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Abstract
Background: Myocardial injury after noncardiac surgery (MINS) is an easily overlooked complication but closely related to
postoperative cardiovascular adverse outcomes; therefore, the early diagnosis and prediction are particularly important.
Objective: We aimed to develop and validate an explainable machine learning (ML) model for predicting MINS among older
patients undergoing noncardiac surgery.
Methods: The retrospective cohort study included older patients who had noncardiac surgery from 1 northern center and 1
southern center in China. The data sets from center 1 were divided into a training set and an internal validation set. The
data set from center 2 was used as an external validation set. Before modeling, the least absolute shrinkage and selection
operator and recursive feature elimination methods were used to reduce dimensions of data and select key features from all
variables. Prediction models were developed based on the extracted features using several ML algorithms, including category
boosting, random forest, logistic regression, naïve Bayes, light gradient boosting machine, extreme gradient boosting, support
vector machine, and decision tree. Prediction performance was assessed by the area under the receiver operating characteristic
(AUROC) curve as the main evaluation metric to select the best algorithms. The model performance was verified by internal
and external validation data sets with the best algorithm and compared to the Revised Cardiac Risk Index. The Shapley
Additive Explanations (SHAP) method was applied to calculate values for each feature, representing the contribution to the
predicted risk of complication, and generate personalized explanations.
Results: A total of 19,463 eligible patients were included; among those, 12,464 patients in center 1 were included as the
training set; 4754 patients in center 1 were included as the internal validation set; and 2245 in center 2 were included as the
external validation set. The best-performing model for prediction was the CatBoost algorithm, achieving the highest AUROC
of 0.805 (95% CI 0.778‐0.831) in the training set, validating with an AUROC of 0.780 in the internal validation set and
0.70 in external validation set. Additionally, CatBoost demonstrated superior performance compared to the Revised Cardiac
Risk Index (AUROC 0.636; P<.001). The SHAP values indicated the ranking of the level of importance of each variable,
with preoperative serum creatinine concentration, red blood cell distribution width, and age accounting for the top three. The
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results from the SHAP method can predict events with positive values or nonevents with negative values, providing an explicit
explanation of individualized risk predictions.
Conclusions: The ML models can provide a personalized and fairly accurate risk prediction of MINS, and the explainable
perspective can help identify potentially modifiable sources of risk at the patient level.
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Introduction
Myocardial injury after noncardiac surgery (MINS), a
prominent postoperative cardiovascular complication, occurs
in approximately 8% to 22% of patients overall [1]. The
Vascular Events in Noncardiac Surgery Patients Cohort
Evaluation (VISION) study showed that MINS was the
second most common cause of short-term mortality among
8 perioperative adverse events [2,3]. MINS is also reportedly
an independent predictor of 1-year or long-term mortality
[4]. Nevertheless, 90% of the MINS events are unrecognized
because most patients are not presenting ischemic symptoms,
and a minority of MINS cases are diagnosed by electrocardio-
gram abnormalities, involving typical chest pain symptoms
[5]. Therefore, early prediction and identification of patients
at higher risk for MINS is critically important for enhanc-
ing the outcomes of these underappreciated complications in
older patients.

The most common prediction tool available to identifica-
tion of high-risk patients is Revised Cardiac Risk Index
(RCRI) [6], a universally used screening tool due to ease
of use but with poor performance in other validation sets.
American College of Surgeons National Surgeons Qual-
ity Improvement Program (NSQIP) [7] and Myocardial
Infarction or Cardiac Arrest (MICA) surgical risk calculators
[8] were subsequently developed with higher accuracy than
RCRI, designed to predict more severe outcomes, including
death and myocardial infarction, instead of predicting MINS.
Another prediction model was derived from the MANAGE
cohort [9], using 3 preoperative risk factors and not con-
sidering intraoperative factors. ML has been proven more
powerful than conventional logistic regression because it can
overcome the limitations of statistical methods and even
create personalized risk predictions [10]. Recently, two novel
ML models were reported to predict the occurrence of MINS.
Oh et al [11] developed a machine learning (ML) model and
achieved an area under the receiver operating characteristic
(AUROC) curve of 0.78 using 12 variables. However, the
population heterogeneity and lack of external validation may
limit its generalization to older patients. Nolde et al [12]
applied single-layer and multiple-layer variables to differ-
ent models and achieved the highest AUROC of 0.77 and
accuracy of 0.70. Despite comprehensive included variables,
anesthesiologists and surgeons are unable to distinguish
modifiable risk factors and make targeted interventions to
improve outcomes.

