand-held recorders,
smartphones, tablets, and other internet-connected mobile
devices, enabling widespread usage. These characteristics enable
voice as a potential digital biomarker for early cognitive
impairment monitoring and detection of MCI.

While the use of speech recordings as a novel measure of
cognition is still in the early stages of validation, most of the
previous studies have relied on a limited set of acoustic features
[13-16], potentially constraining the enhancement of early
detection capabilities for ADRD. For instance, some studies
have concentrated on Mel-frequency cepstral coefficients
[13,15], while others have explored a narrow range of temporal
and spectral features (such as duration of utterance, number and

length of pauses, and F0) [14,16]. There has been a notable
absence of exploration into diverse categories of features,
including energy, spectral, cepstral, and voicing-related features.
Although deep learning has been used to investigate these
features, its complexity often compromises interpretability.
Therefore, there is a need for research to use more interpretable
methods for exploring a richer set of acoustic features for the
detection of MCI. Furthermore, the question of whether
extensive voice recordings are necessary to achieve better
cognitive assessment performance has not been thoroughly
investigated. These issues have significant implications for the
widespread, real-world application of speech as a digital data
modality for cognitive assessment.

Therefore, the aims of this study were to explore the utility of
acoustic features derived from human speech for the
identification of MCI and to assess the impact of the duration
of voice recordings on the predictive performance of MCI
identification.

Methods

Study Population
Initiated in 1948, FHS is a community-based, longitudinal cohort
study. This study initially included 605 FHS participants with
at least one audio recording who were aged 60 years or older
at the time of the NP exam visit where the recordings were
collected. Then, a case-control data set was created consisting
of 100 MCI cases and 100 cognitively normal (CN) controls
and matched on age, sex, and education to control for potential
confounders and ensure the reliability of the study results. MCI
cases were identified through a clinical review conducted by a
panel including at least one neurologist and one
neuropsychologist based on criteria from the DSM-IV
(Diagnostic and Statistical Manual of Mental Disorders [Fourth
Edition]) and the National Institute of Neurological Disorders
and Stroke–Alzheimer Disease and Related Disorders [17]. The
details of the cognitive status determination can be found in
previous studies [15]. The participants were stratified into 6 age
groups, with each group spanning a 5-year interval from 60 to
89 years (eg, 60-64, 65-69, 70-74, 75-79, 80-84, and 85-89
years). Additionally, there was a separate category for
individuals aged 90 years and older. Study participants were
also stratified into 4 education groups: high school nongraduates,
high school graduates, individuals with some college education,
and college graduates. Subsequently, controls were selected
from the data set who matched the cases based on age, sex, and
education. The earliest collected voice recording from each
participant was included in this analysis.

Ethical Considerations
The procedures and protocols of the FHS were approved by the
institutional review board of the Boston University Medical
Campus (FHS is H-32132), and written informed consent was
obtained from all participants.
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Voice Recordings
FHS has been monitoring cognitive status since 1976, which
includes comprehensive NP testing [18]. Since 2005, FHS has
digitally recorded all responses to NP test questions that required
a voice response, which encompasses the spoken interactions
between the tester and the participant. These recordings have
been stored in the .wav format and downsampled to 16 kHz.

This study included digital voice recordings between September
2005 and March 2020.

Machine Learning Pipeline
This study developed a machine learning pipeline that
incorporated speaker diarization, feature extraction, feature
selection, and classification to identify a set of acoustic features
that exhibited strong MCI detection capability (Figure 1).

Figure 1. The machine learning pipeline for MCI detection from voice recordings.
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Speaker Diarization
To accurately analyze the speech of the participants, it is crucial
to distinguish between the participant and the tester and to
determine “who spoke when” [19]. This process is known as
speaker diarization, which involves segmenting the voice
recordings based on the speaker's identity. In this study, the
open-source speaker diarization package, pyannote, was used
to automatically segment each recording into hypothesized
utterances from the tester and the participant [20,21]. Since the
NP administration testing process in FHS is standardized, the
segmented dominant speaker, based on the duration of the voice
recording, was labeled as the participant's speech in this study.
These participant segments were combined for subsequent
analysis.

