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Abstract

Background: About one-third of older adults aged 65 years and older often have mild cognitive impairment or dementia.
Acoustic and psycho-linguistic features derived from conversation may be of great diagnostic value because speech involves
verbal memory and cognitive and neuromuscular processes. The relative decline in these processes, however, may not be linear
and remains understudied.

Objective: This study aims to establish associations between cognitive abilities and various attributes of speech and natural
language production. To date, the majority of research has been cross-sectional, relying mostly on data from structured interactions
and restricted to textual versus acoustic analyses.

Methods: In a sample of 71 older (mean age 83.3, SD 7.0 years) community-dwelling adults who completed qualitative interviews
and cognitive testing, we investigated the performance of both acoustic and psycholinguistic features associated with cognitive
deficits contemporaneously and at a 1-2 years follow up (mean follow-up time 512.3, SD 84.5 days).

Results: Combined acoustic and psycholinguistic features achieved high performance (F1-scores 0.73-0.86) and sensitivity (up
to 0.90) in estimating cognitive deficits across multiple domains. Performance remained high when acoustic and psycholinguistic
features were used to predict follow-up cognitive performance. The psycholinguistic features that were most successful at
classifying high cognitive impairment reflected vocabulary richness, the quantity of speech produced, and the fragmentation of
speech, whereas the analogous top-ranked acoustic features reflected breathing and nonverbal vocalizations such as giggles or
laughter.

Conclusions: These results suggest that both acoustic and psycholinguistic features extracted from qualitative interviews may
be reliable markers of cognitive deficits in late life.

(JMIR Aging 2024;7:e54655) doi: 10.2196/54655
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Introduction

It is estimated that approximately one-third of adults aged 65
years and older in the United States have mild cognitive
impairment (MCI) or dementia [1]. Given the high prevalence
of MCI and dementia, better methods are needed for earlier
identification. Biomarkers associated with future cognitive
decline can be evident decades before the deficits are clinically
detected [2]. By the time cognitive changes are evident to the
patient or their families, functional difficulties may be more
advanced, and potential interventions to reduce decline may be
less effective.

Language abilities remain largely preserved in typical aging,
despite gradual declines in other cognitive functions such as
processing speed. The decline in language abilities may serve
as a key indicator of atypical or pathological aging such as MCI
and dementia [3-5]. Prior studies have reported speech and
language declines across disease progression from early MCI
to moderate-stage Alzheimer disease [6-8]. Mueller et al [8]
found that subtle declines in speech fluency and semantic
content are apparent even prior to the onset of clinically
diagnosed MCI. Therefore, developing techniques to identify
early changes in language functioning may enhance the detection
of subtle cognitive decline associated with pathological cognitive
aging.

Natural language processing (NLP) has emerged as a promising
approach for identifying early signs of pathological cognitive
decline [9]. NLP includes a variety of techniques to capture and
quantify linguistic or semantic aspects of speech (eg, syntactic
complexity, idea density, and semantic content) and is often
combined with machine learning (ML) to automate classification
based on latent patterns in data. Asgari et al [10] used linguistic
features derived from audio recordings of unstructured
conversations with 41 older adults and were able to differentiate
cognitively intact individuals from participants with MCI with
84% classification accuracy. Studies using intermittent audio
recordings of older adults without cognitive impairment in
real-world settings over 4 days found that several linguistic
features were associated with performance on standardized
measures of working memory [11,12]. In a longitudinal analysis
of data from the Framingham Heart Study, linguistic variables
derived from written responses to a picture description task (the
cookie theft task), improved the predictive accuracy of
conversion from cognitively normal to Alzheimer disease over
nonlinguistic markers [13]. Though transcripts have been the
current standard of understanding language, audio features
remain underresearched in psychiatry. Another possibility is
that audio feature files are difficult to share due to privacy
controls, and therefore, are more difficult to access. Acoustic
features of speech (eg, volume) have been evaluated to a lesser
extent than linguistic features [14-16]. To date, few studies
evaluated the relative predictive performance of acoustic versus
psycholinguistic-derived features, and none, to our knowledge,
have evaluated performance in predicting future cognitive
deficits.

This study aimed to explore and identify acoustic and
psycholinguistic features associated with cognitive abilities on

neuropsychological measures, both contemporaneously and at
follow-up assessments, among older adults recruited from an
independent living facility. Our work is unique from prior
research in several ways. First, we use both acoustic and
psycholinguistic features from speech derived from a
semistructured interview rather than using standardized tasks.
Second, all participants underwent a research-based
neuropsychological assessment comprising multiple cognitive
domains (eg, global cognitive ability as measured by a screening
instrument, verbal memory, and phonemic and semantic
fluency). Third, we collected follow-up neuropsychological
data to evaluate the stability of prediction. Finally, we used ML
techniques to develop predictive algorithms to identify acoustic
and psycholinguistic features associated with cognitive
impairment and change, using sociodemographic features alone
as a comparison. We hypothesized that both acoustic and
psycholinguistic features derived from the recordings of
semistructured interviews would predict baseline and follow-up
cognitive deficits, exceeding the predictive accuracy of
sociodemographic characteristics (eg, age). We explored the
contribution of individual features to these predictions and the
relative performance of acoustic and psycholinguistic
feature-based models across cognitive domains.

