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Abstract

Background: The rise in life expectancy is associated with an increase in long-term and gradual cognitive decline. Treatment
effectiveness is enhanced at the early stage of the disease. Therefore, there is a need to find low-cost and ecological solutions for
mass screening of community-dwelling older adults.

Objective: This work aims to exploit automatic analysis of free speech to identify signs of cognitive function decline.

Methods: A sample of 266 participants older than 65 years were recruited in Italy and Spain and were divided into 3 groups
according to their Mini-Mental Status Examination (MMSE) scores. People were asked to tell a story and describe a picture, and
voice recordings were used to extract high-level features on different time scales automatically. Based on these features, machine
learning algorithms were trained to solve binary and multiclass classification problems by using both mono- and cross-lingual
approaches. The algorithms were enriched using Shapley Additive Explanations for model explainability.

Results: In the Italian data set, healthy participants (MMSE score≥27) were automatically discriminated from participants with
mildly impaired cognitive function (20≤MMSE score≤26) and from those with moderate to severe impairment of cognitive
function (11≤MMSE score≤19) with accuracy of 80% and 86%, respectively. Slightly lower performance was achieved in the
Spanish and multilanguage data sets.

Conclusions: This work proposes a transparent and unobtrusive assessment method, which might be included in a mobile app
for large-scale monitoring of cognitive functionality in older adults. Voice is confirmed to be an important biomarker of cognitive
decline due to its noninvasive and easily accessible nature.
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Introduction

According to “The 2021 Ageing Report by the European
Commission,” life expectancy has shown a continuous trend
over the past years [1]. As life expectancy increases, so does
the number of people with dementia worldwide. Dementia is a
neurodegenerative disease, which entails a long-term and
gradual decrease in cognitive functionality, resulting in the
reduction of patients’ autonomy and well-being, as well as
worsening of the quality of life of their caregivers. The
management of the increased number of older adults at risk of
developing severe cognitive decline is a big challenge for health
care systems, with the annual global cost expected to rise to US
$2 trillion by 2030 [2]. These pathologies start silently up to 20
years before clear cognitive symptoms. However, there is
increasing evidence that pharmaceutical interventions may be
most effective at milder stages of dementia [3]. Thus, it is
fundamental to find strategies that may anticipate the diagnosis
[4-6]. Current diagnostic procedures require a thorough
examination by medical specialists. The most employed tool
for the first screening of cognitive function is the Mini-Mental
Status Examination (MMSE). It is based on 30 questions that
address short and long-term memory, attention span,
concentration, language, and communication skills, as well as
the ability to plan and understand instructions [7]. A score of
26 or higher is usually classified as normal. If the score is below
25, the result highlights a possible cognitive impairment, which
may be classified as mild (21≤MMSE score≤26) or moderate
to severe (MMSE score≤20). Although this test has high
sensitivity and specificity (87% and 82%, respectively) [8] and
can be quickly administered, its employment is restricted within
primary care facilities. Thus, faster, noninvasive, and automatic
methods are needed to provide digital biomarkers for large-scale
monitoring of cognitive functions in real-life scenarios [9].

In recent years, voice has been one of the most studied digital
biomarkers since it allows cheap, noninvasive, ecological, rapid,
and remote assessment of several aspects of a patient’s health
status, such as the functionality of the respiratory system,
cognitive decline, emotions, and heart dysfunctions [7,10-12].
Speech and language capacity is a well-established early
indicator of cognitive deficits [13,14]. In the early phase of
dementia, participants show alterations in the rhythm, resulting
in a higher number of pauses, probably due to word-finding
problems (ie, anomia and semantic paraphasia), worsening of
verbal fluency [15-17], low speech rates, and decrease in the
length of voiced segments [18-20]. Several studies have
addressed the possibility of identifying signs of cognitive decline
from voice recordings. Martínez-Sánchez and colleagues [21]
analyzed the temporal parameters of reading fluency to
discriminate between Spanish-speaking asymptomatic
participants and those with Alzheimer disease (AD), and they
were able to differentiate between patients with AD and healthy
controls with an accuracy of 80% based on the speech rate.

