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Abstract

Background: Markerless motion capture (MMC) uses video cameras or depth sensors for full body tracking and presents a
promising approach for objectively and unobtrusively monitoring functional performance within community settings, to aid
clinical decision-making in neurodegenerative diseases such as dementia.

Objective: The primary objective of this systematic review was to investigate the application of MMC using full-body tracking,
to quantify functional performance in people with dementia, mild cognitive impairment, and Parkinson disease.

Methods: A systematic search of the Embase, MEDLINE, CINAHL, and Scopus databases was conducted between November
2022 and February 2023, which yielded a total of 1595 results. The inclusion criteria were MMC and full-body tracking. A total
of 157 studies were included for full-text screening, out of which 26 eligible studies that met the selection criteria were included
in the review. 

Results: Primarily, the selected studies focused on gait analysis (n=24), while other functional tasks, such as sit to stand (n=5)
and stepping in place (n=1), were also explored. However, activities of daily living were not evaluated in any of the included
studies. MMC models varied across the studies, encompassing depth cameras (n=18) versus standard video cameras (n=5) or
mobile phone cameras (n=2) with postprocessing using deep learning models. However, only 6 studies conducted rigorous
comparisons with established gold-standard motion capture models.

Conclusions: Despite its potential as an effective tool for analyzing movement and posture in individuals with dementia, mild
cognitive impairment, and Parkinson disease, further research is required to establish the clinical usefulness of MMC in quantifying
mobility and functional performance in the real world.

(JMIR Aging 2024;7:e52582) doi: 10.2196/52582
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Introduction

Markerless motion capture (MMC) technology uses sensors
and advanced software algorithms to track and analyze human
movement, without the attachment of physical markers to
individuals or the use of external devices such as pressure
sensors or wearables. There is growing use of MMC to provide
highly accurate quantitative parameters of physical function
including mobility [1,2], balance [3], upper extremity tasks [4],
and activities of daily living (ADL) [5].

While 3D motion capture systems using markers are considered
the gold standard for movement analysis, they have several
limitations including their lack of portability, the need for trained
staff, and the requirement for reflective markers to be placed
precisely on participants’ bodies [6]. In contrast, the use of
MMC provides several advantages: being easier to operate,
requiring less space, and being more economical than traditional
marker-based systems [7]. Importantly, their ability to capture
movement unobtrusively is a key benefit for user compliance
[8], particularly when working with individuals with cognitive
impairments.

MMC is attractive for health care and research use, such as
monitoring functional performance loss or improvement in
neurodegenerative diseases. While traditional movement
analyses are based on subjective clinical assessments, MMC
can be used to generate objective and quantifiable digital
biomarkers that can help detect a decline in functional
performance by capturing movement unobtrusively [9].
Variations in these digital biomarkers could indicate underlying
impairment and enable earlier support. The fact that MMC can
be deployed in home environments may avoid unnecessary
hospital visits for patients, as well as detect subtle changes in
functional ability that may only be apparent in everyday
home-based settings rather than within a clinic.

Several MMC devices can provide cost-effective assessments
of functional performance in research and clinical settings.
Broadly, the 2 main types of MMC camera hardware are depth
cameras and standard red-green-blue (RGB) video cameras,
used in single or multicamera systems. Commonly used and
widely accessible depth cameras are the Kinect (Microsoft)
devices, which use standard RGB color video as well as depth
estimation by recording the distance between the camera and
each pixel through the emission of structured light patterns [10].
Machine learning algorithms can be used to reconstruct 3D
skeletal models in real-time from the RBG+depth (RBG-D)
image. Alternatively, deep learning can be used with standard
video cameras or mobile phone cameras to record limb location
and orientation. This method uses deep neural networks trained
from large datasets to estimate body segment position and
orientation (pose) and motion tracking, without explicit depth
sensing. It requires specific body segment positions known as
the 6 degrees of freedom: 3 rotational (flexion or extension,
abduction or adduction, and rotation about the longitudinal axis)
and 3 translational (sagittal, frontal, and transverse) [11]. Both
forms of MMC have shown promising use thus far.

A scoping review of single-camera MMC models used in health
care highlighted the significant potential for use in clinical

applications but also noted the need to improve their tracking
accuracy [12]. A previous systematic review of MMC-based
training devices used in neurological rehabilitation found that
these devices improve motivation and enable better functional
performance potentially due to the gaming element [13]. Another
systematic review of MMC-based devices in rehabilitation found
that balance training with the support of MMC resulted in better
outcomes potentially due to more dynamic training conditions
[14]. While those systematic reviews explored the use of MMC
specifically in rehabilitation training, this review focuses on the
technology-based evaluation of functional tasks. The recent
increase in the number of studies involving MMC-based
movement analysis in neurodegenerative diseases offers a strong
rationale for this review. This trend includes the use of MMC
to track gait decline [9], assess fall risks [15,16], detect disease
traits [17], estimate disease severity [18], and detect cognitive
impairment from gait features [19].