Methods

Participants and Procedures
This is a secondary analysis of interview transcripts from a
sample that was previously described [17,18]. The original study
goals were to examine predictors of cognitive and functional
decline in a community-dwelling sample of older adults; thus,
the lower age limit was set at 65 years in order to be
representative of older adult populations that are at risk for
cognitive decline. There was no upper age limit for inclusion
in this study [17]. Participants were recruited from the
independent living sector of a continuing care senior housing
community in San Diego County. Enrollment criteria were (1)
English-speaking individuals aged 65 years or older, (2) ability
to complete study assessments and engage in a qualitative
interview, and (3) no known diagnosis of dementia or any other
disabling illness. For the study, we excluded individuals with
medical or neurological conditions that would impede their
ability to complete the assessments. However, we did not
exclude those with major depressive disorders, as our sample
primarily consists of healthy older adults living independently.
This study protocol was approved by the Human Research
Protections Program of the University of California, San Diego,
and written informed consent was obtained from all study
participants.

In-person interviews by a trained professional were conducted
between April 2018 and January 2020. The interviewer and
other staff were trained to administer neuropsychological tests
according to standardized procedures by a licensed
neuropsychologist (EWT), who was continuously available to
answer scoring questions for the duration of the study. A
comprehensive battery of neuropsychological assessments was
planned, but the follow-up neuropsychological assessments
were modified due to the COVID-19 pandemic. The
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neuropsychological tests included in these analyses were limited
to those that were suitable for remote assessment (via telephone
or videoconference). Of the 71 individuals who had completed
interviews and assessments at baseline, 55 individuals had
follow-up assessments (46 assessments were recorded at ~12
months, 6 assessments at ~18 months, and 3 assessments at ~24
months) with a mean follow-up interval of 1.4 years (512.3, SD
84.5 days). Of those, 37 assessments had all included measures
available. Participants who did not complete a follow-up
assessment had either moved out of the facility, moved to a
higher level of care (eg, a nursing facility), declined further
participation, or died.

Sociodemographic and Clinical Neuropsychological
Measures

Overview
The sociodemographic data collected included age, sex, marital
status, and racial or ethnic background (Tables 1 and 2). Trained
staff also administered a neuropsychological battery [19] to
assess different cognitive domains. Information on the
psychometric properties of the battery constituents can be found
in Section S1 in Multimedia Appendix 1.
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Table 1. Demographic characteristics of the sample at baseline (N=71).

Percentage impairedValue

Sociodemographics

N/AaAge (in years at the time of visit)

83.3 (7.0)Mean (SD)

67-98Range

N/AEducation (in years)

15.9 (2.3)Mean (SD)

12-20Range

N/A45 (63)Marital status (single), n (%)

N/A65 (91)Race (White), n (%)

N/A47 (66)Sex (female), n (%)

Clinical measures

39.44MoCAb

23.8 (3.7)Mean (SD)

13-29Range

22.39HVLTc total recall

21.3 (5.3)Mean (SD)

9-31Range

28.36HVLT delayed recall

6.2 (3.5)Mean (SD)

0-12Range

31.34HVLT retention

67.5 (31.8)Mean (SD)

0-122Range

29.41FASd

35.3 (11.3)Mean (SD)

16-61Range

30.88Animalse

16.6 (5.4)Mean (SD)

8-32Range

71.83Overall deficit

N/ADepression PHQ-9f

3.2 (3.8)Mean (SD)

0-15Range

aN/A: not applicable.
bMoCA: Montreal Cognitive Assessment.
cHVLT: Hopkins Verbal Learning Test-Revised.
dF-A-S verbal fluency test.
eVerbal processing speed (animals).
fPHQ-9: 9-item Physical Health Questionnaire.
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Table 2. Demographic characteristics of the sample at follow-up (N=55).