Currently, no validated and accurate risk prediction tools
for MINS are in use. Therefore, the purpose of our research

was to develop and validate an ML model that predicts
MINS risk based on surgery data available at admission and
during the intraoperative period. The model also used Shapley
Additive Explanations (SHAP) method to interpret results,
allowing for targeted interventions to modify risk factors and
support clinical decision-making.

Methods
Patient Cohort
We collected data anonymously from our electronic health
record (EHR) system, which was an integrated clinical
database containing data on all patients who were admitted
to hospitals. The data set was derived from older patients
(defined as aged ≥65 years) undergoing noncardiac surgery
from January 2017 to August 2019, and the internal valida-
tion data set was derived from patients enrolled from July
2020 to July 2021 in center 1 (Chinese People's Liberation
Army General Hospital in northern China). We also included
patients who had noncardiac surgeries in center 2 (Nan-
fang Hospital of Southern Medical University in southern
China) from January 2021 to October 2021 as an external
data set. The uniform exclusion criteria were as follows:
excluding patients with the American Society of Anesthesiol-
ogists (ASA) grade V, a short operation interval (scheduled
for more than 1 surgery within a week), with nongeneral
anesthesia, low-risk surgery (eg, outpatient surgery, hystero-
scopic surgery, or body surface surgery), and a short surgery
duration (≤30 min). Patients undergoing either elective or
emergency surgery were eligible for participation.
Ethical Considerations
The study was approved by the Ethics Committee Board
of the First Medical Center of Chinese People's Liberation
Army (S2019-311-02), and the requirement for informed
consent was waived because this was an observational study
with minimal risk for patients. This study conforms to
the principles outlined in the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) statement.
Data Processing
Variables from the following categories were collec-
ted: demographics, preoperative comorbid conditions and
medications, preoperative laboratory results, vital signs, and
intraoperative information. For laboratory testing variables
with multiple measurements, we used only the last preop-
erative measurements taken within 1 week before surgery
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for analysis. A total of 118 variables from the electronic
database were extracted and listed in Table S1 in Multimedia
Appendix 1. Additional extraction details are displayed in
supplementary material 1 in Multimedia Appendix 1. The
least absolute shrinkage and selection operator (LASSO)
method, which could solve high dimensionality and multi-
collinearity between variables was used. After the initial
screening, recursive feature elimination (RFE), combined
with 5-fold cross-validation, was adopted to rescreen and
select the best hyperparameters [13]. After final screening,
missing values were imputed using multiple imputation [14].
Outcome
The primary end point was the incidence of MINS within
the first 30 days after surgery. According to the scientific
statement from the American Heart Association [15], MINS
was defined as at least 1 postoperative high-sensitivity
troponin T of 20 to <65 ng/L with an absolute change ≥5 ng/L
or a high-sensitivity troponin T concentration ≥65 ng/L; or at
least 1 postoperative measurement of troponin I concentration
exceeding the uniform 99th percentile due to a presumed
ischemic etiology irrespective of the presence or absence of
clinical symptoms and electrocardiographic changes within
the first 30 days after noncardiac surgery.
ML Models
Linear and nonlinear ML models were applied, including
category boosting (CatBoost) [16], random forest [17],
logistic regression [18], naïve Bayes [19], light gradi-
ent boosting machine (LightGBM) [20], extreme gradient
boosting (XGBoost) [21], support vector machine [22], and
decision tree [23,24]. The above algorithms were imple-
mented using the Scikit-learn, LightGBM, XGBoost, and
CatBoost Python packages. Each method is described in
detail in supplementary material 2 in Multimedia Appendix
1.
Model Performance and Evaluation
Because of the imbalance between the positive and negative
events, the random under-sampling technique was used to
avoid overfitting by the rationale of eliminating samples
from the majority class to make the majority class equal
to the minority class, which is a simple but effective way
to treat imbalanced data sets. Eight ML models with final
indicators were developed to predict outcomes. The AUROC
was used as the evaluation standard of the model perform-
ance, and classifiers with larger AUROCs were considered
to have better prediction efficiency, and the best-performing
ML model was chosen by its AUROC. We also calculated
the 95% CIs for each model using the advanced bootstrap
method. Similarly, the related sensitivity, specificity, and
accuracy were assessed in models conducted. Appropriate
figures were produced for these metrics in the best fitting
model, including a precision-recall curve and calibration
curve, to show the average precision and difference between

