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Abstract

Background: Alzheimer disease and related dementias (ADRD) rank as the sixth leading cause of death in the United States,
underlining the importance of accurate ADRD risk prediction. While recent advancements in ADRD risk prediction have primarily
relied on imaging analysis, not all patients undergo medical imaging before an ADRD diagnosis. Merging machine learning with
claims data can reveal additional risk factors and uncover interconnections among diverse medical codes.

Objective: The study aims to use graph neural networks (GNNs) with claim data for ADRD risk prediction. Addressing the
lack of human-interpretable reasons behind these predictions, we introduce an innovative, self-explainable method to evaluate
relationship importance and its influence on ADRD risk prediction.

Methods: We used a variationally regularized encoder-decoder GNN (variational GNN [VGNN]) integrated with our proposed
relation importance method for estimating ADRD likelihood. This self-explainable method can provide a feature-important
explanation in the context of ADRD risk prediction, leveraging relational information within a graph. Three scenarios with 1-year,
2-year, and 3-year prediction windows were created to assess the model’s efficiency, respectively. Random forest (RF) and light
gradient boost machine (LGBM) were used as baselines. By using this method, we further clarify the key relationships for ADRD
risk prediction.

Results: In scenario 1, the VGNN model showed area under the receiver operating characteristic (AUROC) scores of 0.7272
and 0.7480 for the small subset and the matched cohort data set. It outperforms RF and LGBM by 10.6% and 9.1%, respectively,
on average. In scenario 2, it achieved AUROC scores of 0.7125 and 0.7281, surpassing the other models by 10.5% and 8.9%,
respectively. Similarly, in scenario 3, AUROC scores of 0.7001 and 0.7187 were obtained, exceeding 10.1% and 8.5% than the
baseline models, respectively. These results clearly demonstrate the significant superiority of the graph-based approach over the
tree-based models (RF and LGBM) in predicting ADRD. Furthermore, the integration of the VGNN model and our relation
importance interpretation could provide valuable insight into paired factors that may contribute to or delay ADRD progression.

Conclusions: Using our innovative self-explainable method with claims data enhances ADRD risk prediction and provides
insights into the impact of interconnected medical code relationships. This methodology not only enables ADRD risk modeling
but also shows potential for other image analysis predictions using claims data.
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Introduction

Background
Alzheimer disease and related dementias (ADRD) currently
rank as the sixth leading cause of death in the United States [1].
Currently, 47 million people live with ADRD globally [2]. By
the year 2050, the prevalence of dementia is expected to triple
worldwide [3]. These alarming statistics emphasize the pressing
need for accurately predicting ADRD risk, which holds immense
significance for several reasons. First, it enables early detection
and diagnosis, which can facilitate timely interventions and
treatment plans that have the potential to slow down disease
progression, improve patient outcomes, and enhance the quality
of life for individuals affected by ADRD. Second, it also plays
a crucial role in advancing research and drug development. It
provides valuable insights into disease progression, risk factors,
and potential therapeutic targets. By identifying individuals at
high risk of developing ADRD, researchers can conduct targeted
studies and clinical trials and explore preventive measures to
mitigate the impact of this debilitating disease. Third, early
prediction and intervention may help reduce health care costs
associated with ADRD. By identifying individuals at risk and
providing appropriate care, the burden on the health care system
can be lessened. Nevertheless, predicting ADRD risks is an
intricate task due to its nature as a long-term chronic disease
with multifaceted underlying causes.

In the context of ADRD risk prediction, the conventional
approach predominantly involves using machine learning (ML)
models with medical imaging data as primary resources to
achieve commendable success [4-6]. However, it is important
to acknowledge that not all patients undergo routine clinical
imaging tests during their regular visits, rendering medical
imaging data less accessible for certain individuals. In contrast,
claims data provide a more readily available data source for the
ML predictors. Hence, the development of a valuable and easily
trainable risk prediction tool necessitates the use of existing
claims data as the primary input for prediction. This approach
not only enhances the model’s generalizability but also
facilitates its adaptation to other diverse data sources.

In recent years, the emergence of graph-structured data has
received significant interest within the realm of deep learning
[7-11]. Graphs are composed of nodes and relationships,
resulting in the representation and analysis of intricate
connections and patterns within the data they encapsulate. They
also offer a unique combination of topological structure and
individual features, which enables a rich source of information
[12,13]. To analyze and model the complex relations of
interconnected graph data, graph neural networks (GNNs) have
emerged as a powerful tool [14]. Unlike traditional ML models
that operate on fixed-dimensional inputs, GNNs operate directly
on the graph structure, which allows them to learn the
representation of individuals, attributes, and relationships. In
the biomedical domain, GNNs have been used for tasks such
as protein function prediction, drug discovery, disease

classification, and personalized medicine [15-20]. Li et al [21]
proposed a multi-channel GNN for predicting drug-target
interactions that combines a multi-channel graph convolutional
network and graph attention network (GAT). This framework
uses a topology graph for contextual representation, a feature
graph for semantic representation, and a common representation
of drug and protein pairs. It has demonstrated remarkable
accuracy in identifying drug-target interactions, achieving an
impressive area under the receiver operating characteristic
(AUROC) score of 0.9665. Wang et al [22] introduced a deep
learning framework, Deep Learning for Drug-Drug Synergy
prediction (DeepDDS), for predicting drug-drug interactions
for anticancer treatments. DeepDDS uses gene expression data
from the cancer cell line and the molecular graph of the drugs
as input. It leverages GAT and graph convolution transformers
(GCTs) to accurately predict the synergistic effect between drug
combinations. DeepDDS has achieved an AUROC score of 0.67
on an independent test set. In the task of ADRD prediction,
GCT obtained an area under the precision-recall curve of 0.34
on the inpatient and outpatient electronic health record (EHR)
data from NYU Langone Health (briefly called AD-EHR) [23].
Klepl et al [24] integrated functional connectivity methods with
GNNs to evaluate ADRD prediction performance using
electroencephalography brain data. They showed that the
GNN-based approach outperformed convolutional neural
network and support vector machine models and obtained an
AUROC of 0.984 [24]. Zhu and Razavian [23] presented
variational GNN (VGNN), a variationally regularized
encoder-decoder GNN, designed specifically for EHRs. This
framework showed robustness in learning graph structures by
applying regularization techniques to node representations.
VGNN was used for ADRD risk prediction, and it attained an
area under the precision-recall curve of 0.46 when using
AD-EHR.