Neurodegenerative diseases such as dementia and Parkinson
disease (PD) lead to declining functional performance. Detecting
problems in everyday functional tasks in these patient groups
can help provide early, timely, and clinically appropriate
interventions that may help maintain independence, decrease
caregiver burden, and potentially slow the rate of functional
decline [20,21]. MMC can provide digitally measured functional
performance data that could be used to enhance clinical
decision-making and remote monitoring; identify risks such as
falls; and better capture the impact of rehabilitative,
pharmacological, and surgical interventions. Although MMC
technology could offer the potential for detecting functional
changes in neurodegenerative diseases, a model that is
comparable to established gold-standard motion capture systems
is essential for deployment in real-world applications. This study
aimed to complete a systematic review of published literature
on the use of MMC with full-body tracking for quantifying
functional performance in people with dementia, mild cognitive
impairment (MCI), and PD.

Methods

Study Design
The web-based Covidence (Veritas Health Innovation) software
platform was used in this review, and the titles and abstracts
were screened by 2 independent reviewers. The full text of the
relevant studies was reviewed, and the quality of the studies
was assessed by 2 independent reviewers. Data extraction was
also performed by 2 independent reviewers, and any conflicts
were resolved through discussion.

Search Strategy
The search strategy was designed to include all types of studies
that used MMC with full-body tracking in individuals with
dementia, MCI, or PD. To identify relevant studies, a
combination of both the Medical Subject Headings thesaurus
and free-text terms related to the 3 conditions and MMC
technology were used. The search included publications from
all years in the CINAHL, Embase, MEDLINE, and Scopus
databases using the terms “Motion Capture,” “Motion Analysis,”
“Movement Analysis,” and “Pose Estimation” in combination
with “Dementia,” “Mild cognitive impairment,” and
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“Parkinson’s disease.” The details of the search activity can be
found in Multimedia Appendix 1.

Inclusion and Exclusion Criteria
The inclusion criteria for the systematic review were as follows:
(1) markerless optical motion capture; (2) full-body tracking;
(3) involving participants with dementia, MCI, or PD; (4)
original research; and (5) English language studies. Studies with
the following characteristics were excluded: (1) motion capture
with markers, inertial measurement units, body-worn sensors,
or pressure sensors; (2) movement analysis of specific parts of
the body or symptoms such as tremor and rigidity; (3) evaluating
interventions such as exercises, deep brain stimulation,
medication, rehabilitation protocol, dance, and gaming; and (4)
pose estimation of videos found on the internet.

Data Extraction
The general information extracted from the studies included:
the center and country where the study took place; study
characteristics; funding sources; age, sex, and number of
participants; number and duration of visits; study aims; inclusion
and exclusion criteria; and the main disease condition evaluated.

Methodological information extracted included technical details
of the MMC system used; functional performance area
evaluated, for example, gait or sit to stand; software used for
feature extraction; and the method of analysis. The results
information extracted included the following: statistically
significant movement features, whether they were measured
under single or dual task (motor or cognitive) conditions,
whether compared to established gold standard models or a
relevant clinical measure, and key outcomes including the level
of accuracy obtained.

Results

Study Selection
The literature search yielded 1595 results; after removing
duplicates, 1159 studies remained for title or abstract screening.
Subsequently, 131 studies were identified for full-text screening,
of which 26 studies met the inclusion criteria and were included
in the review. A PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flowchart [22]
outlining the selection process can be found in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram for new systematic reviews.

Quality Assessment
The 26 selected studies were assessed for quality using the
Specialist Unit for Review Evidence questions to assist with
the critical appraisal of the cross-sectional studies tool [23].
While no studies were excluded from the review based on this
assessment, issues pertaining to quality were identified within
several of the studies. Table 1 shows that all studies included
in this review used appropriate outcome measures (n=26, 100%).

Most studies clearly stated the study design (n=20, 77%);
provided information on the study setting, location, and dates
(n=20, 77%); described the results well (n=19, 73%); and
provided participant characteristics (n=16, 62%). However, few
studies reported if participants were fairly selected (n=10, 38%)
or provided information on participant eligibility (n=2, 8%) and
handling of missing data and control of potential biases (n=1,
4%).
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Table 1. Quality assessment summary.

Are the re-
sults well
described?

Is informa-
tion provid-
ed on partici-
pant eligibili-
ty?

Is there infor-
mation on
how missing
data was han-
dled and
whether
sources of bias
were con-
trolled for?

Is there a de-
scription of
how the
study size
was arrived
at?

Are the mea-
sures of expo-
sures and out-
comes appro-
priate?

Are partici-
pant charac-
teristics pro-
vided?

Were partici-
pants fairly
selected?

Are the set-
ting, loca-
tion, and rele-
vant dates
provided?

Is the
study de-
sign clear-
ly stated?

Study

XXXX✓✓✓✓✓Cimolin et al
(2022) [24]

✓XXX✓✓Not reported✓✓Kaur et al
(2023) [25]

XXXX✓✓Not reported✓✓Khan et al
(2021) [26]

XXXX✓XNot reported✓XKhan et al
(2013) [27]

XXXX✓XNot reported✓XKondragunta
et al (2020)
[19]

✓XXX✓✓✓✓✓Lai et al
(2022) [28]

✓XXX✓XNot reported✓XLi et al (2018)
[29]

✓✓XX✓✓✓✓✓Mehdizadeh et
al (2021) [9]

✓✓X✓✓✓✓✓✓Mehdizadeh et
al (2021) [15]

XXXX✓XX✓✓Morinan et al
(2022) [30]

✓XXX✓✓Not reported✓✓Muñoz-Os-
pina et al
(2022) [31]

✓XXX✓✓✓✓✓Ng et al
(2020) [16]

✓XXX✓✓✓✓✓Ospina et al
(2021) [32]

✓X✓✓✓✓✓✓✓Otte et al
(2020) [33]

XXXX✓✓Not reportedXXPedro et al
(2020) [34]

✓XXX✓XNot reportedXXProcházka et
al (2015) [35]

✓XXX✓XNot reportedX✓Rupprechter et
al (2021) [36]

✓XXX✓✓✓✓✓Sabo et al
(2022) [18]

✓XXX✓✓Not reported✓✓Sabo et al
(2022) [37]

XXXX✓XNot reported✓✓Sabo et al
(2021) [17]

✓XXX✓✓Not reportedX✓Sabo et al
(2020) [38]

✓XXX✓XNot reportedX✓Seifallahi et al
(2022) [39]
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Are the re-
sults well
described?