the predicted risk and actual risk. The AUROCs were also
calculated in the validation sets and in the RCRI model to
compare the efficacy.
Model Interpretation
The SHAP method [24] was used to analyze the importance
of features in the model because of the limited interpretability
in the ML algorithm. SHAP was used as a scoring metric
for feature contributions, through determining the difference
between the predicted values with and without each feature
for all combinations. The greater the influence a particular
value of a sample has on the composition of the model, the
farther that point deviates from 0 on the x-axis. Using SHAP
values and a summary plot, it is thus possible to deter-
mine which features have a significant effect on the predic-
tion and whether this contribution is positive or negative.
Moreover, SHAP facilitates individual-level risk prediction
and stratification, which is straightforward and understanda-
ble by doctors.
Statistical Analysis
For the baseline data analysis, continuous characteristics were
evaluated by the Shapiro-Wilk normality test and analyzed
by either the 2-tailed t test for normally distributed varia-
bles or the Mann-Whitney U test for skewed data and were
reported as means or medians. Categorical variables were
compared using the chi-square test or Fisher exact test and
were reported as proportions. As this was a retrospective
exploratory study, no attempt was made to estimate the
sample size of the study; instead, all eligible patients in the
database were included to maximize the statistical power. For
all analyses, a 2-sided P value <.05 was considered statisti-
cally significant. All analyses were performed using Python
(version 3.6; Python Software Foundation).

Results
Characteristics
In total, we retrospectively enrolled 12,464 patients (median
age 69, IQR 67-74 years; n= 6793, 54.5% male) who
met the inclusion criteria in center 1 from January 2017
to August 2019 as the training data set. Finally, 884
(7.1%) patients developed postoperative 30-day MINS among
12,464 patients. The flowcharts of patient enrollment in the
training data set are shown in Figure 1. In the training
data set, patients with postoperative MINS tended to be
older; have more chronic conditions, such as hypertension,
diabetes mellitus, and cerebrovascular diseases; and have
more abnormal laboratory test values. The differences in the
demographics and other characteristics between patients with
and without MINS are summarized in Table 1. The flowcharts
of validation data sets are shown in Figure S1 in Multimedia
Appendix 1.

JMIR AGING Liu et al

https://aging.jmir.org/2024/1/e54872 JMIR Aging 2024 | vol. 7 | e54872 | p. 3
(page number not for citation purposes)