However, using a reading task introduces the possibility that
participants’ fluency is affected by other factors such as
educational level or visual impairment. Konig et al [22]
demonstrated that it is possible to differentiate between dementia
and mild cognitive impairment (MCI) in English-speaking
participants based on voice features extracted from different
tasks, for example, verbal fluency, picture description, counting
down, and free speech, with a classification accuracy of 86%.
Toth et al [23] showed that acoustic parameters such as speech
rate, hesitation ratio, number of pauses, and articulation rate
yield good results in discriminating between Hungarian-speaking
participants with MCI and healthy controls. They analyzed a
movie recall task and achieved an F1-score of 78.8%. Calzà et
al [2] were able to discriminate between Italian-speaking healthy
controls and participants with MCI by using random forest and
support vector machine (SVM) with an F1-score of 75% by
employing natural language processing. Finally, Bertini et al
[24] achieved high performance (accuracy of 93% and F1-score
of 88.5%) based on acoustic features extracted from spontaneous
speech from a corpus of English-speaking participants, that is,
Pitt Corpus, by using deep learning techniques. Nevertheless,
natural language processing and deep learning require the
analysis of raw data, thus having access to the recordings’
information content and endangering the participants’ privacy.
Most previous works [2,21-24] aimed to distinguish participants
with a proper diagnosis of AD or MCI from healthy participants.
However, as far as we know, there are no studies investigating
whether machine-learning algorithms based on voice features
can identify early signs of functional cognitive decline detected
by a decrease in the MMSE score.

In a previous study of our group [25], voice features
automatically extracted from recordings of episodic storytelling
could discriminate between Italian-speaking participants with
normal cognitive functions (MMSE score≥27) and participants
with mild cognitive decline (20≤MMSE score≤26) with an
accuracy of 73%. Starting from this preliminary study, our study
exploits acoustic features automatically extracted from
spontaneous speech and machine learning techniques to support
the early identification of cognitive function decline, meant as
a reduction of the MMSE score. The main novelties involve the
extension of a number of features, reduction of the
computational time for feature extraction, and the multilanguage
approach since both Spanish- and Italian-speaking participants
were considered.

Methods

Participants and Data Collection
A sample of older adults were recruited in Italy (Lombardy
region) and Spain (Extremadura region). In Italy, participants
were recruited based on direct contact with the Geriatric Unit
of the Foundation Scientific Institute for Research,
Hospitalization and Healthcare (IRCCS) Ca’ Granda Ospedale
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Maggiore Policlinico (day hospital, ambulatory, and
gymnasium). In Spain, people were recruited based on direct
contact with professionals working in health care belonging to
the Extremadura Health Ecosystem.

The essential requirement for participation was a good
knowledge, at least oral, of the language of the country where
the audios were recorded. Exclusion criteria were
nonnative-speaking participants, clinically unstable participants,
terminal illness (life expectancy <6 months), severe hearing or
visual deficits, aphasia, and a score on the 30-item Geriatric
Depression Scale >9. After providing informed consent to
participate in the study, participants were met individually and
they underwent the MMSE performed by health care
professionals (geriatrician in Italy and neuropsychologist in
Spain). Afterward, they were asked to tell 3 stories about their
life for 2 minutes each without interruptions (positive, negative,
and episodic) and to provide a 2-minute description of the
“Cookie-Theft picture” of the Boston Diagnostic Aphasia
Examination [26]. For each task, voice signals were recorded
in separate .WAV files (16 kHz) by using an ad-hoc toolbox
developed in MATLAB (MathWorks), through an external USB
microphone. Participants were divided into 3 groups based on
the MMSE score:

1. Group 1: MMSE score≥27, that is, healthy participants
2. Group 2: 20≤MMSE score≤26, that is, participants with

mild impairment of cognitive function
3. Group 3: 11≤MMSE score≤19, that is, participants with a

moderate to severe impairment of cognitive function

The choice of the MMSE score for separation among the groups
was employed since the aim was to detect the earliest symptoms
of cognitive decline in the prediagnostic phase.

