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Abstract

Background: Frontotemporal lobar degeneration (FTLD) is a leading cause of dementia in individuals aged <65 years. Several
challenges to conducting in-person evaluations in FTLD illustrate an urgent need to develop remote, accessible, and low-burden
assessment techniques. Studies of unobtrusive monitoring of at-home computer use in older adults with mild cognitive impairment
show that declining function is reflected in reduced computer use; however, associations with smartphone use are unknown.

Objective: This study aims to characterize daily trajectories in smartphone battery use, a proxy for smartphone use, and examine
relationships with clinical indicators of severity in FTLD.

Methods: Participants were 231 adults (mean age 52.5, SD 14.9 years; n=94, 40.7% men; n=223, 96.5% non-Hispanic White)
enrolled in the Advancing Research and Treatment of Frontotemporal Lobar Degeneration (ARTFL study) and Longitudinal
Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS study) Longitudinal Frontotemporal Lobar Degeneration
(ALLFTD) Mobile App study, including 49 (21.2%) with mild neurobehavioral changes and no functional impairment (ie,
prodromal FTLD), 43 (18.6%) with neurobehavioral changes and functional impairment (ie, symptomatic FTLD), and 139 (60.2%)
clinically normal adults, of whom 55 (39.6%) harbored heterozygous pathogenic or likely pathogenic variants in an autosomal
dominant FTLD gene. Participants completed the Clinical Dementia Rating plus National Alzheimer’s Coordinating Center
Frontotemporal Lobar Degeneration Behavior and Language Domains (CDR+NACC FTLD) scale, a neuropsychological battery;
the Neuropsychiatric Inventory; and brain magnetic resonance imaging. The ALLFTD Mobile App was installed on participants’
smartphones for remote, passive, and continuous monitoring of smartphone use. Battery percentage was collected every 15
minutes over an average of 28 (SD 4.2; range 14-30) days. To determine whether temporal patterns of battery percentage varied
as a function of disease severity, linear mixed effects models examined linear, quadratic, and cubic effects of the time of day and
their interactions with each measure of disease severity on battery percentage. Models covaried for age, sex, smartphone type,
and estimated smartphone age.

Results: The CDR+NACC FTLD global score interacted with time on battery percentage such that participants with prodromal
or symptomatic FTLD demonstrated less change in battery percentage throughout the day (a proxy for less smartphone use) than
clinically normal participants (P<.001 in both cases). Additional models showed that worse performance in all cognitive domains
assessed (ie, executive functioning, memory, language, and visuospatial skills), more neuropsychiatric symptoms, and smaller
brain volumes also associated with less battery use throughout the day (P<.001 in all cases).

Conclusions: These findings support a proof of concept that passively collected data about smartphone use behaviors associate
with clinical impairment in FTLD. This work underscores the need for future studies to develop and validate passive digital
markers sensitive to longitudinal clinical decline across neurodegenerative diseases, with potential to enhance real-world monitoring
of neurobehavioral change.

(JMIR Aging 2024;7:e52831) doi: 10.2196/52831
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Introduction

Background
Frontotemporal lobar degeneration (FTLD) is a common cause
of dementia in individuals aged <65 years [1,2]. FTLD
encompasses a group of neuropathologically distinct diseases
that result in an overlapping set of dementia syndromes with
heterogeneous symptoms, including those defined by primary
behavior, language, or sensorimotor changes [3,4]. The timely
detection of neurodegenerative diseases such as FTLD is a core
public health strategy to reduce the individual, caregiver, and
socioeconomic burden of dementia [5-7]. As we enter the era
of disease-modifying treatments for neurodegenerative diseases,
early detection is critical to identify those eligible for clinical

trial participation and early treatment to slow or stop disease
progression [8-10].

However, current assessment practices for detecting
neurobehavioral changes associated with neurodegenerative
disease are limited. In-person neuropsychological and
neurological evaluations are the gold standard for determining
the presence of cognitive impairment and identifying clinical
phenotypes suggestive of an underlying neurodegenerative
process; unfortunately, their high costs and restricted availability
via specialty dementia clinics and research centers limit access
for those with fewer financial resources and lower health literacy
as well as those who reside in more remote geographic locations.
In addition, evaluating a person at a single appointment provides
only a snapshot of neurobehavioral functioning, which does not
account for the dynamic nature of human behavior that fluctuates
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diurnally and is influenced by other dynamic factors (eg, sleep,
fatigue, mood, and medications), limiting sensitivity for
detecting early subtle declines [11,12]. Traditional
neuropsychological assessment also lacks ecological validity
because interpretations of functioning are based on task
performance in a tightly controlled testing environment, which
seldom reflects a patient’s typical daily experience.