Is informa-
tion provid-
ed on partici-
pant eligibili-
ty?

Is there infor-
mation on
how missing
data was han-
dled and
whether
sources of bias
were con-
trolled for?

Is there a de-
scription of
how the
study size
was arrived
at?

Are the mea-
sures of expo-
sures and out-
comes appro-
priate?

Are partici-
pant charac-
teristics pro-
vided?

Were partici-
pants fairly
selected?

Are the set-
ting, loca-
tion, and rele-
vant dates
provided?

Is the
study de-
sign clear-
ly stated?

Study

✓XXX✓✓✓✓✓Shin et al
(2021) [40]

✓XXX✓XNot reported✓XSoltaninejad
et al (2018)
[41]

✓XX✓✓✓✓X✓Tan et al
(2019) [42]

✓XXX✓XNot reported✓✓Ťupa et al
(2015) [43]

Patient Groups
The 26 studies comprised 18 involving participants with PD, 6
involving participants with dementia, and 2 involving
participants with MCI. Most (18/26, 69%) of the studies used
Kinect sensors for MMC. All studies that included participants
with dementia (n=6) used the Kinect sensor and were conducted
in inpatient settings. The Kinect was used to quantify gait
decline over 10 weeks [9], propose a prognostic model for fall
risk [15], and demonstrate the association with clinical gait
measures and future falls [16]. In inpatients with dementia and
drug-induced Parkinsonism, the Kinect was used to capture
Parkinsonian traits [17]; quantify Parkinsonian gait [38]; and
along with pose estimation of recordings from a video camera,
estimate Parkinsonian severity [18]. It was also used in the MCI
studies reviewed (n=2), as a tool to detect MCI from gait
features [19,39].

Of the 18 studies that included participants with PD, 10 (56%)
reported the use of the Kinect sensor for analyzing gait,
including its feasibility to extract relevant features [34,42],
ability to detect PD [24,32,41,43], and ability to measure clinical
disease severity [28,31,33]. Alternative MMC models that use
image processing for pose estimation of videos from RGB
cameras have also been used with participants with PD,
demonstrating the feasibility of these models in quantifying gait
impairment and disease severity [18,25-27,29,30,36,40].

Functional Performance Components
Most studies (24/26, 92%) evaluated aspects of gait, although
there were significant variations in the features extracted and
methods used for analysis, with some of them lacking statistical
significance. Other functional performance components
evaluated were sit to stand (n=5) and stepping in place (n=1).
Table 2 shows functional performance components by study.
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Table 2. Patient groups, functional performance components, and feature extraction categories.

Feature categoryFunctional performance componentPatient groupStudy

Spatiotemporal and stabilityGaitPDaCimolin et al (2022) [24]

Spatiotemporal and symmetryGaitPDKaur et al (2023) [25]

SpatiotemporalGaitPDKhan et al (2021) [26]

Gait posture and spatiotemporalGaitPDKhan et al (2013) [27]

SpatiotemporalGaitMCIbKondragunta et al (2020) [19]

Spatiotemporal and ROMcGaitPDLai et al (2022) [28]

SpatiotemporalSit to stand and gaitPDLi et al (2018) [29]

Spatiotemporal, ROM, and stabilityGaitDementiaMehdizadeh et al (2021) [9]

Spatiotemporal, stability, and symmetryGaitDementiaMehdizadeh et al (2021) [15]

SpatiotemporalSit to standPDMorinan et al (2022) [30]

Spatiotemporal and symmetryGaitPDMuñoz-Ospina et al (2022) [31]

StabilityGaitDementiaNg et al (2020) [16]

Spatiotemporal and symmetryGaitPDOspina et al (2021) [32]

Spatiotemporal, symmetry, and rhyth-
micity

Stepping in placePDOtte et al (2020) [33]

SpatiotemporalGaitPDPedro et al (2020) [34]

SpatiotemporalGaitPDProcházka et al (2015) [35]

SpatiotemporalGaitPDRupprechter et al (2021) [36]

SpatiotemporalGaitPDSabo et al (2022) [37]

Spatiotemporal, stability, and symmetryGaitDementiaSabo et al (2022) [18]

Spatiotemporal, stability, and symmetryGaitDementiaSabo et al (2021) [17]

Spatiotemporal, stability, and symmetryGaitDementiaSabo et al (2020) [38]

SpatiotemporalGaitMCISeifallahi et al (2022) [39]

SpatiotemporalGait and sit to standPDShin et al (2021) [40]

SpatiotemporalGait and sit to standPDSoltaninejad et al (2018) [41]

Spatiotemporal and stabilityGait and sit to standPDTan et al (2019) [42]

SpatiotemporalGaitPDŤupa et al (2015) [43]

aPD: Parkinson disease.
bMCI: mild cognitive impairment.
cROM: range of motion.