Ethics Approval
This study was approved by the ethics committee of Fondazione
IRCCS Ca’Granda Ospedale Maggiore Policlinico in Italy (ref:

1272018, approval date: March 15, 2018) and by the Comité
Ético de Investigaciòn Clìnica de Badajoz in Spain (approval
date: April 11, 2018).

Feature Extraction and Statistical Analysis
Data preprocessing and features extraction were performed
employing an automatic algorithm implemented in MATLAB
[25]. A positive speech polarity was imposed, and voice
recordings were standardized. Afterward, the acoustic features
described in Table 1 were extracted [20,21,23,27,28]. The
features were grouped into 4 macrocategories according to their
information content: voice periodicity, shimmer-related, syllabic,
and spectral features. Feature extraction was repeated 3 times
for voice segments lasting 5 seconds, 10 seconds, and 15
seconds to assess whether different time lengths can capture
specific patterns. For each voice segment length, voice features
extracted from the 4 audio recordings were substituted by their
mean and standard deviation or their median and interquartile
range, based on data set distribution, assessed by the
Anderson-Darling normality test. Thus, each participant was
represented by a single entry in the final data set, and 138
acoustic features (23 features × 3 segments length × 2 statistics)
were computed for each entry. A 1-way analysis of variance
for independent samples was applied to compare the 3 groups
in terms of age. Due to their categorical nature, the
Kruskal-Wallis test was applied to compare years of education
and MMSE scores among groups. A Pearson chi-squared test
was instead used for gender. Finally, generalized linear mixed
models were defined in SPSS Statistics (version 28; IBM Corp)
to evaluate whether acoustic features were significantly different
among groups. Specifically, the mean (or median) values of the
23 acoustic features extracted from the 15-second segments
were considered as the target for each model following a gamma
regression distribution with a log link to the linear model. If
significant differences were found, post hoc analysis with
Bonferroni correction was also performed.
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Table 1. Overview of the extracted features.

Feature codeDomain, feature description

Voice periodicity

F1Unvoiced percentage, that is, percentage of aperiodic parts in the audio segment

F2-F9Duration of voiced and unvoiced segments, that is, mean, median, 15th and 85th percentiles of the parts of the signal
with (voiced) and without (unvoiced) periodic nature

F10Percentage of voice breaks computed on the number of distances between consecutive pulses longer than 1.25 divided
by the pitch floor (70 Hz) [27]

Shimmer

F11Shimmer, that is, random cycle-to-cycle temporal changes of the amplitude of the vocal fold vibration [28]

Syllabic and pauses features

F12Speech rate, that is, number of syllables per second [21]

F13Percentage of phonation time, that is, the intrasyllabic and intersyllabic nuclei time <250 ms divided by the total
speech time [20,21]

F14Articulation rate, that is, the number of syllables divided by the phonation time without pause [20,21]

F15Mean duration of intersyllabic pauses >250 ms [21]

F16Mean duration of syllables [20,21]

F17-F18Number and mean duration of pauses of the audio segment [23]

Spectral features

F19-F20Mean (SD) of pitch

F21Standard deviation of third formant (F3-SD)

F22Speech temporal regularity, that is, temporal structure of the audio segment

F23Centroid, that is, location of the center of mass of the spectral signal

Feature Selection and Classification
Machine learning algorithms were trained to solve multiclass
and binary classification problems (group 1 vs group 2 and
group 1 vs group 3) starting from the extracted voice features,
which were preliminary normalized.