The abovementioned GNN models [23,24] have demonstrated
the potential to uncover hidden patterns, reveal biological
insights, and facilitate advancements in ADRD prediction.
However, because the GNN architecture is a black-box model,
the absence of interpretability is harmful to both users and
society [25], especially in critical applications where decisions
need to be explained or understood. Even though some advanced
models such as GAT, GCT, and VGNN have the ability to
explain the importance of individual nodes by using attention
mechanisms, they still face a limitation in their interpretability
concerning the significance of underlying relationships in the
prediction process. As a consequence, there is a pressing demand
for research and development efforts to enhance GNNs and
elucidate the influence of relationship importance in achieving
more precise ADRD predictions. By addressing this
interpretability issue, GNNs can become more valuable tools
in advancing our understanding of ADRD and contributing to
improved patient care and treatment strategies.

Objective
The first focus of this study lies in the domain of risk prediction
for ADRD. In this particular context, our investigation aims to
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use claims data as the sole input for our GNN-based predictive
model for accurate ADRD risk prediction. We enhance the
predictive power of our model by incorporating advanced GNN
models into a framework that enables us to effectively capture
the intricate relationships and dependencies inherent in the
claims data.

Second, we introduced a novel method to assess the importance
of relationships within the patients’ individual medical record
graphs and their influence on ADRD risk prediction. Generally,
an additional graph explanation technique, such as
GNNExplainer [26], is used as a post hoc method to interpret
the predictions made by the GNNs. However, our proposed
relation importance method enables an “in-process” explanation
approach that leverages the relation weights from each patient’s
individual graph. This method facilitates the interpretation of
the GNN’s predictions during the graph generation process
itself. Besides that, our method aims to adequately calibrate the
importance of each relationship within the graph, reflecting
their true impact on prediction. Since, typically, when a relation
connects to nodes that are highly prevalent in the graph, there
is a risk of misdefining its significance. The frequent occurrence
of these nodes can distort the perception of the relationship’s
importance, potentially leading to erroneous interpretations or
biased conclusions. This bias can result in a skewed importance
assigned to relationships, and hence potentially affecting the
accuracy of ADRD risk prediction. By considering the patient
groups with and without ADRD, our approach helps to mitigate
the potential bias resulting from node frequency, enabling a
more comprehensive and reliable interpretability of relation
importance for ADRD risk prediction.

Methods

Cohort Description
We used deidentified administrative health claims data from
Optum’s Clinformatics Data Mart, spanning from 2007 to 2020.
This data set comprises over 68 million patient-level enrollment
records submitted by various health care providers, pharmacies,
and other health care service organizations for reimbursement
purposes. It is accessible for researchers through a subscription
provided by the University of Texas Health Science Center
(UTHealth) [27].

Several criteria were applied to construct the study cohort, as
illustrated in Figure 1. Considering that ADRD primarily affects
older individuals and is a chronic condition, we initially filtered
out patients (n=62,903,997) who were younger than 65 years.
To ensure a sufficient data history for tracking their medical
conditions, patients (n=2,680,329) with a time span of less than
3 years between their initial and final medical records were
excluded. Patients (n=321,462) who lacked demographic
information were also excluded from the study. To further
establish the ADRD cohort, we used the definition outlined by
Kim et al [28]. Patients were classified as having ADRD if they
presented specific diagnosis codes or were prescribed relevant
medications. The specified diagnosis codes are Alzheimer
dementia (331.0*/G30.*), vascular dementia (290.4*/F01.*),
frontotemporal dementia (331.1*/G31.0*), lewy body dementia
(331.82*/G31.83), senile dementia (290.0*), presenile dementia
(290.1*), other specified senile psychotic (290.8*), and
unspecified senile psychotic condition (290.9*), and the
medication includes aricept, donepezil, razadyne, reminyl,
galantamine, exelon, rivastigmine, namenda, memantine,
acetylcholine, and memantine. Based on the criteria mentioned
above, the resulting cohort included 432,374 patients with
ADRD and 1,895,511 patients without ADRD.
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Figure 1. Overview of cohort selection for 3 scenarios. ADRD: Alzheimer disease and related dementias.

Data Preprocessing
In this study, we used a partitioning approach to categorize each
patient’s records into 3 time windows, such as an index selection
window, a feature window, and a prediction window (shown
in Figure 2). First, we designated a specific period before the
initial diagnosis of patients with ADRD or the last record for
patients without ADRD as the index selection window. In the
real world, patients may seek consultations for their health
conditions at any time. To simulate this visiting setting, we
randomly select the index day within each patient’s index
selection window instead of using a fixed day. The 3-year period
before the index day serves as the feature window for model
training purposes, while a certain period after the index day is
defined as the “prediction window” for ADRD risk prediction.
Additionally, we designed 3 scenarios with index selection
windows and prediction windows of 1, 2, and 3 years in length,
respectively. By using this partitioning approach, we can
comprehensively evaluate our model’s predictive accuracy in
dynamically predicting ADRD diagnoses. It should be noted
that researchers can easily adjust the lengths of these windows
to align with their specific requirements and objectives.

There are also other inclusion criteria that were applied to ensure
the quality of the data and the fairness of the cohort. Specifically,
within the feature window, it was required that each patient
have a minimum of 2 month-level records. Furthermore, within
the records in the same month, a minimum of 3 medical codes
(eg, diagnosis codes, procedure codes, and medication codes)
needed to be present. After applying these criteria, the resulting
cohort for each scenario is presented in Figure 1. In scenario 1,
the cohort consisted of a total of 2,031,320 patients, comprising

228,086 patients with ADRD and 1,803,234 patients without
ADRD. For scenario 2, the cohort comprised 2,007,625 patients,
including 225,757 patients with ADRD and 1,781,868 patients
without ADRD. Finally, in scenario 3, the cohort encompassed
1,961,641 patients, with 221,816 patients with ADRD and
1,739,825 patients without ADRD. These cohorts provide a
robust foundation for further analysis and investigation in this
study.