Feature Extraction
To extract relevant information from the voice recordings,
OpenSMILE software (version 2.1.3; audEERING) [22] and
Praat software (University of Amsterdam) [23] were used, which
facilitated the extraction of a comprehensive set of 6376 features
[24] and 9 features, respectively. The OpenSMILE feature set
used in this study consisted of 65 low-level descriptors (LLDs).
These descriptors included energy, spectral, cepstral, and
voicing-related features. Each recording was divided into
segments of 20 milliseconds using a sliding window approach
with a shifting size of 10 milliseconds [25,26]. The LLDs were
extracted from each segment. By allowing for overlaps between
successive windows, we were able to facilitate the conservation
of information continuity and enable a more precise capture of
the signal's dynamics [25,26]. First-order delta regression
coefficients were calculated for all LLDs. A comprehensive set
of functionals, such as mean, maximum, minimum, SD of
segment length, and linear regression slope, were applied to
extract statistical characteristics from the LLDs and deltas over
the full recordings [27-29]. This process provided a concise
representation of the acoustic features across the entire
recording. As a result of this summarization process, each
recording was represented by a set of 6376 features from
OpenSMILE, capturing essential information about the acoustic
properties of the audio data. The details of the feature generation
process can be found in a prior study [30]. The Praat script was
used to generate 9 features on syllable nuclei and fill pauses in
the voice recordings [31].

Feature Selection
First, z scores were computed for each feature, and those with
an absolute z score greater than 2 were removed as they were
considered as outliers. Then, t tests (2-tailed) were used to
determine whether there was a significant difference in each

feature between the MCI and CN groups. Features that exhibited
a significant difference below a P value threshold of .002 were
then selected to be included in the model.

Classification Model
A random forest model was built using a final set of 29 selected
features, and the performance of the model was evaluated using
10-fold cross-validation. To evaluate the MCI detection
performance of the model, the area under the receiver operating
characteristic curve (AUC), along with the 95% CI, for the
random forest algorithm was obtained. The importance of each
feature was computed using an impurity-based approach [32].

Comparison of Performance Across Different Audio
Recording Lengths
To investigate the impact of the length of the audio recordings
on the MCI classification performance, the first 5, 10, 15, and
30 minutes of the whole recording for each participant were
extracted. Subsequently, the same processing steps were applied
to each extracted audio segment, including speaker diarization,
feature extraction, and the construction of the MCI classification
model.

Results

Cohort Descriptive
The study sample included 200 participants, of whom 100 were
diagnosed with MCI and the other 100 were classified as CN.
In the overall sample, the average age was 74 (SD 6) years, and
46% (92/200) were female, with the sex distribution (females
versus males) equal in both MCI and CN groups. Education in
the overall sample was distributed as follows: 18 participants
(18/200, 9%) did not graduate from high school, 54 participants
(54/200, 27%) were high school graduates, 66 participants
(66/200, 33%) had completed some college, and 62 participants
(62/200, 31%) held at least a college degree.

Feature Selection and Detection Performance
Table 1 presents the 29 acoustic features significantly associated
with cognitive status, selected using a P value threshold of .002.
The table also displays the importance scores of these features
for the classification of MCI, with higher values indicating
greater importance. The most important acoustic feature for
MCI classification was the number of filled pauses, with an
importance score of 0.09. The optimal model was achieved
when including these 29 acoustic features that were based on
using a z score cutoff of 2 and a P value threshold of .002 (AUC
0.87, 95% CI 0.81-0.94; Figure 2).
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Table 1. The optimal acoustic feature set for mild cognitive impairment detection.

P valuebImportanceaDescriptionFeature

<.0010.09Number of filled pausesnrFP

<.0010.08Total time of filled pausestFP

.0010.06Mean of the falling slope of the second MFCCcmfcc_sma[11]_meanFallingSlope