Classifiers
SVM [29], logistic regression (LR), and CatBoost classifier
(CAT) [30] were used. SVM is robust to noise in training data,
since SVM decisions are only determined by the support vectors,
while CAT represents the state of the art of boosting algorithms
based on decision trees, and it has been proven to be very
effective with small data sets with a high number of features.
LR was investigated due to its simplicity and low computational
cost. To achieve robust estimations despite the relatively small
number of samples, the performance of each classifier was
evaluated using stratified nested 10-fold cross-validation, which
leads to the construction of an ensemble model via soft voting
starting from each fold, obtaining a macromodel composed of
10 models trained on different subsets of data [31]. The classifier
was selected according to the accuracy obtained in validation.
Finally, a Kruskal-Wallis test was performed to determine
whether there was a statistically significant difference between
different classifiers in terms of accuracy.

Parameter Setting
Hyperparameter tuning was performed to limit overfitting with
the nonlinear classifier. The following parameters were tuned

for CAT through a randomized search method: bagging
temperature, tree depth, l2 leaf regularization, and random
strength. SVM was employed with a linear kernel and default
parameters, and LR was also considered with default parameters.
All the experiments were implemented using scikit-learn Python
libraries, Catboost library, and Shapley Additive Explanation
(SHAP).

Feature Selection
Due to the high dimensionality of the features set, the selection
of the most informing features was performed through SHAP
[32]. For each fold, starting from the entire set of features, the
training was performed iteratively by computing the accuracy
and the feature importance via SHAP for that specific iteration.
At the end of each iteration, the 2 least significant features were
removed until the minimum number of 6 features was reached.
Therefore, the best model, that is, the one that achieved the best
accuracy, was selected for each fold of the outer loop, and the
model parameters were tuned for the identified set of features.
As a result, 10 models trained on 10 different folds, each
characterized by a different set of parameters and exploiting a
different set of features, were obtained. The algorithm related
to a single fold of the outer loop is summarized in Textbox 1.
Finally, the ranking of the most informing features was
implemented by summing up the unweighted mean of the
Shapley values obtained at the end of the training of each fold
for each feature.
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Textbox 1. Algorithm of feature elimination with Shapley Additive Explanations.

1: Train algorithm with whole set of features

2: Calculate model performance

3: Calculate feature importance with Shapley Additive Explanations

4: for feature in range (0, total features-6) do

• Remove the k=2 least significant features

• Train the model with the remaining features

• Evaluate machine learning performance based on the scoring function

• Calculate new features ranking with Shapley Additive Explanations explainer

5: end for

6: Best set is the one with the highest scoring function

Results

Characteristics of the Participants
Table 2 shows the characteristics of the recruited participants.
A total of 266 participants were recruited: 133 Italian-speaking
and 133 Spanish-speaking older adults. In the Italian data set,
most participants in all groups were females. In contrast, in the
Spanish data set, participants were balanced for gender in group

1 and unbalanced in favor of females in the other 2 groups.
Overall, significant differences in terms of age (P=.03 and
P=.001 for the Italian and Spanish data sets, respectively),
MMSE scores (P<.001 for both data sets), and years of
education (only for the Italian data set, P<.001) were found
among the 3 groups, with people with severe impairment of the
cognitive function being characterized by an older age in both
data sets and by fewer years of education in the Italian data set.

Table 2. Characteristics of the participants.

P value
group 1 vs
group 3

P value
group 2 vs
group 3

P value
group 1 vs
group 2

P valueGroup 3cGroup 2bGroup 1a

Italian data set

N/AN/AN/AN/Ad444445Participants, n

.02>.99.22.0384.9 (5.7)82.8 (4.6)76.5 (4.9)Age (years), mean (SD)

N/AN/AN/A.4037/733/1139/6Gender (female/male)

<.001<.001<.001<.00116 (5)24 (3)30 (1)MMSEe (0-30), median (IQR)

<.001.36<.001<.0015 (5)8 (8)13 (3)Years of education, median (IQR)

Spanish data set

N/AN/AN/AN/A454543Participants, n

.001.27.05.00185.6 (6.6)82.4 (6.9)79.9 (7.5)Age (years), mean (SD)

N/AN/AN/A.0927/1836/921/22Gender (female/male)

<.001<.001<.001<.00117 (2)23 (3)28 (2)MMSE (0-30), median (IQR)

N/AN/AN/A.257 (4)5 (4)6 (5)Years of education, median (IQR)

aGroup 1: Mini-Mental Status Examination score≥27.
bGroup 2: 20≤Mini-Mental Status Examination score≤26.
cGroup 3: 11≤Mini-Mental Status Examination score≤19.
dN/A: not applicable.
eMMSE: Mini-Mental Status Examination.