Remote monitoring of health status and behavior through the
use of digital health tools is a promising solution to overcome
the numerous limitations of in-person assessment and has been
identified as a priority by several leading health organizations,
including the US Food and Drug Administration [13], the US
Department of Health and Human Services [14], and the
National Institutes of Health [15,16]. Passive digital monitoring
in particular (ie, monitoring behavior passively and
unobtrusively through remote sensors) represents a low-burden
and highly scalable method for improved detection and
monitoring of real-world neurobehavioral change in
neurodegenerative disease. Naturalistic behavioral data collected
via in-home remote sensors have shown sensitivity to clinical
severity in Alzheimer disease [17-25]; for example, older adults
with mild cognitive impairment exhibit significant declines in
the number of days with computer use and daily time spent on
the computer per day compared to those without cognitive
impairment [18]. As an extension of this work, we aim to
examine overall daily smartphone use and its association with
clinical severity in FTLD. We focused on FTLD as a specific
use case to study the construct of passively collected smartphone
data in the context of a neurodegenerative disease that manifests
with well-characterized neurobehavioral changes.

Objectives
Thus, the aims of this study were to (1) examine passively
collected battery percentage trajectories as a proxy for
smartphone use throughout the day and (2) test associations
between daily battery percentage trajectories and measures of
cognitive and functional impairment and neurodegeneration in
FTLD. Time-stamped battery percentage data can be easily
accessed through public application programming interfaces
(APIs) for both iOS and Android devices and have previously
been associated with smartphone use [26-28]. Although
smartphone screen time or app use time may be a more
face-valid measure of smartphone use, access to these data has
historically been restricted on iOS devices. This has been a
major barrier to accessibility in passive monitoring research
because nearly 30% of smartphone users worldwide have iOS
devices [29]. Thus, it is worthwhile to examine battery
percentage as a more accessible proxy for overall smartphone
use. Consistent with prior research on computer use in older
adults with cognitive impairment, we hypothesized that
individuals with greater FTLD overall disease severity (ie, more
severe functional impairment, worse cognitive performance,
greater neuropsychiatric symptoms, and more brain atrophy)
would demonstrate lower levels of daily smartphone use.

Methods

Participants
Participants were enrolled in the ARTFL (Advancing Research
and Treatment of Frontotemporal Lobar Degeneration) study
and LEFFTDS (Longitudinal Evaluation of Familial
Frontotemporal Dementia Subjects) Longitudinal
Frontotemporal Lobar Degeneration (ALLFTD) Mobile App
study through the multisite ALLFTD (NCT04363684) study
and University of California San Francisco studies of FTLD
(AG038791, AG062422, and AG019724), as described
previously [30]. The participants were those who had a referring
diagnosis of an FTLD clinical syndrome or those who were
members of a family with a strong family history of an FTLD
syndrome. Additional inclusion criteria were as follows: (1)
aged ≥18 years, (2) access to a smartphone, and (3) English
reported as the primary language. Participants were asked to
use their own smartphones. Recruitment primarily targeted those
with Clinical Dementia Rating Dementia Staging Instrument
plus National Alzheimer’s Coordinating Center Frontotemporal
Lobar Degeneration Behavior and Language Domains
(CDR+NACC FTLD) global scores of <2, but participants who
were more severely impaired were not excluded. Data for this
study were collected from August 2020 to April 2023. During
this period, 257 participants were enrolled and logged into the
ALLFTD Mobile App on their personal smartphones.
Participants were only included in this secondary analysis of
the ALLFTD Mobile App study if they had at least 14
continuous days of passive smartphone monitoring data,
consistent with prior digital phenotyping studies attempting to
capture typical daily behavior [31]. Thus, of the initial 257
participants, 231 (89.9%) were included in the final sample after
26 (10.1%) participants were excluded because they first logged
in <14 days before the date on which these data were pulled in
April 2023. Of these 231 participants, 92 (39.8%) were classified
as having neurobehavioral symptoms at the prodromal stage
(ie, no functional impairment) or fully symptomatic (ie, with
functional impairment) level of severity that are consistent with
an FTLD-related clinical phenotype per conference consensus
with neurologists and neuropsychologists following published
criteria [32-35]. Participants who were symptomatic had either
sporadic FTLD or a confirmed pathogenic or likely pathogenic
variant in an autosomal dominant FTLD gene (ie, a pathogenic
expansion in the chromosome 9 open reading frame 72
[C9orf72] gene or a known pathogenic or likely pathogenic
variant in the progranulin (GRN) or microtubule-associated
protein tau [MAPT] genes; conducted as described previously
[36]). The remaining participants (139/231, 60.2%) were
asymptomatic clinically normal family members of the
prodromal or symptomatic individuals who (1) carried a
pathogenic or likely pathogenic FTLD gene variant (55/139,
39.6%), (2) tested negative for known pathogenic or likely
pathogenic FTLD variants (50/139, 36%), or (3) did not yet
have results available from genetic testing (34/139, 24.5%).