.0010.05Rise time of the signal for magnitude of psychoa-
coustic harmonicity

pcm_fftMag_spectralHarmonicity_sma_risetime

.0010.05Rising time of the second MFCCmfcc_sma[14]_risetime

<.0010.05Absolute position of the minimum value of the
deltas of magnitude of the spectral roll-off point
90%

pcm_fftMag_spectralRollOff90.0_sma_de_minPos

<.0010.05Percentage of time over 25% of the range of varia-
tion of the deltas of the ninth MFCC

mfcc_sma_de[9]_upleveltime25

.0020.04First quartile of the RASTA-style filtered auditory
spectrum, band 25

audSpec_Rfilt_sma[25]_quartile1

.0020.04Standard deviation of the segment lengths of the
first MFCC

mfcc_sma[1]_segLenStddev

<.0010.04Interquartile 2-3 of the deltas of the RASTA-style
filtered auditory spectrum, band 5

audSpec_Rfilt_sma_de[5]_iqr2-3

.0020.04Standard deviation of the delta of magnitude of the
frequency band 250-650 Hz

pcm_fftMag_fband250-650_sma_de_stddev

.0020.04Linear prediction coefficient as one of the deltas of
the second MFCC

mfcc_sma_de[2]_lpc1

.0020.04Root-quadratic mean of the deltas of magnitude of
the frequency band 250-650 Hz

pcm_fftMag_fband250-650_sma_de_rqmean

.0010.03Percentage of time over 75% of the range of varia-
tion of the RASTA-style filtered auditory spectrum,
band 7

audSpec_Rfilt_sma[7]_upleveltime75

.0020.03Maximum of the segment lengths of the second
MFCC

mfcc_sma[2]_maxSegLen

.0020.03Percentage of time over 75% of the range of varia-
tion of the deltas of the RASTA-style filtered audi-
tory spectrum, band 5

audSpec_Rfilt_sma_de[5]_upleveltime75

.0020.03Percentage of time over 90% of the range of varia-
tion of the deltas of the RASTA-style filtered audi-
tory spectrum, band 5

audSpec_Rfilt_sma_de[5]_upleveltime90

.0020.03Percentage of time over 75% of the range of varia-
tion of the deltas of the RASTA-style filtered audi-
tory spectrum, band 7

audSpec_Rfilt_sma_de[7]_upleveltime75

.0020.03Linear prediction coefficient zero of the delta of
the RASTA-style filtered auditory spectrum, band
15

audSpec_Rfilt_sma_de[15]_lpc0

<.0010.03Linear prediction coefficient one of the deltas of
the RASTA-style filtered auditory spectrum, band
15

audSpec_Rfilt_sma_de[15]_lpc1

<.0010.03Linear prediction coefficient 2 of the delta of the
RASTA-style filtered auditory spectrum, band 15

audSpec_Rfilt_sma_de[15]_lpc2

<.0010.03Quadratic regression coefficient 1 of the RASTA-
style filtered auditory spectrum, band 19

audSpec_Rfilt_sma[18]_qregc1

<.0010.03Quadratic regression coefficient 2 of the RASTA-
style filtered auditory spectrum, band 19

audSpec_Rfilt_sma[18]_qregc2

<.0010.02Linear prediction coefficient 3 of the delta of the
RASTA-style filtered auditory spectrum, band 15

audSpec_Rfilt_sma_de[15]_lpc3
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P valuebImportanceaDescriptionFeature

.0020.02Absolute peak range of the sum of the auditory
spectrum

audspec_lengthL1norm_sma_peakRangeAbs

<.0010.01Outlier robust signal range “max-min” represented
by the range of the 1% and the 99% percentile from
the magnitude of the spectral roll-off point 25%

pcm_fftMag_spectralRollOff25.0_sma_pctlrange0-1

<.0010.01Relative peak mean of the delta of the fourth MFCCmfcc_sma_de[4]_peakMeanRel

<.0010.00First quartile of magnitude of the spectral roll-off
point 75%

pcm_fftMag_spectralRollOff75.0_sma_quartile1

<.0010.00Third quartile of magnitude of the spectral roll-off
point 75%

pcm_fftMag_spectralRollOff75.0_sma_quartile3

aImportance was the impurity-based importance score of each acoustic feature that was computed as the mean of accumulation of the impurity decrease
within each tree of the random forest.
bThe P value was calculated using a t test (2-tailed) for each acoustic feature. Only the acoustic features with a P value less than .002 were included in
the model.
cMFCC: Mel-frequency cepstral coefficient.

Figure 2. Receiver operating characteristic (ROC) curve of the random forest model for MCI classification. The mean ROC is depicted by the blue
line, while the shaded gray area surrounding the curve represents confidence intervals, offering insights into the associated uncertainty of the curve.