Percentage impairedValue

Sociodemographics

N/AaAge (in years at the time of visit)

84.1 (7.5)Mean (SD)

68-100Range

N/AEducation (in years)

16.3 (2.2)Mean (SD)

12-20Range

N/A42 (93)Marital status (single), n (%)

N/A40 (89)Race (White), n (%)

N/A30 (67)Sex (female), n (%)

Clinical measures

35.14MoCAb

24.3 (4.3)Mean (SD)

6-29Range

42.22HVLTc total recall

19.6 (6.6)Mean (SD)

5-31Range

42.22HVLT delayed recall

5.7 (3.7)Mean (SD)

0-12Range

42.22HVLT retention

63.2 (34.1)Mean (SD)

0-100Range

29.55FASd

35.0 (9.3)Mean (SD)

18-53Range

43.18Animalse

16.1 (5.0)Mean (SD)

5-27Range

78.26Overall deficit

N/ADepression PHQ-9f

3.5 (4.0)Mean (SD)

0-17Range

aNot applicable.
bMoCA: Montreal Cognitive Assessment.
cHVLT: Hopkins Verbal Learning Test-Revised.
dF-A-S verbal fluency test.
eVerbal processing speed (animals).
fPHQ 9: 9-item Physical Health Questionnaire.
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The Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) [20] is a brief
cognitive screening test to identify and stage dementia and
includes items measuring attention, working memory,
orientation, and short-term memory.

Hopkins Verbal Learning Test-Revised
The Hopkins Verbal Learning Test-Revised (HVLT) [21,22] is
a list-learning and memory test that includes total recall (ie,
total recalled words over 3 learning trials), a delayed recall trial,
and a recognition trial.

Delis-Kaplan Executive Function System Verbal Fluency
This subtest [23] includes tests of verbal processing speed
requiring the participant to name as many animals as possible
in 1 minute and to name as many words starting with the letters
F, A, and S in 1 minute.

Deficits Scores
For HVLT and Verbal Fluency tests, normative data from
respective test manuals were used to convert raw scores to
age-corrected T-scores. Each of the T-scores was converted into
binary deficit scores. Deficits were defined as scores <23 on
the MoCA or T-scores <40 on the remaining tests (reflecting
>1 SD below the mean).

Overall Deficit
A composite binary variable was constructed by combining the
MoCA, HVLT, and Verbal Fluency tests (0=no deficit, 1=deficit
on any test).

Acoustic Features
This study used a standardized procedure for qualitative
interview processing as outlined by previous research [24,25].
Acoustic files (digital speech standard) were obtained following
testing and converted to .wav format using NCH Switch Audio
Converter (NCH Software). The audio files included the
interviewer’s speech; however, we note that although multiple
staff members were involved in administering the battery of
neuropsychological assessments, the interviews were conducted
by the same person and included a common set of questions,
see Section S2 in Multimedia Appendix 1 for details. To reduce
the number of parameters, we used the feature set
“eGeMAPSv02,” which is based upon the Geneva minimalistic
acoustic parameter set for voice research and affective
computing, which identifies a basic set of acoustic features
commonly used in clinical speech analysis [26]. A total of 88
Geneva minimalistic acoustic parameter set acoustic features
are identified in the Python openSMILE library, which has been
previously validated for this purpose [27-29]. These features
were then extracted from the entirety of the interview using
openSMILE audio processing software (audEERING GmbH).
Notable among these were features of spectral slope
(alphaRatioUV, slope UV 500-1500 HZ) and balance or shape
or flux (Mel-frequency cepstral coefficient). F0 in the context
of acoustic features generally refers to the fundamental
frequency or the lowest resonating frequency produced by the
vocal tract, while F1, F2, and F3 refer to higher resonating
frequencies seen as successive peaks in the frequency spectrum.

These are also referred to as formants. More details on the
acoustic features can be found in Section S3 in Multimedia
Appendix 1.

Psycholinguistic Features
Linguistic features were extracted from the transcripts for each
sample, drawing from established methodologies such as those
detailed in Yamada et al [30] and other relevant literature [31].
In addition, we also explored the use of other higher-level
psycholinguistic elements to assess language attributes, like
readability, coherence, and references to forgetfulness and
recollection. The interviews were transcribed using third-party
services and were subsequently reviewed and verified manually.

In total, 86 distinct features were extracted to represent various
linguistic traits: text statistics that denote parts of speech,
vocabulary richness, grammatical complexity gauged by the
nesting of phrases (Yngve depth) [32], verbal overlap between
sentences (measured through cosine similarity [33,34]),
sentiment analysis, readability metrics [35], and other features
based on sentence embeddings generated by advanced language
models such as the Bidirectional Encoder Representations from
Transformers (BERT) [36]. Detailed interpretations of these
features can be found in Table S1 in Multimedia Appendix 1.

Data Analysis
After incorporating sociodemographic variables, like age,
gender, education, race (categorized as White, Black, or Other),
and ethnicity (distinguished as Hispanic or non-Hispanic), the
total feature set for classification encompassed 178 distinct
features.

Predicting baseline and future cognitive deficits often uses
traditional regression techniques such as linear regression
analysis or mixed linear modeling. However, due to observed
limitations in model fit with our data set, a classification
approach was deemed more appropriate. Target variables were
dichotomized using cutoffs based on literature recommendations.
This adaptation not only improved model accuracy but also
aligned with clinical standards, specifically diagnostic cutoffs
like scores below 23 on the MoCA [37] or T-scores 1 SD below
the mean [38].