Acoustic Feature Characteristics
Table 3 reports the results of the statistical analysis comparing
acoustic features for the Italian and Spanish data sets. Voice
periodicity features, particularly those related to unvoiced
segments, were found to be significantly different among groups

(P<.001 for mean, median, and 85th percentile of duration of
unvoiced segments). Indeed, from group 1 up to group 3, a
significant increase (P<.001 for mean and 85th percentile and
P=.004 for median) in the unvoiced duration was found.
Significant differences were found also for some syllabic
features such as duration of pauses and syllables, which
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significantly increased with the decrease in the MMSE score,
as expected from literature [20]. The results of the statistical
analysis comparing acoustic features for the Italian and Spanish

data sets separately are reported in Multimedia Appendix 1
(Tables S1 and S2).
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Table 3. Acoustic feature characteristics and significance between the 3 groups for the Italian and Spanish data sets.

Group 1 vs
group 3

Group 2 vs
group 3

Group 1 vs
group 2

P valueGroup 3c (n=89)Group 2b (n=88)Group 1a (n=88)Domain, features

Voice periodicity, mean (SD)

.001d.003d.004d<.001d44.7 (11.8)38.2 (13.5)32.7 (10.4)Unvoiced (%)

Duration of voiced segments (s)

N/AN/AN/Ae.240.98 (0.79)1.03 (0.4)1.08 (0.36)Mean

N/AN/AN/A.330.8 (0.75)0.82 (0.35)0.88 (0.32)Median

.002d.29.24.003d0.22 (0.11)0.24 (0.1)0.26 (0.1)15th per-
centile

N/AN/AN/A.081.77 (1.07)1.93 (0.76)2.03 (0.71)85th per-
centile

Duration of unvoiced segments (s)

<.001d<.001d<.001d<.001d0.71 (0.23)0.6 (0.2)0.5 (0.14)Mean

.04d<.001d.001d<.001d0.49 (0.17)0.43 (0.13)0.37 (0.12)Median

N/AN/AN/A.080.17 (0.03)0.16 (0.03)0.15 (0.02)15th per-
centile

<.001d<.001d<.001d<.001d1.42 (0.56)1.14 (0.46)0.91 (0.27)85th per-
centile

<.001d.001d.001d<.001d47.17 (11)39.89 (13)34.22 (10)Voice breaks (%)

Shimmer, mean (SD)

N/AN/AN/A.175.05 (0.75)5.19 (0.67)5 (0.56)Shimmer

Syllabic and pauses features, mean (SD)

N/AN/AN/A.153.78 (6.76)3.52 (0.63)3.92 (0.59)Speech rate
(syl/s)

N/AN/AN/A.0664 (71)64 (9)70 (8)Phonation (%)

.01d.22.89.02d5.41 (0.46)5.54 (0.5)5.61 (0.44)Articulation rate
(syl/s)

<.001d.003d.001d<.001d0.16 (0.02)0.15 (0.02)0.14 (0.01)Mean intersyllab-
ic duration (s)

<.001d<.001d<.001d<.001d1.14 (0.37)0.91 (0.29)0.74 (0.17)Mean syllabic
duration (s)

<.001d<.001a<.001d<.001d1.01 (0.48)0.79 (0.31)0.62 (0.19)Number of paus-
es

N/AN/AN/A.515.32 (1.23)5.1 (1.42)5.09 (1.26)Mean duration of
pauses (s)

Spectral features, mean (SD)