https://aging.jmir.org/2024/1/e54872


Table 1. Baseline characteristics of patients with or without myocardial injury after noncardiac surgery (MINS) at center 1 in the training set.
Variable Non-MINS (n=11,580) MINS (n=884) Total (n=12,464)
Age (years), median (IQR) 69 (67-73) 72 (68-78) 69 (67-74)
Hypertension, n (%) 5225 (45.1) 500 (56.6) 5725 (45.9)
Coronary heart disease, n (%) 1282 (11.1) 206 (23.3) 1488 (11.9)
Cerebrovascular disease, n (%) 836 (7.2) 140 (15.8) 976 (7.8)
Renal insufficiency, n (%) 117 (1) 50 (5.7) 167 (1.3)
β-blockers, n (%) 944 (8.2) 140 (15.8) 1084 (8.7)
Diuretics, n (%) 578 (5) 120 (13.6) 698 (5.6)
Anticoagulants, n (%) 845 (7.3) 164 (18.6) 1009 (8.1)
Hemoglobin (g/L), median (IQR) 131 (120-142) 122 (105-136) 131 (120-142)
RBCa (109), median (IQR) 4.32 (3.96-4.65) 4.04 (3.54-4.45) 4.3 (3.94-4.64)
SCrb (umol/L), median (IQR) 71.2 (60.9-82.9) 78.9 (64.8-98.175) 71.6 (61.1-83.7)
RDWc (%), median (IQR) 12.8 (12.3-13.4) 13.3 (12.6-14.4) 12.8 (12.3-13.4)
Albumin (g/L), median (IQR) 40.15 (37.8-42.7) 38.2 (34.7-41.1) 40 (37.6-42.6)
Blood glucose (mmol/L), median (IQR) 5.08 (4.62-5.85) 5.46 (4.77-6.63) 5.1 (4.63-5.9)
Lymphocyte count (109), median (IQR) 0.3 (0.24-0.36) 0.24 (0.18-0.32) 0.3 (0.24-0.36)
Surgery duration (min), median (IQR) 144 (90-205) 180 (120-260) 145 (93-210)
ASAd grade, n (%)

I 116 (1) 6 (0.7) 122 (1)
II 9380 (81) 485 (54.9) 9865 (79.1)
III 2034 (17.6) 340 (38.5) 2374 (19)
IV 50 (0.4) 53 (6) 103 (0.8)

Emergency surgery, n (%) 207 (1.8) 76 (8.6) 207 (1.8)
Colloid input (mL), median (IQR) 500 (0-500) 500 (0-1000) 500 (0-500)
Crystalloid input (mL), median (IQR) 1600 (1100-2100) 2000 (1300-2600) 1600

(1100-2100)
Blood loss (mL), median (IQR) 100 (30-200) 150 (50-300) 100 (50-200)
Blood transfusion, n (%) 1044 (9.0) 222 (25.1) 1266 (10.2)
Duration of intraoperative hypotension (min), mean (SD) 16.85 (37.8) 29.91 (57.6) 17.78 (42.3)

aRBC: red blood cell.
bSCr: serum creatinine.
cRDW: red blood cell distribution width.
dASA: American Society of Anesthesiologists.

Figure 1. The flowchart of participant selection in the training data set. ASA: American Society of Anesthesiologists.
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Feature Selection
Through LASSO, we found that the optimal number of
features for model prediction was 27 (Figure 2A). The
RFE method was used to repeat the model building and

feature selecting procedure, finally resulting in 25 features by
excluding myocardial infarction history and facility (Figure
2B). The features selected by LASSO and RFE are listed in
the supplementary material 1 in Multimedia Appendix 1.

Figure 2. Feature selection by least absolute shrinkage and selection operator (LASSO) and recursive feature elimination (RFE) with 5-fold
cross-validation. (A) Through LASSO, the filtered variables were as follows: renal insufficiency, diuretics, cerebrovascular disease, β-blockers,
anticoagulants, hypertension, blood transfusion, coronary heart disease, colloid, blood pressure monitoring method, American Society of Anesthesiol-
ogists grades, crystalloid, hemoglobin, surgery duration, sodium, age, lymphocyte, anesthesia duration, duration of intraoperative hypotension, red
blood cell, glucose, red blood cell distribution width, blood loss, albumin, serum creatinine, facility, and myocardial infarction. (B) Recursive feature
elimination with a 5-fold cross-validation method filtered features again and removed 2 parameteres (facility and myocardial infarction), leaving 25
parameters as mentioned above. AUC: area under the curve.