The data used in all cohorts included claims data consisting of
diagnoses encoded with both International Classification of
Diseases, 9th revision (ICD-9) codes and 10th version (ICD-10)
codes, the National Drug Code for pharmacy claims, current
procedural terminology, and Healthcare Common Procedure
Coding System codes for procedures. The inclusion of both
ICD-10 and ICD-9 codes was necessary as the study period
spanned the transition from ICD-9 to ICD-10 coding systems.
All these different types of medical codes have been converted
to a higher-level categorization scheme to achieve feature
reduction, uniformity, and compatibility within the study
analysis. The ICD-9 and ICD-10 codes and the current
procedural terminology and Healthcare Common Procedure
Coding System codes are converted to clinical classification
software, which is a tool for clustering patient diagnoses and
procedures into a manageable number of clinically meaningful
categories developed at the Agency for Healthcare Research
and Quality (formerly known as the Agency for Health Care
Policy) [29]. Similarly, we are using the
Pharmacologic-Therapeutic Classification System from the
American Hospital Formulary Service to represent and group
the drug National Drug Code in the data set [30]. It is a method
of grouping drugs with similar pharmacologic, therapeutic, and
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chemical characteristics in a 4-tier hierarchy associated with a
numeric code consisting of 2 to 8 digits. By following the
conversion of these codes, the number of features was reduced

from tens of thousands to hundreds. This reduction not only
helps address the issue of sparsity in the model input but also
improves its overall efficiency.

Figure 2. The definition of 3 scenarios. We established a time frame that includes an index selection window, a feature window, and a prediction
window. The index selection window spanned a specific period before the initial diagnosis of patients with Alzheimer disease and related dementias
(ADRD) or the last record for patients without ADRD. We randomly selected a day within the index selection window as the index day to simulate
real-world visiting settings. The period up to 3 years before this index day was considered the feature window for training the model, while the period
after the index day was used as the prediction window. We used 1 year, 2 years, and 3 years as the lengths of the index selection window and corresponding
prediction window, respectively, to predict ADRD diagnosis dynamically.

Modeling
We used the VGNN in combination with patients’ diagnosis,
procedure, and medication codes to estimate the likelihood of
patients having ADRD within a designated prediction window.
VGNN consists of 4 modules, such as the encoder graph,
variational regularization, decoder graph, and fully connected
layer. In the encoder graph module, VGNN takes 3 types of
patients’ medical codes from the feature window as input and
constructs a fully connected graph comprising medical codes
for each patient. The representation of each node is iteratively
updated through multiple graph attention layers. To address the
challenges of generating node embeddings within clusters and
achieving balanced attention weights, VGNN incorporates a
variational regularization layer. This layer helps prevent model
collapse and maintains the model’s expressive capacity. The
decoder graph module uses the node representations generated
by the encoder graph and the variational regularization layer to
compute the weighted relations between each node. These
weighted relationships effectively capture the relationships

among different medical codes. Finally, a linear feed-forward
layer is used to calculate the probability and produce the binary
classification for identifying an individual with ADRD.

We initiated the modeling process by reserving 20% of patients
from the entire data set for testing purposes. Given that ADRD
is more prevalent in the older population [1] and our data set
exhibits a high imbalance, we used the propensity score
matching method based on age and gender to mitigate potential
biases associated with these factors. This matching process
ensured that our model’s input cohort consisted of individuals
with similar age and gender distributions, reducing the potential
confounding effects associated with these variables. As a result,
we created a balanced cohort with a one-to-one ratio of control
and case groups from the remaining 80% of the entire data set.
This downsampling approach is a popular method in clinical
research to create a balanced covariate distribution between
treated and untreated groups, which could help significantly
improve the model’s ability to handle imbalanced data [31].
We named it the matched cohort and used it for the purposes
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of model development and validation. Additionally, we
generated a smaller subset named the subset cohort, which is
10% of the matched cohort. This action allows us to evaluate
the model’s performance on a smaller-scale data set effectively.
In order to assess the efficacy of our approach, we built models

for 3 different scenarios. Moreover, we used random forest (RF)
and light gradient boost machine (LGBM) as baseline models
and compared their performance with that of VGNN. The overall
workflow of our model pipeline is shown in Figure 3.

Figure 3. The workflow of sour study pipeline, including data preprocessing, graph modeling, and final output. The DIAG, PROC, and DRUG represent
3 types of medical codes: diagnosis, procedure, and medication, respectively. We used the variationally regularized encoder-decoder graph neural
network (VGNN) to predict the likelihood of Alzheimer disease and related dementias (ADRD) using patients’ medical records sourced from Optum
Clinformatics. The data were input into the encoder layer of VGNN, generating a fully connected graph specific to each patient. The variational
regularization layer was then applied to prevent issues like mode collapse and maintain the model’s capacity to represent information effectively.
Additionally, the decoder graph module used node representations to compute weighted relations between nodes, which effectively captured relationships
among different medical codes. Finally, a linear feed-forward layer was used to calculate probabilities and perform binary classification.

Relation Importance
After the completion of model training, we then used the trained
model to build the interconnected medical record graph for each
individual patient. In order to evaluate the significance of
various relationships in ADRD prediction, we extracted

adjacency matrices . from the medical
graphs of N patients in the training set of the matched cohort.
The values within these adjacency matrices serve as indicators
of the relational importance associated with predicting ADRD.
Given that the generated graphs are directional, the adjacency
matrices A are not symmetric. Therefore, we took an additional
step to mitigate the influence of directionality by computing
the average of the original adjacency matrix and its transposed
matrix. Then, the updated adjacency matrix is:

This adjacency matrix enables us to gain insights into the
intricate relationships between medical codes and their
predictive power for ADRD.

However, it is crucial to consider that medical codes with higher
frequencies may have received relatively larger weights
compared to others, potentially introducing bias in the analysis.