Ethical Considerations
The study was approved by a centralized single institutional
review board at Johns Hopkins Medicine (IRB # 20-29891),
and all participants provided written informed consent.
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Measures

Passively Monitored Smartphone Battery Percentage
We used the first 30 days of participants’ smartphone data for
this study with the goal of understanding whether approximately
1 month of smartphone monitoring could reflect baseline
neurobehavioral status without capturing longitudinal
disease-related decline [18,37]. Participants downloaded the
ALLFTD Mobile App onto their personal smartphones. The
app is designed to deliver both active mobile cognitive
assessments and passively collect smartphone use data [30],
including battery percentage. The ALLFTD Mobile App was
programmed to collect battery percentage every 15 minutes.
Due to some variability around this timing in the actual data
collected (ie, some missing data points and some data collected
over shorter intervals), data were aggregated to reflect the
average battery percentage per hour of each study day per
participant. This resulted in a comparable number of data points
per day across participants. The ALLFTD Mobile App also
recorded information about participants’ smartphone model,
which was used to estimate the age of the smartphone (ie,
calculated on the basis of the smartphone model release date
and the first date of participation in this study).

Functional, Cognitive, and Neuropsychiatric Assessment
All participants underwent comprehensive functional and
cognitive assessment at a parent study visit at the beginning of
their smartphone monitoring study period. Informant and
participant interviews were conducted to characterize the level
of cognitive and everyday functioning impairment using the
CDR+NACC FTLD scale [38], which is a validated, modified
version of the CDR [39] that has higher sensitivity to functional
impairment in FTLD. CDR+NACC FTLD global scores [40]
were used to categorize participants into disease severity groups:
0=unimpaired, 0.5=prodromal, and ≥1=symptomatic.
Domain-specific cognitive functioning was assessed via a
comprehensive battery of well-validated neuropsychological
tests. The previously published Uniform Data Set (Version 3)
Executive Function composite score was used as our measure
of executive functioning, comprising Trail Making Test A and
B, phonemic fluency (generating words beginning with F and
L), number span backwards, and category fluency (animals and
vegetables) [41,42]. Sample-based z scores were calculated for
indices of memory, including immediate and delayed free recall
on the California Verbal Learning Test-3 Brief Form [43], as
well as Benson Complex Figure Delayed Recall [44,45]. A
composite memory z score was created by taking the mean of
the z scores across these memory tests. Language functioning
was assessed via the Multilingual Naming Test [46].
Visuospatial functioning was assessed via the Benson Complex
Figure Copy [45]. Informants also completed the
Neuropsychiatric Inventory [47] to assess the presence and
severity of neuropsychiatric symptoms in participants.

Neuroimaging
Of the 231 participants, a subset (n=189, 81.8%) completed
neuroimaging. Participants were scanned on 3 Tesla magnetic
resonance imaging (MRI) scanners. T1-weighted images were
acquired as magnetization-prepared rapid gradient echo images

using the following parameters: 240×256×256 matrix;

approximately 170 slices; voxel size=1.05×1.05×1.25 mm3; and
flip angle, echo time, and repetition time varied by vendor. A
standard imaging protocol was used across all centers, and all
images were reviewed for quality by a core group at the Mayo
Clinic, Rochester, Minnesota, United States. Details of image
acquisition, processing, and harmonization have been published
elsewhere [48]. Total gray matter volume was used as the
primary neuroimaging variable of interest. Total intracranial
volumes were regressed out (using a simple linear regression
with gray matter volume as outcome and total intracranial
volume as the only predictor) before inclusion in analyses to
account for interindividual volumetric differences in head size
on gray matter volume.

Statistical Analyses
Differences in demographic and clinical characteristics across
the CDR+NACC FTLD–defined disease severity groups were
tested with 1-way ANOVA and chi-square tests for continuous
variables and categorical variables, respectively. Raw battery
percentage data were plotted against the time of day to inform
statistical analysis. Linear mixed effects (LME) regression
models were then used to model the linear, quadratic, and cubic
effects of time (ie, hour of the day; 0=midnight; 23=11 PM) on
battery percentage. Person-specific random intercepts and
random effects of time (linear, quadratic, and cubic) were
modeled. To determine whether daily patterns of battery
percentage trajectories (ie, a proxy for smartphone use) varied
as a function of FTLD disease severity, LME models examined
linear, quadratic, and cubic effects of time and their interaction
with each measure of disease severity separately (ie,
CDR+NACC FTLD group, cognitive domain z scores,
neuropsychiatric symptoms, and whole brain gray matter
volumes). All LME models covaried for age, sex, smartphone
type (iOS vs Android), and estimated smartphone age (calculated
on the basis of the smartphone model release date and the first
date of participation in this study). A post hoc sensitivity
analysis was conducted in a subset of participants (162/231,
70.1%) whose age range was matched across the CDR+NACC
FTLD groups. To understand whether subtle differences in
neurobehavioral functioning related to daily smartphone battery
use trajectories in an unimpaired sample, we conducted
additional sensitivity analyses, which repeated all models in the
subset of participants who were clinically normal (139/231,
60.2%). Regression estimates are reported as standardized betas,
which represent the predicted change in the outcome as a
function of each predictor in units of SDs. All analyses were
performed using R (version 4.2.0; R Foundation for Statistical
Computing). The lme4 package was used to conduct the LME
regressions [49].