Model Performance and Comparison
The training data set from center 1 was used to develop the
forecast models, and MINS was predicted with an AUROC
of 0.805 (95% CI 0.778‐0.831) by the best-performing
CatBoost method, compared with the other 7 algorithms.
CatBoost revealed a relatively high accuracy (0.730, 95%
CI 0.716‐0.745), sensitivity (0.747, 95% CI 0.694‐0.797),
and specificity (0.729, 95% CI 0.714‐0.744). The overall
AUROC by all algorithms is shown in Figure 3A. The
average accuracy, sensitivity, and specificity calculated by
all the algorithms are summarized in Table S2 in Multimedia
Appendix 1. The model was well calibrated with a Brier score

loss of 0.18; its calibration plot is depicted in Figure S2 in
Multimedia Appendix 1.

To verify the stability of our model, prediction was
validated with an AUROC of 0.794 in the internal validation
set of center 1 and 0.70 in the external validation set of
center 2, by the method of CatBoost, and their AUROCs
are displayed in the Figure 3B and 3C. Incorporating the 6
parameters in the RCRI model into the validation data set,
we observed a poor prediction performance, with an AUROC
of 0.636, which was inferior to that of our machine learning
models (P<.001) (Figure 3D).
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Figure 3. The receiver operating characteristics curve of different models. (A) Eight different machine learning prediction models for myocardial
injury after noncardiac surgery using the training data set from center 1. (B) Model performance in the internal validation data set from center 1. (C)
Model performance in the external validation data set from center 2. (D) Performance of 6 indicators from Revised Cardiac Risk Index (RCRI) in the
training data set. AUC: area under the curve. ROC: receiver operating characteristic.

Model Interpretation
Assisted by the development of explainable ML models,
the SHAP values for the prediction of MINS were cal-
culated. Figure 4A shows the 20 most influential factors
ranked by the average absolute SHAP value, and Figure
4B shows their effect values and interpretations. In the
graph, the red dots represent high risk, and the blue dots
represent low risk. A higher serum creatinine, higher red
blood cell distribution count, older age, increased blood
loss, higher blood glucose concentration, higher ASA grade,
longer duration of intraoperative hypotension, longer surgery
duration, greater infusion of crystalloids or colloids, lower
red blood cell count, lower lymphocyte count, lower albumin,
lower sodium, and lower hemoglobin were associated with a
higher predicted probability of postoperative MINS. Invasive
arterial pressure monitoring, blood transfusion, preexisting
coronary heart disease, and preexisting hypertension also
increased the event risk.

In addition, a visualization method [25] was used to
make patient-level prediction interpretations of the model.
We provided 2 examples to illustrate this in Figure 5. An
81-year-old patient with ASA grade III underwent surgery
with a nearly 2.5-hour duration of anesthesia and developed
MINS. His preoperative laboratory test values are listed in
Figure 5A. The arrows indicate the influence of each feature
on prediction; the red arrows suggest an increased risk of the
outcome, and the blue arrows suggest a decreased risk. The
predicted score of MINS (approximately 3.11) was 30 times
higher than the base value predicted by the model (approx-
imately 0.1). Conversely, the second patient, with preopera-
tive normal laboratory measurements, intraoperative blood
transfusion, blood loss of 400 mL, and intraoperative short
hypotension, did not experience MINS, with a predicted score
of −0.72, lower than the base value of 0.1.
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Figure 4. The model’s interpretation. (A) Bar summary of the most important 20 features according to the mean Shapley Additive Explanations
(SHAP) values. A higher value of a feature has a greater effect on the model’s composition, indicated by how far a point deviates from 0 on the
x-axis. (B) Summary of the most impactful features with interpretation. The red dots represent the high-risk value, and the blue dots represent the
low-risk value. ASA: American Society of Anesthesiologists; Na: sodium; HGB: hemoglobin; BP: blood pressure; GLU: glucose; RDW: red blood
cell distribution width; SCR: serum creatinine.