Feature Categories
Table 2 shows extraction feature categories by study.
Spatiotemporal features of gait that were reported as having
statistical significance included spatial parameters, such as step
length (n=8), step width (n=5), and stride length (n=4), and
temporal parameters, such as cadence (n=5), gait velocity (n=4),
step time (n=4), stance duration (n=1), double support duration
(n=1), stride time (n=1), turning time (n=1), turning speed (n=1),
swing time (n=1), step velocity (n=1), and stride velocity (n=1).
Other extracted feature categories included symmetry (n=9),
stability (n=8), range of motion (n=2), and rhythmicity (n=1).

MMC Devices and Feature Extraction Methods
Table 3 shows that most studies (18/26, 69%) used Kinect depth
cameras (4 used V1; 12 used V2; 1 used Kinect eMotion; and
the latest version, the Azure Kinect, was used in 1 study), while
the remainder used regular video or mobile phone cameras.
Common camera positioning included frontal views (n=4),
ceiling-mounted (n=4), and multiple cameras from different
angles (n=3). However, camera position was not reported in 7
of the study papers. The majority of studies have developed
their own custom programs (n=10, 38%) or have used
open-source libraries (n=8, 31%) to identify bodies in frame
and extract movements. The use of propriety software was less
common (n=5).
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Table 3. Markerless motion capture devices and feature extraction methods used.

Extraction methodsPosition of camerasFrames per second
(fps or Hz)

Devices, nDevice (camera or
sensor)

Study

Custom algorithmTripod in front301Kinect V2Cimolin et al (2022) [24]

OpenPoseFront and right side302Video cameraKaur et al (2023) [25]

Custom algorithmFront251Video cameraKhan et al (2021) [26]

Custom algorithmNot reported51Video cameraKhan et al (2013) [27]

OpenPoseNot reported201Kinect V2Kondragunta et al (2020)
[19]

GaitBEST (LongGood
Meditech)

Not reported30Not reportedKinect V2Lai et al (2022) [28]

Iterative Error Feedback and
OpenPose

Not reported251Video cameraLi et al (2018) [29]

Custom algorithmCeiling in hallwayNot reported1Kinect V2Mehdizadeh et al (2021)
[9]

Custom algorithmCeiling in hallwayNot reported1Kinect V2Mehdizadeh et al (2021)
[15]

OpenPoseNot reportedNot reportedNot reportedMobile phone camera
and KELVIN-PD

Morinan et al (2022) [30]

(Machine Medicine)
mobile app

Custom algorithmNot reportedNot reported1Kinect eMotionMunoz-Ospina et al (2022)
[31]

OpenPoseCeiling at the end of a
hallway

301Kinect V2Ng et al (2020) [16]

Custom algorithmParticipants walking to-
ward the camera

Not reported1Kinect V1Ospina et al (2021) [32]

Custom algorithm1.4 m height in front301Kinect V1Otte et al (2020) [33]

Azure Kinect SDK to extract
joint positions to estimate 32

Each end of walkway and
halfway between

303Azure KinectPedro et al (2020) [34]

body joint poses from depth
color recordings

Custom algorithm60 cm above floor301Kinect V1Procházka et al (2015) [35]

OpenPosePatients walking directly
toward or away from the

Not reported1Mobile phone camera
and KELVIN-PD

Rupprechter et al (2021)
[36]

camera in hallways or
office settings

(Machine Medicine)
mobile app

AlphaPose (Shanghai Jiao
Tong University), Detectron

Tripod mounted, at one
end of walkway

301Logitech C920Sabo et al (2022) [37]

(Facebook AI Research),
OpenPose, and ROMP
(Regress All Meshes in a
One-Stage Fashion for Mul-
tiple 3D People; JD AI re-
search)

OpenPose, Detectron, and
AlphaPose

Kinect: hallway ceiling;
stationary mobile phone
camera: participants

301Kinect V2 and mobile
phone cameras

Sabo et al (2022) [18]

walked toward and away
from

AlphaPose and engineered
2D gait features from joint
trajectories

Ceiling in hallway301Kinect V2Sabo et al (2021) [17]

OpenPoseCeiling in hallway301Kinect V2Sabo et al (2020) [38]
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Extraction methodsPosition of camerasFrames per second
(fps or Hz)

Devices, nDevice (camera or
sensor)

Study

Custom algorithmOn a tripod at a suitable
distance from an oval
path

Not reported1Kinect V2Seifallahi et al (2022) [39]

OpenPose, OpenCVFrontal view from a tri-
pod-mounted camera 1.5
m from the horizontal
line of the turning point

301Video cameraShin et al (2021) [40]

Graph model of body skele-
ton

Not reported30Not reportedKinect V2Soltaninejad et al (2018)
[41]

Custom algorithmEnd of walkwayNot reported1Kinect V2Tan et al (2019) [42]

Custom algorithm60 cm above floor301Kinect V1Ťupa et al (2015) [43]

Key Findings
Tables 4-6 summarize the key findings of the 26 studies that
used MMC to study movement features in people with dementia,
MCI, and PD. Stride length, cadence, gait stability, step length,
arm swing, and number of steps were the primary features
investigated in these studies. Notably, several studies
[26,28,33,37] found that stride length and cadence are commonly
affected in those with PD. Other studies [15,31,38] highlighted
the potential of MMC for predicting fall risk and discriminating
between individuals with PD and controls.