Given that A+ are the adjacency matrices of patients with ADRD

case group and A–are the adjacency matrices of ADRD patient
control group, we calculated the mean adjacency matrix of these
2 patient groups as:

By subtracting the negative mean adjacency matrix from the
positive mean adjacency matrix, we eventually obtained a mean
weight-difference matrix:

This mean weight-difference matrix W captured the relative
significance of the medical code weights. A higher positive
value inside W indicates a greater importance in predicting
ADRD, while a lower negative value suggests a reduced
likelihood of ADRD occurrence. A value of 0 in W means that
the relationship does not affect a patient with ADRD.

Ethical Considerations
The approval for the use of data in this study was obtained from
the UTHealth Committee for the Protection of Human Subjects,
under protocol HSC-SBMI-21-0965, with a waiver of consent
granted.

Results

Hyperparameter Setting
We trained the VGNN model with the following
hyperparameters: a learning rate of 0.0001, a batch size of 128,
and a dropout rate of 0.1. We used the Adam optimizer for
gradient descent and trained the model for 200 epochs. The
model consisted of 2 graph layers and 1 attention head. To
balance the binary cross-entropy and Kullback-Leibler
divergence losses, a parameter value of 0.002 was used.
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Additionally, edge information was extracted after the attention
layer to facilitate future calculations of relational importance.
Additionally, we used the grid search method to tune the RF
and LGBM baseline models. The hyperparameters for RF and
LGBM are n_estimators=100, min_samples_split=2, and
min_samples_leaf=1, and n_estimators=300,
boosting_type=“gbdt,” num_leaves=31, and learning_rate=0.1,
respectively.

Performance Evaluation
We used AUROC as a measurement to evaluate the performance
of each model. As shown in Table 1, the VGNN model achieved
AUROC scores of 0.7272 and 0.7480 for the subset cohort and
the matched cohort, respectively, in scenario 1. It outperformed
the RF and LGBM models by an average of 10.6% and 9.1%
across the 2 data sets. For scenario 2, the VGNN model obtained
AUROC scores of 0.7125 and 0.7281 for the subset cohort and
matched cohort, respectively. It exhibited superior performance
compared to the other 2 models by an average of 10.5% and
8.9% across the 2 data sets. Finally, in scenario 3, the VGNN

model achieved AUROC scores of 0.7001 and 0.7187, which
were surpassed by an average of 10.1% and 8.5% across the 2
data sets. The results clearly demonstrate that the GNN approach
(VGNN) outperforms the tree-based models (RF and LGBM)
significantly in predicting ADRD. The bar chart for the
performance comparison can be found in Multimedia Appendix
1.

Furthermore, we identified the 5 most important relationships
for both positive and negative predictions of ADRD in Table
2. Among the top 5 negative highest-weighted relationships,
“neoplasms of unspecified nature or uncertain behavior” exhibits
its influence across all relations within scenario 1, “consultation,
evaluation, and preventative care” makes a total of 4
appearances within scenario 2, while “quinolone antibiotics”
spans all relations in scenario 3. Within the set of the top 5
positive highest-weighted relationships, both “routine chest
x-ray” and “electrocardiogram” appear 3 times each in scenario
1, “substance-related disorders” contributes to 4 relationships
in scenario 2, and “substance-related disorders” emerges as the
most frequently occurring medical code in scenario 3.

Table 1. The model performance (area under the receiver operating characteristic curve scores) for Alzheimer disease and related dementias risk
prediction.

Variational graph neural networkLight gradient boost machineRandom forestScores

Matched cohort

0.74800.68090.6710Scenario 1

0.72810.66580.6565Scenario 2

0.71870.65890.6468Scenario 3

Subset cohort

0.72720.67200.6629Scenario 1

0.71250.65700.6474Scenario 2

0.70010.64900.6425Scenario 3

JMIR Aging 2024 | vol. 7 | e54748 | p. 7https://aging.jmir.org/2024/1/e54748
(page number not for citation purposes)

Hu et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Top 5 positive highest-weighted relations and top 5 negative highest-weighted relations.