Figure 5. The composition risk of individualized predictions for 2 patients. A blue arrow indicates that a factor reduced the risk of myocardial
injury after noncardiac surgery (MINS), whereas a red arrow indicates it increased the risk. (A) An 81-year-old patient with American Society
of Anesthesiologists (ASA) grade III underwent surgery with a nearly 2.5-hour duration of anesthesia and developed MINS. (B) A patient with
preoperative normal laboratory measurements, with intraoperative blood transfusion, blood loss of 400 mL, and intraoperative short hypotension did
not have MINS. ASA: American Society of Anesthesiologists; BP: blood pressure; GLU: glucose; MAP: mean artial pressure; RBC: red blood cell;
RDW: red blood cell distribution width; SCR: serum creatinine.

Discussion
Principal Findings
In this cohort study, we used ML approaches with multi-
ple demographic and clinical data from EHR to predict the
occurrence of postoperative myocardial injury. The CatBoost
algorithm achieved the best predictive performance in the
training data set and was validated in both the internal and
external data sets, with high sensitivity and specificity, also
superior to the classic RCRI model. The SHAP method also
provided information on the contribution of each variable
toward an event or nonevent, quantifying the association
between variables and patient outcomes of a single patient.
Our results aim to assist in the accurate and timely identifica-
tion of older patients at high risk of postoperative myocardial
injury, enhancing clinical decision support.

The RCRI is considered a conventional predictive model
and has been widely used for more than 20 years [6].

Although it has the merit of simplicity with 6 indicators, its
use is limited in clinical practice because of its low discrimi-
native ability and lack of specific and sensitive biomarkers for
MINS [26]. In our study population, the RCRI model could
only achieve an AUROC of 0.636, significantly lower than
our model projections. The NSQIP and MICA surgical risk
calculators were validated to better estimate cardiovascular
risk compared to the RCRI; however, the NSQIP and MICA
scores provided only fair discrimination with a C-statistic
of 0.70 for postoperative myocardial infarction and MINS
outcomes in another external validation research [27]. Our
study did not compare our models with the NSQIP surgical
risk calculator and MICA as several key indicators needed
to be collected prospectively and were not available in our
data. Another prediction model by logistic regression was
derived from the MANAGE cohort, using only 3 preopera-
tive risk factors, not accounting for intraoperative factors,
which might be important contributors to adverse outcomes
[9]. Therefore, neither of these widely used assessment tools
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performed by logistic regression statistics has yet been shown
to have sufficient predictive strength and applicability.

Recent work has highlighted the strengths of ML
algorithms for predicting postoperative complications
compared to classic statistical analyses because they can
eliminate nonlinear interactions between clinical variables
and resolve the imbalance problem. Oh et al [11] devel-
oped the prediction model using extreme gradient boosting
algorithm and achieved an AUROC of 0.78 through 12
variables. There were 5 variables coinciding in Oh’s model
and ours: operation duration, age, history of chronic kidney
disease, history of coronary artery disease, and intraopera-
tive red blood cell transfusion. Other inconsistent variables
were due to medication differences, uncollected variables,
and number of events. Furthermore, there were 6811 patients
selected from 43,019 patients, and the high exclusion rate
(84%) and high incidence of MINS (22%) caused a high risk
of selection bias in the study. The potential risk factors in
Oh’s study may not be generalizable to our data set, which
is including older patients. Another ML model was devel-
oped by Nolde et al [12], through applying single-layer and
multiple-layer variables to different models and achieving the
highest AUROC of 0.71. However, the model with optimal
prediction efficacy also included information of postoperative
vital parameters and oxygenation within 1‐4 days, making it
more challenging for anesthesiologists to identify high-risk
patients after procedures immediately. Moreover, despite the
presentation of variable importance ranking, anesthesiologists
and surgeons are were still unable to distinguish modifia-
ble risk factors and make targeted interventions to improve
outcomes.