Most studies (20/26, 77%) used some form of clinical validation
for the assessment of disease, and patients were referred to or
assessed within a clinical research facility by a clinician. The
most common clinical measures used were the Unified
Parkinson’s Disease Rating Scale (UPDRS) for assessing
Parkinsonism symptoms in those with PD and dementia and
the Performance Oriented Mobility Assessment–gait and
Performance Oriented Mobility Assessment–balance
assessments for evaluating mobility characteristics. Many of
the studies (23/26, 88%) used the MMC features to classify
patients from control participants and to classify symptom
severity (eg, UPDRS scores in PD) using various techniques,
including support vector machines, random forest models,
multivariate ordinal logistic regression, and adaptive neuro-fuzzy
inference system classifiers. Several studies reported excellent
classification accuracy, with some achieving 100% accuracy
[26,27,41]. For instance, Seifallahi et al [39] achieved an
accuracy of over 90% for differentiating between people with
MCI and controls using an adaptive neuro-fuzzy inference
system classifier. Khan et al [26] reported a 70.83% accuracy
in predicting UPDRS-gait scores using a support vector machine
model, with an area under the receiver operating characteristic
curve of 80.88%.

Conversely, most studies included within this review (20/26,
77%) did not evaluate their MMC system or algorithms against
an established gold-standard motion capture model, making it
difficult to conclude whether their derived features for
monitoring functional performance characteristics were
comparable to an accepted measure of movement analysis. Some
notable exceptions such as Cimolin et al [24] compared their
Kinect setup to a Vicon system, which is an accepted and
clinically validated method for assessing gait. Other studies
used established and clinically validated spatiotemporal
measures including the GAITRite system [34,40] and the Zeno
Walkway system [37], although the study by Pedro et al [34]
only had 2 participants. Li et al [29] had experts manually
annotate videos, which, while subjective, proved effective for
creating labels to train machine learning algorithms for task
segmentation. They also used automated labeling to generate
subtask segmentation, which could help automate larger-scale
studies and clinical assessments.

MMC models showed moderate to strong positive correlations
with Vicon [24], Zeno [37], and GAITRite [40]. However, some
of the studies also identified limitations of MMC. For example,
Pedro et al [34] found that Kinect cameras may overestimate
step length variation in people with PD due to inherent
smoothing, while Sabo et al [37] found that automated heel
strike algorithms may struggle to identify short steps. Some
studies [19,29] reported challenges with data processing and
interpretation, highlighting the need for more standardized
methods in this field.

Despite these limitations, the findings suggest that MMC is a
promising tool for studying characteristics of functional
performance in people with dementia, MCI, and PD. It is worth
noting that specialized depth cameras may not be necessary for
extracting suitable joint positions in camera space [37].
However, further research in this field is warranted to fully
understand the potential of MMC.
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Table 4. Key findings from studies that used the Kinect.

Main resultsPrimary featuresStudy

Cimolin et al
(2022) [24]

• Strong positive correlation between Kinect and Vicon systems for gait ca-

dence and mediolateral sway (ICCa 0.94-0.97) and a weak correlation for

• Gait cadence, mediolateral sway, and step
width

step width (ICC 0.44) in people with PDb

Kondragunta et al
(2020) [19]

• SVMc for classifying between controls, persons with possible MCId, and
persons with MCI: 74.6%-87.3%

• Gait cycle (dynamic time warping)

Lai et al (2022)
[28]

• Mediation analysis demonstrates decreased stride length, walking speed, and
turning speed are associated with increased falls prediction model score
(r=–0.58, r=–0.52, and r=–0.46, respectively; P<.001)

• Stride length, straight walking speed, and
turning speed

• UPDRSe negatively correlated with features (r=–0.65, r=–0.56, and r=–0.37,
respectively; P<.001) but positively with fall prediction model score (r=.53,
P<.001)

• UPDRS serves as a mediator for features and higher fall prediction model
scores

Mehdizadeh et al
(2021) [9]

• Mixed effects models over 10 weeks show:• Gait stability, step time, step length, step
time variability, and step length variability • Decrease in primary features and an increase in variability over time

for people with dementia
• Gait stability decreased more in men
• Mediolateral range of motion decreased in those with mild neuropsychi-

atric symptoms but increased in those with more severe symptoms

Mehdizadeh et al
(2021) [15]

• Cox proportional hazard regressions show gait stability predicts time to fall

in people with dementia (ROCf 0.80 at 7 days, 0.67 at 30 days)

• Gait stability.