Scenario 3Scenario 2Scenario 1Scenarios and relations

Top 5 negative highest-weighted relations

Suture of skin
and subcutaneous
tissue

Quinolone antibi-
otics

DihydropyridinesConsultation,
evaluation, and
preventative care

Consultation,
evaluation, and
preventative care

Neoplasms of un-
specified nature or
uncertain behavior

1

Lens and cataract
procedures

Quinolone antibi-
otics

Diseases of white
blood cells

Consultation,
evaluation, and
preventative care

Lens and cataract
procedures

Neoplasms of un-
specified nature or
uncertain behavior

2

Essential hyper-
tension

Quinolone antibi-
otics

Upper gastrointesti-
nal endoscopy, biop-
sy

Consultation,
evaluation, and
preventative care

HyperlipidemiaNeoplasms of un-
specified nature or
uncertain behavior

3

Diagnostic ultra-
sound of head
and neck

Quinolone antibi-
otics

Other CT scanConsultation,
evaluation, and
preventative care

Diabetes mellitus
with complica-
tions

Neoplasms of un-
specified nature or
uncertain behavior

4

Psychological
and psychiatric
evaluation and
therapy

Quinolone antibi-
otics

DihydropyridinesDiseases of white
blood cells

Diagnostic ultra-
sound of head
and neck

Neoplasms of un-
specified nature or
uncertain behavior

5

Top 5 positive highest-weighted relations

Substance-related
disorders

Schizophrenia
and other psychot-
ic disorder

ElectrocardiogramSubstance-related
disorders

Electrocardio-
gram

Routine chest x-ray1

Diagnostic proce-
dures on nose,
mouth, and phar-
ynx

Schizophrenia
and other psychot-
ic disorder

Other laboratorySubstance-related
disorders

Other laboratoryRoutine chest x-ray2

ArthrocentesisDiagnostic ultra-
sound of head
and neck

Routine chest x-raySubstance-related
disorders

Heart valve disor-
ders

Routine chest x-ray3

Substance-related
disorders

Diagnostic ultra-
sound of head
and neck

Inguinal and femoral
hernia repair

Electrocardio-
gram

Other laboratoryElectrocardiogram4

Other diagnostic
radiology and re-
lated techniques

Substance-related
disorders

Coronary
atherosclerosis and
other heart disease

Substance-related
disorders

Heart valve disor-
ders

Electrocardiogram5

Discussion

Principal Findings
Based on this study’s results, we found that some potential
candidates might be relevant to ADRD risk prediction and
treatment. Our self-explainable GNN prediction method reveals
the underneath connections between medical codes for ADRD
risk prediction. Some code pairs have been shown to accelerate
ADRD progression, while others exhibit potential to slow down
its development. When implementing our relation importance
interpretation method, the GNN results are explainable, setting
it apart from other deep learning models. Moreover, several
code pairs extracted from the GNN align with findings from
previous research. Those code pairs that are not proven could
offer valuable insights beyond the scope of current studies,
opening up avenues for further investigation and enhancing our
understanding of ADRD risk prediction. Table 2 shows the top
5 positive highest-weighted relations and the top 5 negative
highest-weighted relations. In the following sections, we will
present examples of code pairs derived from the GNN model

results and highlight their significance based on validated
evidence from previous studies.

This study found that certain pairs of medical codes can be
associated with a decreased likelihood of an ADRD diagnosis.
For instance, the treatment of more acute conditions, such as
cancer or neoplasms, may delay the diagnosis of ADRD. We
hypothesize that “neoplasms of unspecified nature or uncertain
behavior” may be correlated with higher health care use or more
frequent physician visits, similar to the code “consultation,
evaluation, and preventative care.” The cooccurrence of these
2 types of coding could potentially lower the risk of ADRD.
Regular health care visits could potentially reduce the risk of
ADRD by improving modifiable risk factors and mitigating
social isolation in older patients. Lee et al [32] revealed that
cataract extraction is linked to a reduced risk of developing
dementia among older adults. Cataract extraction has been
associated with enhanced engagement in intellectually
stimulating activities, such as reading and video consumption,
as well as increased physical activity. These changes in lifestyle
and cognitive engagement following cataract surgery may
contribute to a delay in the onset of ADRD. Consequently, the
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second node pair involving “neoplasms of unspecified nature
or uncertain behavior” and “lens and cataract procedures” also
holds relevance and supports the observed association. In
scenario 2, Peters et al [33] have indicated that the use of
calcium channel blockers, specifically dihydropyridines, is
associated with a lower decline in cognitive function compared
to other hypertensive treatments. Thus, the presence of the
“consultation, evaluation, and preventative care” and
“dihydropyridines” nodes pair ranking first in importance is
consistent with the reported associations. The most frequently
appearing node in scenario 3 is “quinolone antibiotics.”
According to the study by Pham et al [34], it is a class of
medication commonly prescribed to treat various bacterial
infections and is primarily used for its antimicrobial properties
[34]. Additionally from a study by Gao et al [35], their review
study indicates that the brain inflammation caused by microbial
infections may be one of the etiologies of ADRD, and antibiotics
as novel treatments may be beneficial for delaying the
development of ADRD. Quinolones exhibit a distinct
pharmacokinetic profile characterized by a higher cerebrospinal
fluid to serum concentration ratio compared to other commonly
prescribed antibiotics [36]. This unique attribute may underlie
the observed robust negative correlation between quinolone
administration and the development of ADRD, distinguishing
its potential protective effect from that of other antibiotics. The
use of quinolones likely correlates with younger age, as its use
in older adults is less frequent due to the increased risk of tendon
rupture. However, this is less likely to explain its negative
correlation with the onset of ADRD in our age-matched cohorts.
So, in other words, it can be hypothesized that “quinolone
antibiotics” may potentially exhibit a slowing effect on the
progression of ADRD. Combined with the aforementioned node
“lens and cataract procedures,” the observed association of this
node pair holds validity and is worth further investigation.

This study also found certain medical codes to be positively
associated with a higher likelihood of an ADRD diagnosis. This
can be explained by the fact that Alzheimer disease, to a certain
degree, is a “diagnosis of exclusion.” Procedures like “routine
chest x-ray” and “electrocardiogram” are commonly used as
initial steps in diagnosing altered mental status, which is often
the first sign of ADRD. A chest x-ray is often used to rule out
any underlying pneumonia, while an electrocardiogram may be
used to rule out arrhythmia [37]. Similarly, “diagnostic
ultrasound of head and neck” is commonly done to rule out
conditions like carotid artery clot, stenosis, or plaque in the
setting of stroke workups. Once patients begin to verify these
initial diagnoses of altered mental status, they are more likely
to undergo comprehensive and relevant testing to exclude other
potential causes of the symptoms, which may potentially lead
to a timely determination of ADRD. Several studies have also
found that alcohol and drug use could affect mental state and
cognitive function [38]. People who abuse intoxicating
substances for a considerable period may develop dementia or
accelerate the neurological damage associated with Alzheimer
[39].

From the modeling aspect, to the best of our knowledge, our
approach offers distinct advantages in comparison to previous
studies on the early diagnosis of ADRD with or without GNN

methods. For instance, Li et al [40] used a gradient boost tree
and logistic regression to assess ADRD risk using EHR data
from the OneFlorida+ Clinical Research Consortium. They
identified significant clinical and social factors through SHAP
values; however, these factors were commonly known risk
factors. In contrast, our findings unveil potential risk factors
and explain the interaction among these factors in ADRD
prediction. While VGNN demonstrates good interpretability by
showcasing attention weights among features, it fails to explain
how these features positively or negatively impact ADRD
prediction [23]. On the other hand, our model offers
interpretations of potential risk factors and illustrates their
influence on outcomes. Furthermore, our proposed
self-explainable framework mitigates the potential bias resulting
from the prevalence of medical codes. Klepl et al [24] conducted
electroencephalography-based ADRD prediction using GNN
methods. As medical image data are unavailable for every
patient during routine examinations, limitations arise due to the
restricted user cases. Furthermore, they only assessed model
performance against baseline models without providing any
feature interpretation. Conversely, our method enhances
interpretability by leveraging more accessible data, thereby
promoting broader applicability and understanding in ADRD
prediction. Overall, this is the first work that proposes a
self-explainable framework, providing a feature-important
explanation in the context of ADRD risk prediction leveraging
relational information within a graph. Compared with other
studies on ADRD risk predictions, our method can directly
interpret the relationship’s importance within the training
process. It does not require any additional post hoc explanation
methods, such as GNNExplainer [26]. In other words, within
our framework, it takes no additional time to get an explanation.