Owing to the limited understanding of the audio feature space
in the context of psychiatry and the sparse body of work on
psycho-linguistic features, 6 diverse ML models were separately
explored to determine their performance. This was done in part
to characterize the problem space: a high-performing support
vector machine model or k-nearest neighbor might suggest
distinct regions or clusters in the feature space, which could be
pursued for future investigation. The models were retrained for
the follow-up assignments, in order to identify potential lead-lag
effects. To address the risk of overfitting, the feature space was
reduced to the top 10 using the Gini impurity index [39,40] and
the performance results (ie, F1-score, sensitivity, and specificity)
were reported using leave-one-out cross-validation.

The following ML algorithms were used in the investigation:
k-nearest neighbor, support vector machine, random forest,
neural network, and naïve Bayes classifiers. Importantly, gender
was considered alongside acoustic features in the ML analysis
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due to its potential impact on various acoustic properties,
including pitch, which could represent a confounding variable.
The hyperparameters applied across these models are
exhaustively detailed in Table S2 in Multimedia Appendix 1.

The relative contribution of the features across domains was
assessed by calculating the correlation between
sociodemographic, acoustic, and psycholinguistic features with
both raw scores and dichotomized deficits on
neuropsychological subscales. Subsequently, the maximum
correlation value for each feature with either the raw scores or
deficit scores was determined, and the features were prioritized
based on these values. The principal 25 features were then
depicted in a heat map to facilitate the examination of their
interrelationships. In addition, biclustering techniques [41] were
used to delve deeper into the feature interdependencies. The
emergent correlation matrix was visualized through a heat map,
providing a comprehensive synopsis of the variable associations.

Ethical Considerations
The study procedures and data analyses were reviewed and
approved by the University of California San Diego Human
Research Protections Program (Institutional Review Board
#170466). The participants provided written informed consent
to participate in this study. All data were anonymized, by use
of a manual review of each transcript to remove any proper
names, addresses, or potentially identifying information. All
participants whose data are presented here provided additional
consent to the use of information extracted from audio
recordings for research purposes. Participants were compensated
US $75 for participation in the study, which included the clinical
and neurocognitive tests and qualitative interviews detailed in
this manuscript.

Results

Sample Characteristics
The sample’s age ranged from 67 to 98 years at the initial visit,
with a mean age of 83.3 (SD 7.0) years (Table 1). Most
participants were single (n=45, 63%), White (n=65, 91%), and
female (n=47, 66%), and had a high level of education (mean
15.9, SD 2.3 years). Cognitive functioning varied among
participants, as indicated by MoCA scores ranging from 13 to
29. Depression scores were low (mean 9-item Patient Health

Questionnaire score of 3.2, SD 3.8), rendering the sample
inadequate for investigating the intersection of cognitive
impairment with depression. The average time to the follow-up
visit was 1.4 years (mean 512.3, SD 84.5 days) postbaseline
(refer to Table 2). Attrition was primarily due to a lack of
interest (n=27, 21%), transfer to more intensive care (n=11,
9%), participant deaths (n=11, 9%), and medical issues (n=3,
2%). A minority (n=3, 2%) reportedly withdrew due to cognitive
decline. The reasons for the decrease in participation were not
further analyzed.

Classification Performance Using Acoustic and
Psycholinguistic Features
The initial assessment focused on the effectiveness of various
feature groups in distinguishing individuals with cognitive
impairment from those without at baseline. To this end,
F1-scores were used due to their balanced consideration of
precision and recall, which is critical in the context of an uneven
class distribution. Table 3 shows F1 performance scores,
sensitivity, and specificity for various feature groups. Assuming
a threshold of 0.75 for F1-scores (see Section S4, Multimedia
Appendix 1 for the choice), acoustic and psycholinguistic
features were acceptable and generally higher than F1-scores
of sociodemographic features. Given the limited performance,
sociodemographic features (gender, age, race, years of
education) were best at predicting HVLT total recall (or
learning) deficits compared to other deficits. Acoustic features
were the best predictors of animal naming and overall deficits,
and the psycholinguistic features performed best for HVLT total
recall. The performance for MoCA and HVLT retention was
comparable for both acoustic (F1 of 0.76 and 0.71, respectively)
and psycholinguistic feature (F1 of 0.78 and 0.70, respectively)
sets. Acoustic features performed better than psycholinguistic
features in HVLT delayed recall (F1 of 0.72 vs 0.67), animal
naming (F1 of 0.80 vs 0.70), and letter fluency (F1 of 0.78 vs
0.73), while psycholinguistic features performed better than
acoustic in HVLT total recall (learning; F1 of 0.82 vs 0.77). As
expected, the combined set (acoustic, linguistic, and
sociodemographic features) performed the best among all
individual feature sets. Gender did not play a factor among the
top 10 features for any target in the baseline or the follow-up
visit.
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Table 3. Performance of features (by categories) for classification of deficits in baseline visit using top 10 features.