Results

Participant Characteristics
Table 1 shows demographic and clinical characteristics by
disease severity group. Participants had a mean age of 52.5 (SD
14.9) years and a mean of 16 (SD 2.2) years of education. Of
the 231 participants, 94 (40.7%) were men, and 223 (96.5%)
identified as non-Hispanic White. Nearly three-fourths of the
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participants (171/231, 74%) had results of genetic testing
available, of whom 45% (77/171) had heterozygous pathogenic
or likely pathogenic variants in an FTLD gene. Clinically normal
participants were statistically significantly younger (P<.001)
and more likely to be women (P<.001) than those with
prodromal or symptomatic FTLD, consistent with the larger
parent study samples (ALLFTD Mobile App study [30];

ALLFTD [40,50]). There were no other clear imbalances in
other demographic and clinical characteristics across the 3
groups. Overall, participants had a mean of 28.3 (SD 4.19; range
14-30) days of smartphone monitoring data. On average,
participants’ smartphones were 2.8 (SD 1.53; range 0-7) years
old.
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Table 1. Participant characteristics by disease severity group (n=231).

Pairwise

comparisonsaP value
C (symptomatic;
n=43)

B (prodromal;
n=49)

A (clinically normal;
n=139)

Demographics

A<B, C<.00164.3 (9.3)59.7 (12.1)46.3 (13.9)Age (years), mean (SD)

A<B, C<.00123 (53.5)30 (61.2)41 (29.5)Sex (male), n (%)

N/Ab.6116.7 (2.4)16.5 (2.4)16.3 (2.1)Education (years), mean (SD)

N/A.7941 (95.3)48 (98)134 (96.4)Race and ethnicity (non-Hispanic White), n (%)

N/AStudy characteristics

.8828.6 (4.2)28.1 (4.3)28.3 (4.2)Total study days, mean (SD)

.42Smartphone type, n (%)

27 (62.8)37 (75.5)97 (69.8)iOS

16 (37.2)12 (24.5)42 (30.2)Android

.302.9 (1.6)3.0 (1.5)2.7 (1.5)Estimated smartphone age (years), mean (SD)

Genetic status

.56Genetic testing results, n (%)

13 (30.2)13 (26.5)34 (24)Not available

30 (69.8)36 (73.5)105 (75.5)Available

7 (23.3)15 (41.7)55 (52.4)Mutation carrier

3 (42.9)8 (53.3)29 (52.7)C9orf72c

0 (0)1 (6.7)7 (12.7)GRNd

3 (42.9)6 (40)16 (29.1)MAPTe

1 (14.3)0 (0)3 (5.5)Otherf

N/AClinical phenotype

N/A39 (79.6)N/AMild cognitive impairmentg

25 (58.1)N/AN/AbvFTDh

6 (14)N/AN/AsvPPAi

3 (7)N/AN/AnfvPPAj

1 (2.3)N/AN/AlvPPAk

4 (9.3)3 (6.1)N/APSP-RSl

2 (4.7)2 (4.1)N/ACBSm

2 (4.7)5 (10.2)N/AOthern

aPairwise comparisons were evaluated with the Tukey honestly significant difference test.
bN/A: not applicable.
cC9orf72: chromosome 9 open reading frame 72.
dGRN: progranulin.
eMAPT: microtubule-associated protein tau.
fIdentified pathogenic or likely pathogenic variants in genes less commonly identified as genetic causes of frontotemporal lobar degeneration (FTLD;
ie, other than C9orf72, GRN, or MAPT). The specific genetic variant is not provided to protect participant anonymity.
gIncludes behavior-, cognitive-, and language-predominant mild cognitive impairment syndromes.
hbvFTD: behavioral variant frontotemporal dementia.
isvPPA: semantic variant primary progressive aphasia.
jnfvPPA: nonfluent variant primary progressive aphasia.
klvPPA: logopenic variant primary progressive aphasia.
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lPSP-RS: progressive supranuclear palsy–Richardson syndrome.
mCBS: corticobasal syndrome.
nIncludes FTLD-amyotrophic lateral sclerosis or a change in neurobehavior that may not meet full diagnostic criteria for any particular FTLD syndrome.