Muñoz-Ospina et
al (2022) [31]

• Random forest model was most accurate for discriminating between people
with PD and controls (85% using all gait features)

• Left and right arm and ankle swing
(magnitude and speed), stance time, gait
speed, total time, and number of steps

Ng et al (2020)
[16]

• Univariate linear regression: cadence associated with POMAi-gait scores
(P<.001)

• Gait: cadence, symmetry, CVg of step
time, step width (average and CV), and

eMOSh • Poisson regression: cadence, eMOS, average step width associated with the
number of future falls (P<.001)

Ospina et al
(2021) [32]

• Age influenced arm movement• Arm swing: magnitude, time, and arm
swing asymmetry • People with PD showed significant reductions in arm swing magnitude (left,

P=.002; right, P=.006) and speed (left, P=.002; right, P=.004)
• Arm swing asymmetry differentiated people living with PD from controls

(ROC: 78%)

Otte et al (2020)
[33]

• Knee amplitude and longest stance time correlated with UPDRS (–0.51,
P=.003 and 0.52, P=.002, respectively)

• Cadence, knee amplitude, asymmetry,
average step time, longest step time, ar-
rhythmicity, average stance time, and • Postural instability (pull test) correlated with longest stance time (0.47,

P=.008)longest stance time
• Knee amplitude, asymmetry, and average step time differed between on- and

off-medication states (P=.002, P=.007, and P=.007, respectively)

Pedro et al (2020)
[34]

• In comparison with the GAITRite (CIR Systems, Inc) system, the Kinect
camera overestimated the average variation in step length for the 2 people
with PD potentially due to inherent smoothing

• Step length

Procházka et al
(2015) [35]

• In total, 91.7% classification accuracy for determining between controls and
those with people with PD. Decrease in step length (regression coeffi-
cient=–0.0082 m/year)

• Average step length

Sabo et al (2022)
[18]

• Moderate or strong positive correlations between steps, cadence, step width
from 2D pose-estimation, and Zeno in people with PD

• Number of steps, cadence, velocity, step
length, CV of stride width, and step and
swing time • Automated heel strike algorithm struggled to identify short steps
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Main resultsPrimary featuresStudy

• ST-GCNj using 2D joint trajectories and gait features outperforms ST-GCN
using only gait features

• Regression models for predicting UPDRS-gait over 94% if off by 1 is allowed

• Cadence, steps, average step width, aver-
age margin of stability, CV of step width
and time, and symmetry

Sabo et al (2021)
[17]

• Multivariate ordinal logistic regression models achieved 61.4% and 62.1%
for 2D and 3D features for predicting UPDRS-gait in people with dementia

• 2D: steps, cadence, symmetry, and CV of
step time

• 3D: walking speed, step length or width,
step width, step length symmetry angle,

RMSk of MLl velocity, margin of stabili-
ty, and CV step width

Sabo et al (2020)
[38]

• Adaptive neuro-fuzzy inference system classifier accuracy >90% for differ-
entiating between MCI and controls

• Steps and strideSeifallahi et al
(2022) [39]

• Random forest classifier accuracy for differentiating controls and people
with dementia: 93.33% stride and 81% tremor

• Stride and tremorSoltaninejad et al
(2018) [41]

• Multivariable regression: step length during TUGm and vertical pelvic dis-
placement during the gait speed were associated with postural instability and
gait disorder (P=.01 and P<.05, respectively) in people with PD

• Step length, step time, vertical pelvic
displacement, and gait speed

Tan et al (2019)
[42]

• Combining gait features improves classification accuracy relative to single
features

• 2-layer neural network achieved an accuracy of 97.2% in classifying people
with PD from controls

• Step length and average speedŤupa et al (2015)
[43]

aICC: intraclass correlation coefficient.
bPD: Parkinson disease.
cSVM: support vector machine.
dMCI: mild cognitive impairment.
eUPDRS: Unified Parkinson’s Disease Rating Scale.
fROC: receiver operating characteristic.
gCV: coefficient of variation.
heMOS: estimated margin of stability.
iPOMA: Tinetti Performance Oriented Mobility Assessment.
jST-GCN: spatiotemporal graph convolutional networks.
kRMS: root mean squared.
lML: mediolateral.
mTUG: Timed Up and Go.
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Table 5. Key findings from studies that used video cameras.

Main resultsPrimary featuresStudy

Stride (91 derived features based on variation
and asymmetry speed)

Kaur et al (2023)
[25]

• Logistic regression, random forest, deep learning–based classifiers 75%
(walking and talking) and 78.1% (walking)

• Multi-scale residual neural network: 100% accuracy for classifying people

with controls, multiple sclerosis, and people with PDa during walking and
walking-while-talking, and 78% for new subjects walking

• 1D convolutional neural network: 75% walking-while-talking and 79.3% when
generalizing to new subjects in different tasks

Slow walking short-shuffling steps gait festi-
nation

Khan et al (2021)
[26]

• SVMb classification predicts UPDRSc: gait scores with 70.83% accuracy and

area under ROCd curve 80.88%

Stride cycles and posture leanKhan et al (2013)
[27]

• SVM classification of 100% for differentiating between people with PD and
controls

Subtask segmentation based on selected body

points: neck, R/Le shoulder, R/L hip, R/L
knee, or R/L ankle

Li et al (2018)
[29]

• Accuracies for subtask segmentation of TUGg: OpenPose+LSTMf=93.10%
and OpenPose+LSTM=92.8%

• Correlations between OpenPose+LSTM and experts on timed reduction rates:
turn (0.93), walk-back (0.98), and sit-back (0.98)

Cadence, steps, average step width, average

margin of stability, CVg of step width and
time, symmetry, and stability

Sabo et al (2022)
[37]

• ST-GCNh operating on 3D joint trajectories outperform 2D models
• Best model prediction of UPDRS-gait and SASi-gait scores are 53% and 40%,

respectively.