In summary, we showed that using the GNN approach for
ADRD prediction has better performance compared to baseline
models. Moreover, with the incorporation of our relation
importance method, the model’s results become explainable,
providing valuable insights into the underlying factors
contributing to ADRD risk prediction.

Limitations
Our prediction does not incorporate time information into the
modeling process. In this study, we aggregated 3 years of
records into a single representation and treated them equally
without considering their temporal sequence. In the real-world
clinical setting, medical events, procedures, or medications
obtained at different times should carry different levels of
significance. In other words, events occurring closer in time to
the prediction window are expected to have a greater impact on
the disease prediction. In our future study, we could use a time
series model and positional encoding method to establish
connections between patients’ multiple visit records for more
accurate predictions and provide more valuable insights into
ADRD prediction.

On the other hand, it is important to note that certain predicted
correlations may not causally assist clinicians in diagnosing
ADRD. For instance, initiating tests for early detection of altered
mental status might lead patients to identify ADRD through
various related tests. Nonetheless, from the clinician’s
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perspective, ordering these test results may not be helpful for
early ADRD prediction. In our future work, we could try to
exclude these “subjective patient-related factors” and instead
focus on investigating more objective risk factors that could
potentially influence the prediction of ADRD.

Conclusion
In this study, we used an advanced self-explainable GNN
approach and developed a relation importance interpretation
method for the ADRD risk prediction task based on claims data
sources. The VGNN model’s effectiveness was evaluated across

3 distinct scenarios, with comparisons made against RF and
LGBM ML models. The model’s performance achieved
satisfactory results. In addition, we provided the interpretation
for the node pairs extracted from the KG, which was generated
from the VGNN model. Furthermore, we demonstrated the
results’ future applicability and explained the important node
pairs that align with previous research findings. This work
contributes to the advancement of ADRD prediction models
and reinforces the importance of interpretable results for
informed clinical decision-making and early detection, etc.
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Multimedia Appendix 1
The model performance (area under the receiver operating characteristic scores) for Alzheimer disease and related dementia risk
prediction. Matched cohort: employ 1:1 propensity score match for case and control in the original training data (i.e., 80% of full
data), to achieve a balanced dataset and train the models, and test the models in the hold-out 20% of full data. Subset cohort: use
around 10% of the Matched cohort (i.e., 20,000 for both case and control) to train the models, and test the models in the hold-out
20% of full data.
[PNG File , 832 KB-Multimedia Appendix 1]

References

1. Alzheimer's Association. 2019 Alzheimer's disease facts and figures. Alzheimer's Dementia. Mar 2019;15(3):321-387.
[doi: 10.1016/j.jalz.2019.01.010]

2. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J
Nanomedicine. 2019;14:5541-5554. [FREE Full text] [doi: 10.2147/IJN.S200490] [Medline: 31410002]

3. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. Lancet.
2021;397(10284):1577-1590. [FREE Full text] [doi: 10.1016/S0140-6736(20)32205-4] [Medline: 33667416]

4. James C, Ranson JM, Everson R, Llewellyn DJ. Performance of machine learning algorithms for predicting progression
to dementia in memory clinic patients. JAMA Netw Open. 2021;4(12):e2136553. [FREE Full text] [doi:
10.1001/jamanetworkopen.2021.36553] [Medline: 34913981]

5. Ota K, Oishi N, Ito K, Fukuyama H, SEAD-J Study Group, Alzheimer's Disease Neuroimaging Initiative. Effects of imaging
modalities, brain atlases and feature selection on prediction of Alzheimer's disease. J Neurosci Methods. 2015;256:168-183.
[FREE Full text] [doi: 10.1016/j.jneumeth.2015.08.020] [Medline: 26318777]

6. Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging Initiative, et al. Prediction
of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures. Nat Med.
2021;27(6):1034-1042. [doi: 10.1038/s41591-021-01348-z] [Medline: 34031605]

7. Mohamed SK, Nounu A, Nováček V. Biological applications of knowledge graph embedding models. Brief Bioinform.
2021;22(2):1679-1693. [doi: 10.1093/bib/bbaa012] [Medline: 32065227]

8. Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, et al. Graph embedding on biomedical networks:
methods, applications and evaluations. Bioinformatics. 2020;36(4):1241-1251. [FREE Full text] [doi:
10.1093/bioinformatics/btz718] [Medline: 31584634]

JMIR Aging 2024 | vol. 7 | e54748 | p. 10https://aging.jmir.org/2024/1/e54748
(page number not for citation purposes)

Hu et alJMIR AGING

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=aging_v7i1e54748_app1.png&filename=df5923ee196f3105aa96da05134ed70c.png
https://jmir.org/api/download?alt_name=aging_v7i1e54748_app1.png&filename=df5923ee196f3105aa96da05134ed70c.png
http://dx.doi.org/10.1016/j.jalz.2019.01.010
https://europepmc.org/abstract/MED/31410002
http://dx.doi.org/10.2147/IJN.S200490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31410002&dopt=Abstract
https://europepmc.org/abstract/MED/33667416
http://dx.doi.org/10.1016/S0140-6736(20)32205-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33667416&dopt=Abstract
https://europepmc.org/abstract/MED/34913981
http://dx.doi.org/10.1001/jamanetworkopen.2021.36553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34913981&dopt=Abstract
http://hdl.handle.net/2433/202100
http://dx.doi.org/10.1016/j.jneumeth.2015.08.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26318777&dopt=Abstract
http://dx.doi.org/10.1038/s41591-021-01348-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34031605&dopt=Abstract
http://dx.doi.org/10.1093/bib/bbaa012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32065227&dopt=Abstract
https://europepmc.org/abstract/MED/31584634
http://dx.doi.org/10.1093/bioinformatics/btz718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31584634&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