Daily Smartphone Battery Percentage
Visualization of the raw battery percentage data by the time of
day (Figure 1) shows a nonlinear trajectory such that, on
average, battery percentage increased from midnight to
approximately 6 AM, then decreased until about 7 PM, and then
increased again through 11 PM. These temporal patterns
presumably represent typical patterns of charging and charge
use of the smartphone throughout the day. Multimedia Appendix
1 presents raw battery percentage data by disease severity group.
The shape of these raw data motivated consideration of a cubic
model. Thus, we first tested the fit of the LME regression
modeling the linear, quadratic, and cubic effects of the time of
day on battery percentage, covarying for age, sex, smartphone
type, and estimated smartphone age. The cubic model’s

conditional pseudo-R2 (ie, the proportion of variance explained
by both fixed and random factors) was 0.37. The likelihood

ratio tests indicated that the full cubic model had statistically
significantly better fit than LME regressions modeling only the

linear (χ2
2=4283.6; P<.001) and quadratic (χ2

1=4118.8; P<.001)
effects of time.

LME regression indicated that the interactions between disease
severity group and the linear, quadratic, and cubic effects of the
time of day were associated with battery percentage (Table 2).
Visualization of model results suggests that participants with
prodromal FTLD and those with symptomatic FTLD had flatter
battery curves throughout the day (ie, shallower decreases from
maximum to minimum battery percentage as well as a higher
minimum battery percentage; a proxy for less smartphone use)
than clinically normal participants on average (Figure 2).
Examination of pairwise disease severity group contrasts showed
that participants with symptomatic FTLD also had significantly
less battery use than participants with prodromal FTLD (P=.003
or P<.001 in all cases).

Figure 1. Visualization of raw battery percentage data for all participants binned by time of day (0=midnight; 23=11 PM).
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Table 2. Linear mixed effects regression results showing significant relationships between disease severity groups and battery percentage trajectories
throughout the day.

P valueβ (95% CI)

.047.06 (.00 to .13)Baseline age

.62−.03 (−.14 to .08)Sex (reference: female)

.89.01 (−.11 to .12)Smartphone type (reference: Android)

.03−.04 (−.08 to −.01)Estimated smartphone age

<.0011.74 (1.66 to 1.83)Time of day (linear)

<.001−5.27 (−5.45 to −5.09)Time of day (quadratic)

<.0013.28 (3.17 to 3.40)Time of day (cubic)

.001.24 (.10 to .39)Prodromal (reference: normal)

.001.27 (.11 to .43)Symptomatic (reference: normal)

.006−.23 (−.40 to −.07)Time of day (linear)×prodromal

<.001−.56 (−.73 to −.38)Time of day (linear)×symptomatic

<.001.88 (.53 to 1.24)Time of day (quadratic)×prodromal

<.0011.65 (1.29 to 2.01)Time of day (quadratic)×symptomatic

<.001−.58 (−.81 to −.36)Time of day (cubic)×prodromal

<.001−.99 (−1.22 to −.76)Time of day (cubic)×symptomatic

Figure 2. Participants with prodromal frontotemporal lobar degeneration (FTLD) and those with symptomatic FTLD had flatter battery curves throughout
the day (ie, a proxy for less smartphone use) than clinically normal participants on average. Error bands represent pointwise 95% CIs.

Similar patterns emerged when examining all other indices of
clinical severity. Each cognitive domain statistically significantly
moderated the relationship between the time of day and battery
percentage such that participants with worse cognitive
functioning had flatter battery curves throughout the day,
suggesting less smartphone use (Table 3 [executive functioning,
memory, language, and visuospatial skills]; Figures 3A-3D).
Neuropsychiatric symptom severity also moderated the
relationship between the time of day and battery percentage

such that participants with higher neuropsychiatric symptom
ratings had flatter battery curves throughout the day, suggesting
less smartphone use (Table 3 [neuropsychiatric symptoms];
Figure 3E). Examination of each Neuropsychiatric Inventory
item (yes or no) in separate LME models suggested that
participants with agitation, depression, apathy, disinhibition,
irritability, motor disturbance, nighttime behaviors, and changes
in appetite had less smartphone use (Table 4). Delusions,
hallucinations, anxiety, and elation did not statistically
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significantly relate to battery use trajectories throughout the day
(Table 4). Finally, total gray matter volume also moderated the
relationship between the time of day and battery percentage
such that participants with smaller gray matter volumes had
flatter battery curves throughout the day, suggesting less
smartphone use (Table 3 [gray matter volume]; Figure 3F). Of
all indices of clinical severity presented in Table 3, executive
functioning and total gray matter volume appeared to have the
largest effect sizes on smartphone battery trajectories.