Step length, gait velocity, number of steps,
and turning time

Shin et al (2021)
[40]

• Features correlated with Freezing of Gait Questionnaire, UPDRS part III total

score, HYj, and postural instability in people with PD
• Features measured improvements following medication

aPD: Parkinson disease.
bSVM: support vector machine.
cUPDRS: Unified Parkinson’s Disease Rating Scale.
dROC: receiver operating characteristic.
eR/L: right or left.
fLSTM: long short-term memory (machine learning model).
gCV: coefficient of variation.
hST-GCN: spatiotemporal graph convolutional networks.
iSAS: Simpson-Angus Scale.
jHY: Hoehn and Yahr scale.

Table 6. Key findings from studies that used mobile phone cameras.

Main resultsPrimary featuresStudy

Morinan et al
(2022) [30]

•• Ordinal random forest classifiers:Dbody: distance between nose and 2 an-
kles • U=99.6% accuracy for hands used to push up from chair

• UPDRSa ratings estimated by models agree by 79.2% with clinicians’

ratings for people with PDb
• Standard of Dbody, proportional increase

in Dbody, and percentage jerk of Dbody

• Dhand: distance between 2 wrists

• U: hands used (Boolean)

Rupprechter et al
(2021) [36]

•• Step frequency highly correlated with labeled steps (P<.001)Steps, arm swing, postural control, and
smoothness • Ordinal random forest: 50% prediction

aUPDRS: Unified Parkinson’s Disease Rating Scale.
bPD: Parkinson disease.
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Discussion

Principal Findings
This systematic review has shown that there is a paucity of
studies exploring the use of MMC in people with dementia and
models exploring the performance of ADL. Moreover, there is
a lack of standardization in the used MMC models and clinical
validation in real-world applications. The absence of
standardization among the models used posed a significant
challenge, precluding the possibility of conducting a
meta-analysis to compare and synthesize study results.

The review findings suggest that there is more evidence of the
use of MMC with full-body tracking in patients with PD (n=18)
compared to those with dementia (n=6) and MCI (n=2). This
demonstrates a bias toward movement disorders, where the
motor symptoms are more prominent, and highlights a
significant knowledge gap in the feasibility and effectiveness
of using MMC models in quantifying functional performance
in people with dementia and MCI. Moreover, the studies that
included patients with dementia [9,15-18,38] were all conducted
in inpatient dementia units, indicating a lack of research
involving this patient group in real-world settings. This
underscores the need for further investigation in this area.

While MMC models based on gait features extracted mainly
from straight-line walking may provide useful preliminary data
for model development, they have less scope in quantifying
functional performance in a real-world context, particularly in
people with cognitive impairment. In contrast, the evaluation
of ADL tasks could potentially provide more comprehensive
insights into real-world functional performance from routine
daily activities. Previous research suggests that dual-task tests
of mobility are more effective in detecting cognitive decline as
well as predicting cognitive impairment and falls [44-46],
potentially due to the increased cognitive demand on the
individual. However, just 1 study included in this review [19]
used dual tasks for the classification of MCI from control, and
it was not reported how the completion of dual tasks impacted
the results. Feature extraction of ADL tasks that require planning
and organization could potentially facilitate the measurement
of dual-task performance. Therefore, analysis of ADL tasks
could help provide a more accurate assessment of
neurodegenerative impairment.

The findings of this review suggest a lack of consensus on the
most effective features used. Some spatiotemporal features of
mobility such as step length are commonly used, but other
features vary widely between studies, making it difficult to
determine which are most effective. Additionally, some unique
features such as vertical pelvic displacement [42] and Dbody, the
distance between nose and 2 ankles [30], have been identified
in individual studies, but their effectiveness is unknown without
further evaluation. Moreover, it is important to note that the
effectiveness of several of these feature extraction models has
not been tested in real-world settings which therefore requires
further evaluation.

Several studies included in the review (n=10) reported machine
learning classifier outcomes for identifying people living with

d e m e n t i a ,  M C I ,  o r  P D  f r o m  c o n t r o l
[19,25-27,31,32,35,39,41,43], whereas several others (n=8)
reported models that computed clinical assessment scores
[17,18,29,30,33,36,38,40]. Although these are useful outcomes,
it is important to note that models that help detect gait
impairment and predict falls (n=5) [9,15,16,28,42] could
potentially be more useful in practical applications for assessing
functional performance. It must also be noted that these models
were all based on the Kinect cameras demonstrating the potential
of RGB-D cameras for detecting and predicting functional
impairment.

Accurate feature extraction and classification are crucial for
improving the quality of MMC-based functional assessment
[47]. The accuracy rates of MMC models reported in the
reviewed studies ranged from 40% for a model predicting a
clinical assessment score [18] to 100% for machine learning
classification of PD from control [27]. Those numbers cannot
be compared directly due to the different number of classes and
the resulting chance level, as well as the task difficulty between
classifying patients from control participants to rating symptoms.
However, it is important to ensure that any clinical applications
of these models are consistent and accurate because inaccurate
predictions could potentially have consequences for patient
care. Further validation and refinement of the models may
therefore be necessary before they can be safely used in practical
applications.