9. Zhang X, Liang L, Liu L, Tang M. Graph neural networks and their current applications in bioinformatics. Front Genet.
2021;12:690049. [FREE Full text] [doi: 10.3389/fgene.2021.690049] [Medline: 34394185]

10. Zhu L, Lan Q, Velasquez A, Song H, Kamal A, Tian Q, et al. TMHOI: Translational Model for Human-Object Interaction
detection. arXiv. Preprint posted online on March 7, 2023. [FREE Full text] [doi: 10.48550/arXiv.2303.04253]

11. Li F, Nian Y, Sun Z, Tao C. Advancing biomedicine with graph representation learning: recent progress, challenges, and
future directions. arXiv. Preprint posted online on June 18, 2023. [FREE Full text] [doi: 10.1055/s-0043-1768735]

12. Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine and healthcare. Nat Biomed Eng. Dec
2022;6(12):1353-1369. [FREE Full text] [doi: 10.1038/s41551-022-00942-x] [Medline: 36316368]

13. Sun Z, Su J, Jeon D, Velasquez A, Song H, Niu S. Reinforced Contrastive Graph Neural Networks (RCGNN) for Anomaly
Detection. IEEE; 2022. Presented at: 2022 IEEE International Performance, Computing, and Communications Conference;
11-13 November 2022:65-72; Austin, TX, USA. URL: https://doi.org/10.1109/IPCCC55026.2022.9894334 [doi:
10.1109/IPCCC55026.2022.9894334]

14. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: a review of methods and applications. AI
Open. 2020;1:57-81. [doi: 10.1016/j.aiopen.2021.01.001]

15. Nian Y, Hu X, Zhang R, Feng J, Du J, Li F, et al. Mining on Alzheimer's diseases related knowledge graph to identity
potential AD-related semantic triples for drug repurposing. BMC Bioinformatics. Sep 30, 2022;23(Suppl 6):407. [FREE
Full text] [doi: 10.1186/s12859-022-04934-1] [Medline: 36180861]

16. Gaudelet T, Day B, Jamasb A, Soman J, Regep C, Liu G, et al. Utilizing graph machine learning within drug discovery
and development. Brief Bioinform. Nov 05, 2021;22(6):bbab159. [FREE Full text] [doi: 10.1093/bib/bbab159] [Medline:
34013350]

17. Gligorijević V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T, et al. Structure-based protein function
prediction using graph convolutional networks. Nat Commun. May 26, 2021;12(1):3168. [doi: 10.1038/s41467-021-23303-9]
[Medline: 34039967]

18. Lu H, Uddin S. A weighted patient network-based framework for predicting chronic diseases using graph neural networks.
Sci Rep. Nov 19, 2021;11(1):22607. [doi: 10.1038/s41598-021-01964-2] [Medline: 34799627]

19. Wu C, Wu F, Lyu L, Qi T, Huang Y, Xie X. A federated graph neural network framework for privacy-preserving
personalization. Nat Commun. Jun 02, 2022;13(1):3091. [doi: 10.1038/s41467-022-30714-9] [Medline: 35654792]

20. Li Y, Zhang G, Wang P, Yu Z, Huang G. Graph neural networks in biomedical data: a review. Curr Bioinformatics. Jul
2022;17(6):483-492. [doi: 10.2174/1574893617666220513114917]

21. Li Y, Qiao G, Wang K, Wang G. Drug-target interaction predication via multi-channel graph neural networks. Brief
Bioinform. Jan 17, 2022;23(1):bbab346. [doi: 10.1093/bib/bbab346] [Medline: 34661237]

22. Wang J, Liu X, Shen S, Deng L, Liu H. DeepDDS: deep graph neural network with attention mechanism to predict synergistic
drug combinations. Brief Bioinform. Jan 17, 2022;23(1):bbab390. [doi: 10.1093/bib/bbab390] [Medline: 34571537]

23. Zhu W, Razavian N. Variationally regularized graph-based representation learning for electronic health records. In:
Proceedings of the Conference on Health, Inference, and Learning. 2021. Presented at: CHIL '21; April 8-10, 2021:1-13;
Virtual Event. [doi: 10.1145/3450439.3451855]

24. Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis P. EEG-based graph neural network classification of Alzheimer's disease:
an empirical evaluation of functional connectivity methods. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2651-2660.
[FREE Full text] [doi: 10.1109/TNSRE.2022.3204913] [Medline: 36067099]

25. Dai E, Zhao T, Zhu H, Xu J, Guo Z, Liu H, et al. A comprehensive survey on trustworthy graph neural networks: privacy,
robustness, fairness, and explainability. arXiv. Preprint posted online on April 18, 2022. [FREE Full text] [doi:
10.48550/ARXIV.2204.08570]

26. Ying R, Bourgeois D, You J, Zitnik M, Leskovec J. GNNExplainer: generating explanations for graph neural networks.
Adv Neural Inf Process Syst. Dec 2019;32:9240-9251. [FREE Full text] [Medline: 32265580]

27. Optum's Clinformatics Data Mart. The University of Texas Health Science Center at Housto. URL: https://sbmi.uth.edu/
sbmi-data-service/data-set/optum/ [accessed 2024-06-06]

28. Kim Y, Zhang K, Savitz SI, Chen L, Schulz PE, Jiang X. Counterfactual analysis of differential comorbidity risk factors
in Alzheimer's disease and related dementias. PLOS Digit Health. Mar 2022;1(3):e0000018. [FREE Full text] [doi:
10.1371/journal.pdig.0000018] [Medline: 36812506]

29. Clinical Classifications Software (CCS) for ICD-9-CM. Healthcare Cost and Utilization Project. URL: https://hcup-us.
ahrq.gov/toolssoftware/ccs/ccs.jsp [accessed 2024-06-07]

30. Overview of the American Hospital Formulary Service (AHFS) Pharmacologic-Therapeutic Classification© System. Ontario
College of Pharmacists. URL: https://www.ocpinfo.com/wp-content/uploads/2022/12/
AHFS-american-hospital-formulary-service-rise-online-training.pdf [accessed 2024-06-19]