Given the age difference across disease severity groups, we
repeated the first LME model examining battery percentage
trajectories by CDR+NACC FTLD group after restricting the
age range of the clinically normal group to be identical to that
of the group with prodromal FTLD and the group with

symptomatic FTLD (participants aged 44-81 years in all groups;
clinically normal: 70/139, 50.4%). The interactions between
disease severity group and the linear, quadratic, and cubic effects
of the time of day on battery percentage are fairly consistent,
showing that the participants who were symptomatic had lower
battery use than clinically normal participants (interaction with
linear time: β=−.23, 95% CI −.40 to −.06; P=.009; interaction
with quadratic time: β=.65, 95% CI .23 to 1.07; P=.003;
interaction with cubic time: β=−.39, 95% CI −.66 to −.12;
P=.004). However, the difference between the prodromal and
clinically normal participants no longer reached statistical
significance (interaction with linear time: β=−.05, 95% CI −.13
to .22; P=.586; interaction with quadratic time: β=−.07, 95%
CI −.50 to .36; P=.76; interaction with cubic time: β=.05, 95%
CI −.22 to .33; P=.70).

Table 3. Results of separate linear mixed effects regression models showing significant relationships between battery percentage trajectories throughout
the day and executive functioning, memory, language, visuospatial skills, neuropsychiatric symptoms, and whole brain gray matter volume (lower order
terms and covariates are not displayed).

P valueβ (95% CI)

Executive functioning

<.001.24 (.17 to .31)Time of day (linear)×UDS3-EFa composite score

<.001−.65 (−.80 to −.50)Time of day (quadratic)×UDS3-EF composite score

<.001.38 (.28 to .47)Time of day (cubic)×UDS3-EF composite score

Memory

<.001.21 (.13 to .28)Time of day (linear)×memory z score

<.001−.58 (−.74 to −.42)Time of day (quadratic)×memory z score

<.001.34 (.24 to .44)Time of day (cubic)×memory z score

Language

.05.07 (.00 to .15)Time of day (linear)×MINTbz score

.002−.24 (−.40 to −.08)Time of day (quadratic)×MINT z score

.004.15 (.05 to .25)Time of day (cubic)×MINT z score

Visuospatial skills

.001.10 (.04 to .16)Time of day (linear)×Benson Complex Figure Copy z score

<.001−.28 (−.38 to −.19)Time of day (quadratic)×Benson Complex Figure Copy z score

<.001.19 (.13 to .25)Time of day (cubic)×Benson Complex Figure Copy z score

Neuropsychiatric symptoms

.08−.06 (−.13 to .01)Time of day (linear)×NPIc total score

.001.25 (.10 to .39)Time of day (quadratic)×NPI total score

.002−.15 (−.25 to −.05)Time of day (cubic)×NPI total score

Gray matter volume (n=189)

<.001.22 (.14 to .29)Time of day (linear)×gray matter volume

<.001−.73 (−.88 to −.57)Time of day (quadratic)×gray matter volume

<.001.45 (.35 to .55)Time of day (cubic)×gray matter volume

aUDS3-EF: Uniform Data Set (Version 3) Executive Function.
bMINT: Multilingual Naming Test.
cNPI: Neuropsychiatric Inventory.
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Figure 3. Daily battery percentage trajectories were significantly moderated by (A) executive functioning, (B) memory, (C) language, (D) visuospatial
skills, (E) neuropsychiatric symptoms, and (F) total gray matter volumes. Participants with worse neurobehavioral outcomes had smaller daily decreases
from peak to minimum battery percentage on average, suggesting less smartphone use throughout the day. GMV: gray matter volume; MINT: Multilingual
Naming Test; NPI: Neuropsychiatric Inventory; TIV: total intracranial volume; UDS3-EF: Uniform Data Set (Version 3) Executive Function.

Table 4. Results of separate linear mixed effects regression models examining relationships between battery percentage trajectories throughout the day
and each neuropsychiatric symptom (NPS) captured on the Neuropsychiatric Inventory. Models covaried for age, sex, smartphone type, and estimated
smartphone age.

Predictors modeling interactions with the time of day

NPS×time of day (cubic), β (SE)NPS×time of day (quadratic), β (SE)NPS×time of day (linear), β (SE)

.43 (.34)−.25 (.53)−.12 (.25)Delusions

−.78 (.55)1.62 (.87)−.61 (.40)Hallucinations

−.65 (.13)a1.06 (.20)a−.36 (.10)aAgitation

−.64 (.11)a.92 (.17)a−.34 (.08)aDepression

.15 (.11)−.20 (.17).05 (.08)Anxiety

.29 (.17)−.38 (.26).12 (.13)Elation

−.81 (.11)a1.32 (.17)a−.43 (.08)aApathy

−.86 (.12)a1.14 (.18)a−.21 (.09)aDisinhibition

−.49 (.10)a.78 (.16)a−.20 (.07)aIrritability

−.69 (.15)a1.18 (.24)a−.44 (.11)aMotor disturbance

−.74 (.14)a1.20 (.22)a−.41 (.10)aNighttime behaviors

−.61 (.13)a.86 (.20)a−.16 (.09)Changes in appetite

aP values met the threshold for significance.