Comparison of Performance Across Different Audio
Recording Lengths
In addition to the optimal model based on whole recordings (1+
hour), we further examined the MCI detection performance of
various audio recording lengths. In the case of 5-minute audio
segments, we identified 21 acoustic features that exhibited
significant associations with cognitive status (eg, P<.002). The
random forest model constructed using these 21 features
achieved an AUC of 0.79 (95% CI 0.73-0.86). Similarly, for
the 10-minute audio segments, we identified 25 significant

acoustic features and achieved an AUC of 0.81 (95% CI
0.75-0.87). When using 15-minute audio segments, 17 acoustic
features were found to be significantly associated with cognitive
status, leading to an AUC of 0.80 (95% CI 0.75-0.86) from the
random forest model. Lastly, in the case of 30-minute audio
segments, 17 acoustic features were significantly associated
with cognitive status, and the random forest model achieved an
AUC of 0.82 (95% CI 0.76-0.89). The accuracy, sensitivity,
and specificity of these models were presented in Multimedia
Appendix 1. These metrics were computed based on the means
and SDs obtained using 10-fold cross-validation.
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Discussion

Principal Findings
This study developed a machine learning pipeline to optimize
the detection capability of acoustic features for MCI. We
identified 29 acoustic features from 200 FHS participants’voice
recordings collected at their NP exams, which yielded an AUC
of 87% in classifying those with normal cognition versus MCI.
Our findings highlight the significant potential of acoustic-based
features of human speech as an easily collectible and accurate
data modality for early ADRD detection.

Detecting ADRD early in the disease course and implementing
timely interventions to slow its progression continue to be the
primary strategies for addressing this condition. The method
developed in this study using acoustic features for MCI
monitoring aligns well with this goal. Specifically, despite recent
FDA approvals for aducanumab and lecanemab as
disease-modifying treatments for ADRD, concerns have
emerged about the inclusivity of the trial population and the
equitable distribution of benefits to all potential beneficiaries
[33]. The acoustic feature-based machine learning approach in
this study addresses the limited early detection capability of
traditional NP tests for asymptomatic individuals, as well as the
challenges associated with the cost and time-consuming nature
of cerebrospinal fluid and blood-based biomarkers [34]. Speech
data collection presents a noninvasive and accessible approach
for cognitive health monitoring. This motivates potential future
applications where passive voice collection tools, like hearing
aids, could be used to gather such data. The use of nonsemantic,
acoustic features of speech offers practical advantages from the
perspective of data privacy and security. Unlike linguistic
features, which may raise concerns around individual privacy
and confidentiality, acoustic features can be derived without
the need for direct access to sensitive personal information. The
analysis based on acoustic features reduces privacy concerns
and ensures that confidential data remain protected or
unidentifiable during the cognitive monitoring process.

Studies examining discourse patterns in participants with ADRD
have consistently observed difficulties in word retrieval, less
efficient speech, and a notable increase in both the frequency
and duration of pauses when their speech is compared to that
of healthy adults [35,36]. Notably, in this study, among the
features considered crucial for model performance, those related
to filled pauses, such as the number of filled pauses and the
total time of filled pauses, played a significant role. Filled
pauses, such as “um” or “er,” are nonlexical vocalizations. In
individuals with dementia, pauses in speech are frequently
longer and more frequent, which may indicate challenges with
semantic and lexical decision-making, cognitive load, and
familiarity with topics [36,37]. This study further highlights
that pausing in the speech of individuals with dementia is often
considered a dysfluency, serving as a behavioral hallmark that
may signify difficulties in social interactions [38]. Our findings
are also consistent with previous studies that have examined
acoustic-based speech markers in older adults and found good
predictive accuracy in identifying those with MCI as compared
to being CN [39,40]. Other studies have also found temporal

parameters, including prosodic rate and spectrum features, such
as Mel-frequency cepstral coefficients, to predict those with
MCI or early ADRD [41,42]. These findings offer a research
target for further understanding speech issues and mechanisms
related to cognitive health. By integrating acoustic analysis into
routine clinical assessments, we can potentially enhance current
diagnostic tools. This integration provides clinicians with
additional quantitative data to support their diagnostic decisions
and monitoring of disease progression. Furthermore, the acoustic
features identified in this study hold promise for their potential
application in large-scale screening programs aimed at
identifying individuals at risk of developing MCI. Such
screening tools, leveraging these features, could offer a
cost-effective and scalable approach, enabling a broader
population reach and early intervention strategies. Thus, these
findings not only contribute to our scientific understanding but
also have practical implications for improving early detection
of cognitive impairment.