31. Zhang Z, Kim HJ, Lonjon G, Zhu Y, written on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance
diagnostics after propensity score matching. Ann Transl Med. Jan 2019;7(1):16. [FREE Full text] [doi:
10.21037/atm.2018.12.10] [Medline: 30788363]

JMIR Aging 2024 | vol. 7 | e54748 | p. 11https://aging.jmir.org/2024/1/e54748
(page number not for citation purposes)

Hu et alJMIR AGING

XSL•FO
RenderX

https://europepmc.org/abstract/MED/34394185
http://dx.doi.org/10.3389/fgene.2021.690049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34394185&dopt=Abstract
http://arxiv.org/abs/2303.04253
http://dx.doi.org/10.48550/arXiv.2303.04253
http://arxiv.org/abs/2306.10456
http://dx.doi.org/10.1055/s-0043-1768735
https://europepmc.org/abstract/MED/36316368
http://dx.doi.org/10.1038/s41551-022-00942-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36316368&dopt=Abstract
https://doi.org/10.1109/IPCCC55026.2022.9894334
http://dx.doi.org/10.1109/IPCCC55026.2022.9894334
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04934-1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04934-1
http://dx.doi.org/10.1186/s12859-022-04934-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36180861&dopt=Abstract
https://europepmc.org/abstract/MED/34013350
http://dx.doi.org/10.1093/bib/bbab159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34013350&dopt=Abstract
http://dx.doi.org/10.1038/s41467-021-23303-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34039967&dopt=Abstract
http://dx.doi.org/10.1038/s41598-021-01964-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34799627&dopt=Abstract
http://dx.doi.org/10.1038/s41467-022-30714-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35654792&dopt=Abstract
http://dx.doi.org/10.2174/1574893617666220513114917
http://dx.doi.org/10.1093/bib/bbab346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34661237&dopt=Abstract
http://dx.doi.org/10.1093/bib/bbab390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34571537&dopt=Abstract
http://dx.doi.org/10.1145/3450439.3451855
https://eprints.whiterose.ac.uk/192479/
http://dx.doi.org/10.1109/TNSRE.2022.3204913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36067099&dopt=Abstract
https://arxiv.org/abs/2204.08570
http://dx.doi.org/10.48550/ARXIV.2204.08570
https://europepmc.org/abstract/MED/32265580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32265580&dopt=Abstract
https://sbmi.uth.edu/sbmi-data-service/data-set/optum/
https://sbmi.uth.edu/sbmi-data-service/data-set/optum/
https://europepmc.org/abstract/MED/36812506
http://dx.doi.org/10.1371/journal.pdig.0000018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36812506&dopt=Abstract
https://hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.ocpinfo.com/wp-content/uploads/2022/12/AHFS-american-hospital-formulary-service-rise-online-training.pdf
https://www.ocpinfo.com/wp-content/uploads/2022/12/AHFS-american-hospital-formulary-service-rise-online-training.pdf
https://europepmc.org/abstract/MED/30788363
http://dx.doi.org/10.21037/atm.2018.12.10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30788363&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


32. Lee CS, Gibbons LE, Lee AY, Yanagihara RT, Blazes MS, Lee ML, et al. Association between cataract extraction and
development of dementia. JAMA Intern Med. Feb 01, 2022;182(2):134-141. [FREE Full text] [doi:
10.1001/jamainternmed.2021.6990] [Medline: 34870676]

33. Peters J, Booth A, Peters R. Potential for specific dihydropyridine calcium channel blockers to have a positive impact on
cognitive function in humans: a systematic review. Ther Adv Chronic Dis. Jul 2015;6(4):160-169. [FREE Full text] [doi:
10.1177/2040622315582353] [Medline: 26137206]

34. Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. Medchemcomm. Oct 01, 2019;10(10):1719-1739. [FREE
Full text] [doi: 10.1039/c9md00120d] [Medline: 31803393]

35. Gao L, Shuai Y, Wen L, Zhang H, Zhang Y, Zhang X. Benefit and safety of antibiotics for Alzheimer's disease: protocol
for a systematic review and meta-analysis. Medicine (Baltimore). Nov 25, 2022;101(47):e31637. [FREE Full text] [doi:
10.1097/MD.0000000000031637] [Medline: 36451430]

36. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of
central nervous system infections. Clin Microbiol Rev. Oct 2010;23(4):858-883. [FREE Full text] [doi:
10.1128/CMR.00007-10] [Medline: 20930076]

37. Kanich W, Brady WJ, Huff J, Perron AD, Holstege C, Lindbeck G, et al. Altered mental status: evaluation and etiology in
the ED. Am J Emerg Med. Nov 2002;20(7):613-617. [doi: 10.1053/ajem.2002.35464] [Medline: 12442240]

38. Hulse GK, Lautenschlager NT, Tait RJ, Almeida OP. Dementia associated with alcohol and other drug use. Int Psychogeriatr.
2005;17 Suppl 1:S109-S127. [doi: 10.1017/s1041610205001985] [Medline: 16240487]

39. Durnham A. Alzheimer's disease and addiction. Best Alzheimer's Products. URL: https://best-alzheimers-products.com/
alzheimers-disease-addiction.html [accessed 2024-06-07]

40. Li Q, Yang X, Xu J, Guo Y, He X, Hu H, et al. Early prediction of Alzheimer's disease and related dementias using real-world
electronic health records. Alzheimers Dement. Aug 2023;19(8):3506-3518. [doi: 10.1002/alz.12967] [Medline: 36815661]

Abbreviations
ADRD: Alzheimer disease and related dementias
AUROC: area under the receiver operating characteristic curve
DeepDDS: Deep Learning for Drug-Drug Synergy prediction
EHR: electronic health record
GAT: graph attention network
GCT: graph convolution transformer
GNN: graph neural network
ICD-9: International Classification of Diseases, 9th revision
ICD-10: International Classification of Diseases, 10th revision
LGBM: light gradient boost machine
ML: machine learning
RF: random forest
VGNN: Variationally regularized encoder-Decoder Graph Neural Network
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