Sensitivity analyses conducted among the 139 clinically normal
participants showed that the following neurobehavioral measures
were associated with daily battery percentage trajectories:
executive functioning (interaction with linear time: β=.21, 95%
CI .12 to .30; P<.001; interaction with quadratic time: β=−.57,
95% CI −.76 to −.38; P<.001; interaction with cubic time: β=.34,

95% CI .21 to .46; P<.001); memory (interaction with linear
time: β=.33, 95% CI .24 to .42; P<.001; interaction with
quadratic time: β=−.83, 95% CI −1.02 to −.63; P<.001;
interaction with cubic time: β=.47, 95% CI .35 to .60; P<.001),
and total gray matter volume (interaction with linear time: β=.32,
95% CI .22 to .41; P<.001; interaction with quadratic time:

JMIR Aging 2024 | vol. 7 | e52831 | p. 10https://aging.jmir.org/2024/1/e52831
(page number not for citation purposes)

Paolillo et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


β=−.84, 95% CI −1.03 to −.64; P<.001; interaction with cubic
time: β=.48, 95% CI .36 to .61; P<.001). Language, visuospatial
functioning, and neuropsychiatric symptoms did not strongly
associate with daily battery percentage trajectories in clinically
normal participants. The directions of associations in these
clinically normal participants were consistent with relationships
described in the entire sample.

Discussion

Principal Findings
This study is the first to our knowledge to examine passively
collected smartphone use data in a sample with
neurodegenerative disease. The results highlight an accessible,
low-burden, and scalable remote monitoring method that
captured behaviors associated with cognitive, neuropsychiatric,
and brain health outcomes in a sample of participants with
FTLD. The findings support a proof of concept that this passive
digital monitoring approach, in combination with other methods,
warrants further evaluation as a potential tool to augment
screening and monitoring neurobehavioral change in clinical
populations. Consistent with our hypotheses, we found that
daily trajectories of smartphone battery use (a proxy for overall
smartphone use) were associated with gold standard measures
of clinical severity in FTLD such that those with more severe
levels of impairment had less smartphone use throughout the
day. Relationships between battery percentage trajectories and
executive functioning, memory, and gray matter volume also
held in the subset of clinically normal participants, suggesting
potential sensitivity to subclinical neurobehavioral differences.

Comparison to Prior Work
These findings are consistent with previous studies showing
that older adults with cognitive impairment have greater declines
in everyday technology use compared to cognitively unimpaired
older adults [18,51,52]. Other studies have shown that older
adults with cognitive impairment report more difficulties using
technology, representing a potential barrier to technology use
[53,54]. Notably, the observed associations between battery
percentage trajectories and cognitive functioning were not
specific to particular cognitive domains, suggesting that the
metrics of overall smartphone use may reflect a global
transdiagnostic marker of functioning rather than a
phenotype-specific marker (eg, executive
functioning–predominant or language-predominant dysfunction).
Thus, our findings may also not be specific to FTLD, and future
work is needed to replicate findings in other populations with
neurologic conditions. The use of a smartphone, like the use of
a computer [18], is a cognitively complex task requiring the
resources of many functions (eg, attention, executive function,
working memory, and fine motor skill). As such, smartphone
use patterns may be a particularly sensitive marker of early and
subtle neurobehavioral change; however, additional research
examining longitudinal changes in smartphone use over time
is needed to support this hypothesis.

While this is the first study to our knowledge to report on
passively collected smartphone use data in the context of
neurodegenerative disease, there is a growing body of literature
examining other passive streams of smartphone data as potential

markers of neurobehavioral function in older adults; for
example, passively collected data from smartphone
accelerometers, GPS location, and touchscreen typing have been
associated with symptom and disease severity in Parkinson
disease, multiple sclerosis, and amyotrophic lateral sclerosis
[55-64]. Future work should incorporate multiple passive
smartphone data types for more comprehensive digital
phenotyping and potentially improved clinical relevance in
monitoring neurodegenerative disease.