A unique contribution of our study that has not been
well-examined in previous studies is the impact of the speech
recording duration on the model performance. Although the full
recording yielded the highest AUC (87%), we did not observe
substantial differences in model performance based on varying
voice recording lengths (eg, 5, 10, 15, and 30 minutes). This
finding holds important implications for future studies that
involve collecting voice recordings from participants, suggesting
that achieving good predictive performance may not require
collecting lengthy audio data. It underscores the potential to
minimize participant burden and time spent collecting data,
while preserving the data's analytical quality. Other strengths
of this study include using a community-based sample within
a controlled environment for the voice recordings taken during
the NP exams. Furthermore, this study uses highly interpretable
methods throughout, from feature selection to predictive model
construction, achieving good MCI prediction capability. This
sets a benchmark for future research attempting more complex
analytical approaches. In the future, we can compare complex
machine learning methods to fully investigate how to balance
the relationship between interpretability and predictive
performance.

Important limitations, however, include the inability to account
for or investigate the impact of other conditions or risk factors,
such as depression [43], that may influence speech patterns
within the analysis. Due to the lack of available data on
depression at the time of voice recording data collection in FHS,
we did not investigate the relationship between depression,
cognition, and acoustic features in this study. Future research
will be essential to delve into this relationship using more
comprehensive cohort data sets. Additionally, our sample
consisted mostly of individuals who were White or of European
descent, which could potentially limit the generalizability of
our findings to other demographic groups. We also recognize
that cognition and MCI are not static entities and that individuals
with MCI can be considered to be CN at a later point in time
[44]. Therefore, it may be possible that some participants were
misclassified in terms of their cognitive status in our sample.
For example, we acknowledge that the use of the National
Institute of Aging–Alzheimer Association (NIA-AA) criteria

JMIR Aging 2024 | vol. 7 | e55126 | p. 7https://aging.jmir.org/2024/1/e55126
(page number not for citation purposes)

Ding et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


[45] offers advantages over the National Institute of
Neurological and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association and
DSM-IV criteria, which were used in this study, to ascertain
individuals with MCI since it can provide a more comprehensive
and inclusive approach, incorporating multiple pathological
features. Additionally, the NIA-AA criteria use objective
biomarkers and imaging techniques, enhancing diagnostic
accuracy and reproducibility. The voice data used in this study
were collected in quiet environments, which to some extent
limits the widespread applicability of the study results in
different environments, such as in-home settings.

To address these limitations, we plan to expand our research in
several ways. First, we aim to include more diverse populations
in future studies to assess whether the same acoustic features
or different ones yield similar results in distinguishing MCI
from normal cognition across various demographic groups.
Future research should consider using cohorts with biomarker
evidence of neurocognitive disorders for further validation of
the findings. Additionally, we will explore the inclusion of other
medical conditions or factors that may impact model

performance, broadening our understanding of how speech
patterns can be indicative of cognitive health. Specifically, we
recognize that emotions may confound the relationship between
speech patterns and cognition. Exploring the detection capability
of MCI using voice collected in more real-life environments is
another direction for future research. Finally, as we continue to
advance in the development of speech-based screening and
diagnostic tools, it is crucial to proactively address privacy and
data security concerns. While our focus in this paper is primarily
on the technical aspects of acoustic feature analysis for cognitive
assessment, we recognize the importance of considering the
broader societal implications of deploying such technologies
in open source or free-market contexts. Safeguards must be
implemented to ensure that individuals' privacy rights are
respected and that their data are used responsibly and ethically.

Conclusions
This study demonstrated the potential for accurate identification
of MCI using nonsemantic, acoustic speech features. Our
research benefits from a well-defined sample and comprehensive
speech data collected during NP exams, which have been
rigorously analyzed.
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NIA-AA: National Institute of Aging–Alzheimer Association
NP: neuropsychological
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