It is important to note that the accuracy of a model does not
only depend on its ability to correctly identify a condition but
also on its capacity to detect features of functional performance
consistently in various real-world settings. Potential real-world
applications include the detection of problems in functional
performance in clinical settings and functional deterioration in
home settings. The effectiveness of several feature extraction
models reviewed in this study has not been tested in such
settings, and therefore, the accuracy in practical applications
remains unclear. Moreover, devices used in clinical applications
must be subjected to a rigorous clinical validation process to
ensure safety and efficacy before use on patients [48]. Many of
the studies reviewed seem to have primarily focused on the
technical aspects of the MMC models, such as feature extraction
and analysis, with less focus on their clinical utility. Therefore,
further MMC research should objectively evaluate the practical
clinical and real-world mobility applications of this technology.
If a standard MMC movement analysis protocol could be
established, functional performance could be compared across
diagnoses.

Additionally, the cross-sectional nature of most of the included
studies may limit their ability to evaluate and track functional
performance over time. Longitudinal studies would be necessary
to assess the performance of these models for tracking functional
changes caused by factors such as disease progression,
infections, and treatment effects or recovery. Despite these
limitations, the effectiveness of MMC models using the Kinect
[24] and 2D pose estimation [37] in comparison to established
gold-standard motion capture systems within experimental
settings suggests they may be suitable for testing in real-world
applications such as remote monitoring. However, further
research is required to explore and address ethical and privacy
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considerations when deploying MMC devices that capture video
and movement within people’s homes. Managing consent where
patients lack mental capacity and safeguarding the privacy of
patient data that is stored or shared with clinical teams will also
need to be carefully addressed while deploying MMC in remote
monitoring applications.

It is important to consider the overall quality of studies included
in this review, as shown in Table 1, which summarizes key
questions to consider when assessing quality. Most studies had
a clear study design and focused research questions with
appropriate measures of exposures and outcomes. However,
only 1 of the studies reported if potential sources of bias from
confounders such as musculoskeletal comorbidities, were
controlled which could have significant implications for clinical
applications. Moreover, few studies provided information on
participant eligibility and whether they were selected fairly
which could have implications for generalization of study
results. The suboptimal quality observed in the included studies
in key aspects such as bias control and participant selection
suggests these MMC models need to be further evaluated
potentially using more rigorous study designs before deployment
in real-world applications. Studies that have attempted to create
MMC models for fall prediction have primarily focused on
retrospective analyses, for example, the number of falls in the
past few months. While it is useful to examine historical
patterns, future studies should aim to develop prospective
studies. Testing the algorithms for MMC models in a prospective
study would offer the capability to analyze more detailed
information on fall events and contextual associated factors
therefore making them more generalizable and valid for
predicting falls.

The main findings of this review highlight the potential of MMC
in assessing components of functional performance including
gait and sit-to-stand characteristics in individuals with dementia,
MCI, and PD. Notably, high classification accuracies in several
studies demonstrate the potential for clinical applications, such
as identifying, monitoring, and predicting outcomes in these
populations. However, it is crucial to address the limitations
and challenges, such as overestimation of step length variation
and difficulty in identifying short steps, as well as the need for
standardized methodologies and further research.

A segment of motion analysis research will likely continue to
focus on simplified, discrete tasks executed within the controlled
setting of a laboratory. However, advancements in technology
are progressively enabling the expansion of movement analysis
into real-world environments [49]. While the current body of
literature predominantly centers on gait analysis, the potential
applications of MMC extend far beyond this domain, particularly
within the realm of ADL. The integration of knowledge gleaned
from analyzing various types of functional tasks will empower

clinicians to better assist individuals with neurodegeneration in
enhancing their quality of life.

Limitations
It was not feasible to conduct a meta-analysis of the reviewed
studies due to significant heterogeneity in the MMC models
evaluated, the features extracted, and the analysis methods used.
The use of search terms that are not specific to MMC such as
motion capture and movement analysis may have introduced
the possibility of inherent biases in the search results. However,
the adoption of these broad search terms facilitated a more
comprehensive screening of studies, encompassing a wider
spectrum of the literature. Furthermore, it is important to
acknowledge a potential constraint inherent in the search
strategy, specifically about the inclusion criterion of full-body
tracking MMC models. This led to the exclusion of studies that
analyzed the movement of specific body parts. Another
limitation of this review is that only a small number of studies
met the inclusion criteria limiting the generalizability of this
study’s results.

Conclusion
The findings of this review illustrate that the use of MMC
technology with full-body tracking has the potential to quantify
functional performance in people living with dementia, MCI,
and PD. However, the lack of consistency in evaluating these
models presents a challenge. Standardization of the extracted
features and analysis methods may help overcome the
heterogeneity of the evaluation process and propose a framework
for assessing future models. The findings further suggest that
MMC models based on both RGB-D and standard video cameras
are viable options for analyzing movement, yielding similar
outcomes. Nonetheless, RGB-D cameras have been favored in
models intended to detect gait impairment and predict instances
of falling.

It is worth noting that the majority of the reviewed studies
evaluated aspects of gait, with no evidence of ADL tasks being
analyzed. Future studies should incorporate ADL tasks, as this
would be more representative of real-world scenarios,
particularly for individuals with cognitive impairment.
Moreover, longitudinal studies are required to develop models
that could track functional impairment over time and potentially
predict decline.

Although accuracy is an important factor to consider when
evaluating MMC models for clinical applications, other factors
such as comparability to established gold-standard motion
capture models and capability for analyzing routine tasks and
reproducibility in the natural environment are also important.
Therefore, a more holistic approach to model development and
evaluation with a clear focus on real-world clinical utility may
be necessary to ensure that the models are suitable for use in
practical applications.
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