Regarding the more technological aspects of passive smartphone
data collection, previous studies have also reported similar
variability around the frequency and timing of data collected
per person. These studies have identified a number of factors
that influence the collection and transfer of smartphone data to
secure cloud-based servers, including smartphone hardware,
data permissions, app engagement, wireless service, capacity
of local data storage, data transmission limits, and even
sociodemographic factors [65-67]. This has also been reported
in other devices as well, including wearables [68-70]. Thus,
thorough data cleaning is necessary to ensure that enough data
points are captured to accurately represent activity for a given
time period, as has been described previously [71,72].

Visualizing the raw battery percentage data was important for
understanding daily patterns and supported the utility of daily
smartphone battery percentage trajectories as a proxy for
smartphone use. Average patterns in battery percentage appeared
to track with typical diurnal sleep-wake rhythms: percentages
increased up to morning (when mobile phones are likely
charging) and decreased throughout the day (when participants
were presumably awake and using their smartphones) until
nighttime when percentages began to increase again. Careful
examination of these raw data patterns, alongside measures of
clinical severity, may support the development of specific
metrics using battery percentage data that can be easily tracked
over longer periods of time (eg, total battery drainage per day).
Future work in this field should also consider examining the
frequency and timing of smartphone battery charging as a way
to track routine daily use patterns that may be clinically relevant.
Tracking these metrics over many months or years would allow
for future studies to examine person-specific changes in battery
use over time and test longitudinal associations with
neurodegenerative disease progression.

Strengths and Limitations
The strengths of this study include a large, extensively
characterized cohort with FTLD; the reporting of novel
smartphone use data; and the use of passive digital monitoring
techniques. However, we also acknowledge several limitations.
First, there are certainly caveats to our approach using battery
percentage as a proxy for smartphone use, including factors that
are difficult to quantify and adjust for, such as the impact of
hardware, software, and service connection on battery life [73].
In addition, the ALLFTD Mobile App does not record when a
smartphone may have been plugged in for charging, potentially
preventing periods of battery decline even when the smartphone
may have been in use. Even so, the robust relationships observed
with gold standard measures of functional impairment,
cognition, neuropsychiatric symptoms, and brain volumes are
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encouraging. Second, it is likely that the mobile cognitive testing
sessions administered by the ALLFTD Mobile App contributed
to some smartphone battery use and that battery use may
subsequently be affected by adherence to the mobile cognitive
testing protocol. However, we have previously reported on
adherence to mobile cognitive testing through this app [30],
which showed that cognitive testing completion rates among
asymptomatic participants, participants with prodromal FTLD,
and participants with symptomatic FTLD were 71.4%, 78.4%,
and 59%, respectively. These adherence rates do not match the
stairstep effect of battery use reported in this study whereby
cognitively normal participants exhibited the highest smartphone
battery use, participants with prodromal FTLD demonstrated
intermediate smartphone battery use, and participants with
symptomatic FTLD showed the lowest smartphone battery use,
suggesting that our results are not simply driven by adherence
to the mobile cognitive testing protocol. Third, although we
importantly controlled for the effects of age, sex, smartphone
type, and estimated smartphone age in our statistical analyses,
further replication is needed in samples whose disease severity
groups are demographically matched. Fourth, it is possible that
a 30-day monitoring period may not be enough time to most
accurately capture routine smartphone use behavior. Future
studies are needed to evaluate the psychometrics of passive
smartphone use metrics across different periods of time to
identify optimal lengths of follow-up. Fifth, our sample was
also limited in demographic diversity because participants

mostly identified as non-Hispanic White and were highly
educated, reflective of the cohort in the ALLFTD study [10].
This is a crucial consideration when examining new tools that
require access to technology because the implementation of
such digital tools may inadvertently increase disparities among
those with fewer resources to obtain technology that meets
required software specifications. However, with the steadily
increasing rates of smartphone ownership worldwide in addition
to the implementation of government-funded programs to
provide access to technology (eg, the Lifeline Program or
“Obama Phone” [74]), there is growing consensus that
smartphone monitoring could become universally accessible.

Conclusions
In sum, our novel results demonstrate the feasibility of
continuous, unobtrusive smartphone use monitoring, while also
showing that smartphone use relates to the severity of
neurobehavioral impairment in a sample with FTLD. We
highlight these results as proof of concept because we believe
that they support future research examining whether specific
smartphone use metrics are clinically relevant and may have
utility for monitoring clinical disease progression in FTLD and
other neurodegenerative diseases. With continued validation,
such passive monitoring methodologies for real-time, real-world,
and remote monitoring have the potential to improve the
monitoring of clinically meaningful neurobehavioral changes
in individuals at risk for dementia.
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Multimedia Appendix 1
Visualization of raw battery percentage data binned by time of day (0=midnight; 23=11 PM) by disease severity group: (A)
clinically normal, (B) prodromal frontotemporal lobar degeneration (FTLD), and (C) symptomatic FTLD.
[DOCX File , 137 KB-Multimedia Appendix 1]
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