In our study, we used several ML approaches based on
different principles and noticed that the prediction efficacy
of each approach did not greatly differ from each other,
suggesting the promising performance of all advanced ML
algorithms for the relatively small and low-dimension data.
Logistic regression, representing the simplest of all clas-
sifiers, was chosen to create a reference model against
the performance of other machine models. Based on this
principle, the CatBoost and random forest demonstrated
relatively good prediction results in our data set and CatBoost
was chosen for further analysis. We also noticed that the
naïve Bayes algorithm provided the highest accuracy but
with the disadvantage of worse classification performance.
The reason for this result might be due to different models
dealing with sample classification in different ways. The
accuracy index considered only the percentage of correct
classification, whereas the AUROC index reflected the ability
of a classification model to discriminate between positive
and negative samples, taking into account the set threshold’s
influence on prediction results. Although similar accuracy can
be achieved, the discrimination of being misjudged was not
considered while the AUROC index was used as a comple-
mentary measure. Based on these points, we conclude that
the CatBoost algorithm demonstrates a better predictive effect
for MINS due to its highest AUROC, much faster speed, and
using default parameters.

In addition, our model not only achieved good predic-
tive effect for MINS but also explored a model-agnostic
interpretation technique on how potential variables contrib-
ute to adverse outcomes, which was not explored in previ-
ous studies. The SHAP values confirmed the importance
of variables, reflecting their positive or negative roles.
The top important features contributing to adverse cardio-
vascular complications included preoperative renal dysfunc-
tion, inflammatory status, glucose metabolism, anemia, and
electrolyte disturbances. The intraoperative hemodynamic and
other physiological changes are also important contributors
to the occurrence of MINS, including more blood loss,
prolonged surgery duration, hypotension, greater infusion
of fluids, and blood transfusion [28-34]. The SHAP plot
presentats predictions for a single sample in which each
feature is a value that increases or decreases the predic-
tion efficacy and its contribution level, providing intuitive
explanations for what led to a patient’s predicted risk and
quantitative prediction at individual levels. For example, in
our first sample patient, we recognized that his high pre-
operative blood glucose concentration played the greatest
negative role in the development of complications. Similarly,
in the second sample, intraoperative blood transfusion was
considered the strongest risk factor for postoperative MINS.
Although the complications are unavoidable mainly due to
patients’ comorbidities and surgical stimuli, some variables
are modifiable. Identifying specific patient characteristics that
predispose them to at-risk status can prompt early targeted
prevention or treatments, such as administering insulin to
patients with a high blood glucose concentration or taking
measures to reduce intraoperative blood loss, which may
improve the prognosis. The individual risk estimates may
provide the modifiable factors through the SHAP method,
which was clinically meaningful and can be used in multiple
surgical scenarios.
Limitations
There are limitations to our study. While the model showed
with high accuracy, it was highly dependent on data from
EHR. When one indicator was missing, the true risk of
adverse outcomes for the patient could not be reflected.
Second, the surgical patient data were obtained retrospec-
tively from 2 hospitals, which may have introduced bias,
as some potential candidates’ data may not be collected in
the EHR. Although external validation was conducted in our
model, more validation centers are warranted to support the
extrapolation and creditability. Third, some variables were
excluded before feature selection, especially those labora-
tory tests not rountinely measured, such as brain natriu-
retic peptide and C-reactive protein, leading to omission
and neglect of important indicators. Lastly, this study only
enrolled older Chinese patients who had noncardiac surgeries
from 1 northern center and 1 southern center, and whether
the results can be extrapolated to other populations remains
uncertain.
Conclusions
These findings suggest that the ML technique, combining the
preoperative and intraoperative variables for predicting MINS
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with a model-agnostic interpretation, is a potentially efficient
management tool for practitioners to guide their postoperative
care planning and management.
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