Combinedb top mod-
el, F1 (sensitivity,
specificity)

Psycholinguistic top
model, F1 (sensitivity,
specificity)

Acoustica top model, F1

(sensitivity, specificity)

Sociodemographic top
model, F1 (sensitivity,
specificity)

Sample
size

Target

NB, 0.80 (0.79, 0.81)ANN logistic, 0.78
(0.64, 0.88)

NBe, 0.76 (0.71, 0.79)ANNd logistic, 0.62 (0.39,
0.79)

71MoCAc

NB, 0.85 (0.73, 0.88)NB, 0.82 (0.60, 0.88)NB, 0.77 (0.67, 0.79)NB, 0.74 (0.27, 0.90)67HVLTf total recall T deficit
score

NB, 0.74 (0.74, 0.73)ANN ReLu, 0.67 (0.32,
0.83)

ANN ReLu, 0.72 (0.42,
0.85)

NB, 0.60 (0.05, 0.92)67HVLT delayed recall T deficit
score

NB, 0.73 (0.90, 0.63)ANN tanh, 0.70 (0.48,
0.80)

NB, 0.71 (0.62, 0.74)NB, 0.64 (0.14, 0.98)67HVLT retention T deficit score

NB, 0.80 (0.71, 0.83)NB, 0.70 (0.57, 0.74)NB, 0.80 (0.81, 0.79)ANN tanh, 0.61 (0.29,
0.77)

68Animals T deficit scoreg

NB, 0.76 (0.75, 0.75)SVMi, 0.73 (0.40, 0.90)NB, 0.78 (0.85, 0.73)Random forest, 0.65 (0.30,
0.81)

68FAS T deficit scoreh

NB, 0.86 (0.84, 0.90)NB, 0.81 (0.76, 0.90)NB, 0.81 (0.84, 0.70)ANN ReLu, 0.69 (0.76,
0.50)

71Overall deficit score

aIncudes gender as a feature.
bCombined: acoustic, psycholinguistic, and sociodemographic features.
cMoCA: Montreal Cognitive Assessment.
dANN: artificial neural network.
eNB: naïve Bayes.
fHVLT: Hopkins Verbal Learning Test.
gAnimals T-score (D-KEFS Norms).
hFAS total T-score (D-KEFS Norms).
iSVM: support vector machine.

Using baseline features to determine cognitive status at
subsequent follow-up visits (Table 4), it was observed that the
predictive capacity of these features remained consistent across
tests (for instance, an F1-score of 0.87 was noted for MoCA
using all features). This observation was in line with the initial
analysis, where psycholinguistic features outperformed acoustic
features, which in turn were more predictive than
sociodemographic variables. There was also an improvement
in the performance of sociodemographic features (F1-scores;
Table 4) and sensitivity (of >0.5 in most cases, Table 4), but
they continued to underperform compared with the acoustic and

psycholinguistic features. MoCA (F1=0.87, sensitivity=0.85,
specificity=0.88) and letter fluency (F1=0.91, sensitivity=1.00,
specificity=0.87) were the best predicted cognitive tests for a
year in the future. Among the ML models used, the naïve Bayes
classifier generally performed better than other models for most
classification targets (Table S3, Multimedia Appendix 1). In
addition, we performed a 10-fold cross-validation; the results
aligned closely with leave-one-out cross-validation for
best-performing models and are reported in Table S4 in
Multimedia Appendix 1.
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Table 4. Performance of features (by categories) for classification of deficits in follow-up visits using top 10 features.

Combinedb top mod-
el, F1 (sensitivity,
specificity)

Psycholinguistic top
model, F1 (sensitivity,
specificity)

Acoustica top model, F1

(sensitivity, specificity)

Sociodemographic top
model, F1 (sensitivity,
specificity)

Sample
Size

Target

ANN tanh, 0.87 (0.85,
0.88)

NB, 0.87 (0.85, 0.88)NBe, 0.79 (0.92, 0.71)ANNd logistic, 0.72 (0.54,
0.83)

37MoCAc

ANN ReLu, 0.76
(0.79, 0.73)

NB, 0.69 (0.63, 0.73)NB, 0.71 (0.74, 0.69)Random forest, 0.64 (0.58,
0.69)

45HVLTf total recall T deficit
score

NB, 0.87 (0.84, 0.88)NB, 0.82 (0.79, 0.85)NB, 0.69 (0.68, 0.69)NB, 0.71 (0.58, 0.81)45HVLT delayed recall T deficit
score

NB, 0.82 (0.84, 0.81)NB, 0.76 (0.68, 0.81)NB, 0.69 (0.68, 0.69)ANN logistic, 0.71 (0.63,
0.77)

45HVLT retention T deficit score

NB, 0.82 (0.79, 0.84)NB, 0.70 (0.63, 0.76)NB, 0.77 (0.84, 0.72)Random forest, 0.66 (0.58,
0.72)

44Animals T deficit scoreg

NB, 0.91 (1.00, 0.87)NB, 0.89 (1.00, 0.84)NB, 0.84 (0.77, 0.87)ANN tanh, 0.70 (0.46,
0.81)

44FAS T deficit scoreh

NB, 0.89 (0.92, 0.80)ANN Logistic, 0.80
(0.89, 0.50)

Random Forest, 0.78 (0.86,
0.50)

ANN tanh, 0.81 (0.94,
0.40)

46Overall deficit score

aIncudes gender as feature.
bCombined: acoustic, psycholinguistic, and sociodemographic features.
cMoCA: Montreal Cognitive Assessment.
dANN: artificial neural network.
eNB: naïve Bayes.
fHVLT: Hopkins Verbal Learning Test.
gAnimals T-Score (D-KEFS Norms).
hFAS Total T-Score (D-KEFS Norms).

Ranking and Proportion of Acoustic and
Psycholinguistic Features and Demographics
Overall, acoustic features performed best in classifying animal
fluency, letter fluency, and HVLT total recall (learning), while
psycholinguistic features performed best in classifying MoCA
and HVLT retention (Table 5). The prominence of acoustic
features in deficit prediction prompted us to establish age
correlates of acoustic features (Table S5, Multimedia Appendix
1). Few sociodemographic features were present in the top 10
features. Among acoustic features, the most predictive included
ones corresponding to nonverbal vocalizations of energy and

its distribution across frequencies (formants) in absolute ranges
of 500-1500 Hz (slopeUV), as well as in terms of individual
physiology (Mel-frequency cepstral coefficient), and jitter.
Variation in loudness was also an important acoustic feature in
identifying cognitive deficits. Among the psycholinguistic
features, the amount of speech produced (number of transcribed
characters and words, number of utterances) along with
vocabulary richness (vocabulary type token ratio, interview
readability), proportion of nouns (noun to verb ratio, verb
frequency, pronoun, and particle frequency), repetition (cosine
similarity), and sentiment were important correlates of cognitive
deficits.
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Table 5. Contribution profile of deficits based on top contributing features at the baseline visit. MoCAa scores are dominated by psycholinguistic

predictors. HVLTb total and delayed recall, animal naming, and FASc are all predominantly determined by acoustic features. Sociodemographic features
play a minor role in HVLT total recall and the overall deficit.

Sociodemographic (%)Psycholinguistic (%)Acoustic (%)Cognitive assessment target

09010MOCA

101080HVLT total recall

03070HVLT delayed recall

06040HVLT retention

03070Animals

03070FAS

107020Overall deficit

aMoCA: Montreal Cognitive Assessment.
bHVLT: Hopkins Verbal Learning Test-Revised.
cF-A-S verbal fluency test.

Clustering and Heat Map of Features and Targets
The raw scores of HVLT and MoCA tasks were clustered in a
subtree, while all deficits were in a separate subtree. The
clustering suggested that animal naming deficits very closely
resembled the derived overall deficit.

Our analysis indicated that the set of top contributing features
across all targets was clustered into 4 subtrees. The cluster
labeled A (Figure 1) was comprised of psycholinguistic features
representing vocabulary richness and other metrics of vocabulary
use including type token ratio, noun-verb ratio, interview
readability, and sentiment. These features correlated positively
with task scores and negatively with deficits. The cluster labeled
B in Figure 1 predominantly contains psycholinguistic features

representing increased speech production. Included in this
cluster were features corresponding to particle, verb, and
pronoun use, increased utterances, transcribed characters, and
words. The cluster labeled C also predominantly includes
psycholinguistic properties features and contains features that
represent speech fragmentation. This includes features that
punctuate language (interjections) and repetition (cosine
similarity), and also present were acoustic features representing
variation in loudness (slopeUV500-1500, loudness) or the
control of glottis closure. These features correlated positively
with deficits and negatively with raw cognitive scores. In
contrast to clusters A, B, and C, the cluster labeled D was
comprised of almost all acoustic features representing spectral
balance and tilt.
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Figure 1. Heat map and results of biclustering of top 25 features by correlation. Along the x-axis, the acoustic features are in green, psycholinguistic
features in pink, and sociodemographic are in black. Along the y-axis, the task scores are in brown and the deficits in blue. Four clusters of features are
evident, (A) and (B) being predominantly psycholinguistic and (D) predominantly acoustic. (A) Lexical richness and positive sentiment: the group of
features reflect vocabulary richness (interview readability, vocabulary type token ratio, noun to verb ratio) and sentiment that relates positively with
the cognition scores and negatively with deficits. (B) Reversal of concreteness and greater speech production: comprises mostly of psycholinguistic
features that suggest replacement of nouns by descriptive phrases (pronoun frequency, particle frequency, verb frequency, number of utterances, number
of transcribed characters and words, yngve depth) but one acoustic feature is also included (mean alpha ratio UV simple moving average). These features
correlate positively with some deficits and negatively with others and show a certain homogeneity, the cluster associates with increased language output.
(C) Speech fragmentation: the cluster seems to encode speech fragmentation through interjection (interjection frequency), repetition (cosine similarity)
and loudness variation (norm of loudness standard deviation), and audio features for spectral balance in absolute frequency terms (mean slope UV
500-1500 Hz and F1 bandwidth) correlating negatively with cognition scores and positively with the deficits. (D) Nonverbal vocalizations: acoustic
features representing spectral balance or shape or dynamics in individual vocal tract and glottis physiology (mean and SD of mel-frequency cepstral
coefficients, jitter) and age, that corelates negatively with the cognition scores but positively with deficits and can encode nonverbal emotions. HVLT:
Hopkins Verbal Learning Test-Revised; MoCA: Montreal Cognitive Assessment.

Discussion

Principal Findings
A manual review of the cognitive measures of participants along
the timeline revealed abrupt changes that were not always
monotonic (strictly decreasing) as might be expected. In fact,
MoCA has been shown to significantly improve in the second
administration [42]. These effects combined with the noise in
the testing, as well as the within-subject fluctuations, make
regression over short intervals difficult. Furthermore, individuals
transferred to higher care facilities, who may have shown greater
declines, were not included in this analysis. The research and
medical team agreed that modeling individual decline over 1.4
years might not be feasible. Posing it as a classification problem
by dichotomization, however, allowed us to model age-related
changes at a very broad level with a modest degree of success.

This work is among the first to evaluate both acoustic and
psycholinguistic features in a longitudinal study of cognitive
performance in an older adult sample. We found that both
acoustic and psycholinguistic features provided a reasonably
strong classification of overall cognitive impairment, verbal

memory, and verbal fluency tasks at both baseline and follow-up
assessments. While using psycholinguistic features and
sociodemographic features alone, the classification of cognitive
impairment was similar to previous approaches [13]. Combining
the acoustic and psycholinguistic features, however, enhanced
the classification performance. We found that baseline acoustic
and psycholinguistic features predicted future performance on
the same cognitive tasks at a mean follow-up of 1.4 years.
Comparing the relative accuracy of acoustic versus
psycholinguistic features, there was a slight disadvantage of
acoustic features compared to psycholinguistic features using
the F1-score metric in the follow-up. Features clustered by type
and varied across cognitive tasks, suggesting that different
features may be useful for detecting different aspects of
cognitive impairment. Since the actual performance scores
(F1-scores) were in the 0.7-0.8 range, separation boundaries
were expected to be fuzzy. Overall, our findings add to the
growing body of literature indicating that linguistic and acoustic
analysis of speech samples may aid in the detection of cognitive
deficits in aging.

Our findings are consistent with prior research that has
investigated psycholinguistic markers of cognitive aging. A
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change, generally a reduction, in noun production, has long
been identified as an early indicator of cognitive decline by
several studies [43-45]. Nouns and verbs are the most common
categories in the English language, and their use often declines
in early dementia [46]. Word-finding difficulties foreshadow
progressive aphasias and other degenerative dementias [47,48].
In our heat map–based analysis of the baseline data, we found
that lexical richness related negatively to deficits and positively
to cognitive performance. The reduced access to nouns due to
a decline in semantic networks may initially result in longer
phrases that describe the nouns, thus resulting in increased
language production in social settings [49,50]. This may also
be related to as “reversal of concreteness effect” [51-53]. This
phenomenon is reflected in the features that represent an increase
in the frequency of pronouns, particles, and verbs (eg, the
inability to recall the word “fork” could result in saying “that
thing you eat with,” such that a noun is replaced by several other
parts of speech) and increase in utterances, words and characters,
and even coverbal gestures [54]. Grammatically, this would
cause an increase in the depth of the parse tree, the Yngve depth
[32], as a single word gets replaced by a phrase. Written
grammatical complexity, however, decreases over longer
timeframes, as suggested by a study spanning the lifetime of a
novelist with Alzheimer disease [55]. Notably, we did not
predict decline per se but rather future cognitive ability. Eyigoz
et al [13] demonstrated the predictive value of linguistic features
over a 7-year period in reference to conversion to Alzheimer
disease. It is possible that our mean follow-up period of 1.4
years was too short to result in a significant number of
individuals becoming impaired.

Our study adds to the comparatively smaller body of literature
on acoustic features in cognitive aging. Exploring these features
is important given that not all are detectable with the human
ear, despite some evidence that they may covary with age and
cognitive ability. Acoustic features relating to the Mel-frequency
cepstral coefficient may have embedded within them artifacts
of age-related decline [56,57] leading to the poorer
representation of nonverbal vocalizations, possibly through the
expression of emotions through glottis control, for example,
laughter or giggle [58]. Some top predicting acoustic features
were also associated with variation in loudness [59] or the glottis
closing slowly or insufficiently due to aging [60]. Such
nonverbal vocalizations are not correlated with grammar [61,62],
so they are undetected by NLP extraction tools. Some, such as
laughter or giggle, are produced in glottal or subglottal structures
spontaneously and are in the annotation category, while others
such as breathing, correlate with pauses in prosodic hierarchy
[63]. Aging is also reflected in jitter [64] due to vocal fold
atrophy [65]. Overall, it was notable that our best models
combined acoustic and psycholinguistic features, and that our
heat map suggested that different cognitive domains were
predicted by unique feature sets that clustered with acoustic
features or psycholinguistic. As such, future research should
evaluate the dynamics of within-person change in acoustic and
linguistic features as they may predict changes in cognitive
performance in a range of cognitive tasks over time.

It is possible that the decline manifests itself in fits and bursts
due to the noise in the measurement of cognitive tasks and

within-individual fluctuations: the changes are small over the
interval of 1.4 years compared to the overall value. Furthermore,
individuals who were transferred to a higher level of care may
have a greater decline but could not be included in this analysis.
Hence, our data does not allow for the prediction of various
cognitive scores on an individual basis. However, if the scores
are dichotomized and aggregated, the predictions about the
cognitive status change can achieve performance that is suitable
for screening purposes. Future studies with larger samples and
longer periods of follow-up would allow for finer-grained
prediction of cognitive decline in specific domains.

One study [66] has documented extensively the performances
of a variety of BERT-based transformers on this task. We found
that most of these models under-performed our combined
models, and only one approached a comparable performance
(BERTLarge-LR; F1-scores of 87%). This, in our opinion, can
be attributed to our rich feature set that included acoustic
features that potentially convey important information about
the physical health of the participants. The use of large language
models (such as ChatGPT) was avoided due to two concerns:
(1) the models are criticized for opaqueness to feature
interpretation, which was our focus, and (2) patient privacy
concerns. At the time of our research, the available generative
large language models did not meet our specific needs in terms
of local deployment capabilities and data sensitivity [67] (ie,
ChatGPT and Claude could not be run locally). We are excited
to note that with the introduction of open-source models, such
as Llama 3, which offers robust performance while being
feasible for local deployment, we plan to bridge this gap.

Limitations
There are some limitations in this study. The sample was
relatively homogenous, with high socioeconomic status,
primarily White, and highly educated, relative to the broader
older adult population. The acoustic recordings were roughly
1.5-2 hours in length, and thus the minimum length of speech
data needed for these analyses is unknown. The current
interview length may not be practical for clinical deployment.
These analyses include acoustic features extracted from the
entire interview; the fraction of the interviewer’s speech was
small and there were fixed questions. Although the same
interviewer conducted the interview with the same set of
prompts, it is reasonable to expect that some bias was introduced
in the acoustic features of the interviewee resulting in some loss
of performance of ML models. Other limitations include that
drop out was significant and longitudinal prediction may be
affected by this; as well, there was a variable follow-up duration.
We also had planned a broader neuropsychological battery with
nonverbal domains, but the transfer to a remote assessment
paradigm due to the COVID-19 pandemic prevented this. In
addition to impacting the shift to remote assessments, the
COVID-19 pandemic may have impacted aspects of daily life
that may influence cognitive ability (eg, access to physical
activity), therefore, the findings should be interpreted in this
light.

Finally, while we did perform leave-one-out cross-validation,
we lacked an independent sample with which to validate these
features or establish confidence intervals. Model fits were
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evaluated based solely on F1-score comparisons. Constrained
by the mentioned limitations, the study should be considered
exploratory.

Conclusions
Despite these limitations, our study raised questions that warrant
future investigation. We were unable to ascertain if the features
most indicative of cognitive impairments are also predictive of
those likely to experience decline in the near future.
Furthermore, the mapping between the acoustic features and
cognitive domains remains unclear. The value of adding acoustic
and psycholinguistic features to assessments and the duration
of speech needed to discriminate cognitive impairments could
be contrasted to the relative importance beyond that associated

with cognitive screening data. Although our semistructured
interview was broad, it would be useful to understand both the
impact of the nature of the prompts and topics covered, as well
as the minimum duration of speech sample required, to achieve
the desired accuracy in predicting cognitive deficits. The
generalizability of acoustic and psycholinguistic features,
especially beyond English-speaking and primarily well-educated
White groups, requires confirmation across different languages
and racial or ethnic backgrounds. Overall, our results suggest
a potential role for acoustic and psycholinguistic data in
cognitive assessment; the next step is to determine the timing
and connection to brain changes that occur with pathological
aging processes such as in dementia.
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