Pitch

N/AN/AN/A.11158 (25)166 (26)162 (25)Mean

<.001d.004d.10<.001d79 (15)72 (12)68 (12)SD

.02d>.99.002d.001d484.92 (46)490(46)466 (46)F3-SDf

<.001d.03d.01d<.001d1687.8 (85)1716.4 (67)1749.5 (66)Speech temporal
regularity

N/AN/AN/A.12755.9 (193)776.5 (165)807.8 (154)Centroid

aGroup 1: Mini-Mental Status Examination score≥27.
bGroup 2: 20≤Mini-Mental Status Examination score≤26.
cGroup 3: 11≤Mini-Mental Status Examination score≤19.
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dSignificant at P<.05.
eN/A: not applicable.
fF3-SD: standard deviation of third formant.

Multiclass Classification
Table 4 reports the results of the multiclass classification in
terms of accuracy for 3 data sets: only Italian, only Spanish,
and combination of Italian and Spanish participants. Overall,
CAT achieved the best scores on the validation sets for the 3
data sets, but its performance considerably worsened when
applied to the test sets. From the Kruskal-Wallis test, it can be
seen that CAT achieved significantly better performance than
LR for all data sets (P=.005, P=.02, and P=.03 for the Italian,
Spanish, and Italian&Spanish data sets, respectively). A
significant difference was also highlighted between SVM and
CAT for the multilanguage data set (P=.01) and between SVM
and LR for the Spanish data set (P=.003). Since there was no
substantial difference in the accuracy between SVM and CAT,
SVM was selected for its simplicity and further metrics, that is,
receiver operating characteristic (ROC) curves, confusion
matrices, and feature rankings are also reported (Figures 1-2).
Overall, ROC curves (Figures 1A, 1C, and 1E) show a better
trend for groups 1 and 3, whereas for group 2, the curve almost
overlaps the bisector. The macro and micro averages of the

areas under the curves achieved a fair score. The confusion
matrices in Figures 1B, 1D, and 1F confirm this trend, with
group 2 being the most misclassified in all 3 cases. For the
Italian data set (Figure 1B), the model mainly misclassifies the
participants from group 2 with those belonging to group 3,
whereas for the Spanish data set (Figure 1D), participants from
group 2 were mainly misclassified with participants from group
1.

The feature rankings obtained from SHAP (Figure 2) show the
contribution of the most important features, ranked from the
most to the least informing. It can be seen that the most
important features changed depending on the considered
language. For the Italian data set (Figure 2A), the spectral
features (in purple), and those related to voice periodicity (in
green) were among the most important features, whereas within
the Spanish data set (Figure 2B), features related to syllables
and pauses (in blue) and shimmer (in yellow) became more
important. For the Italian&Spanish data set, the resulting ranking
was a combination of the previous two, as displayed in Figure
2C.

Table 4. Classification accuracies on the validation and test sets for the multiclass classification among the 3 groups (healthy, mild, and severe symptoms)
for the 3 data sets.

SVM vs LRCAT vs LRCAT vs SVMP valueLRcSVMbCATaData set

Italian, mean (SD)

.12.005.46.0060.63 (0.03)0.64 (0.02)0.67 (0.03)Validation

N/AN/AN/AN/Ad0.59 (0.13)0.57 (0.16)0.54 (0.08)Test

Spanish, mean (SD)

.003.02.88.0020.60 (0.02)0.64 (0.02)0.63 (0.02)Validation

N/AN/AN/AN/A0.51 (0.15)0.53 (0.11)0.49 (0.09)Test

Italian&Spanish, mean (SD)

.92.03.01.0080.58 (0.02)0.58 (0.02)0.61 (0.01)Validation

N/AN/AN/AN/A0.52 (0.09)0.54 (0.08)0.53 (0.06)Test

aCAT: CatBoost classifier.
bSVM: support vector machine.
cLR: logistic regression.
dN/A: not applicable.
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Figure 1. Receiver operating characteristic curves and confusion matrices obtained with support vector machine for multiclass classification of the
(A,B) Italian, (C,D) Spanish, and (E,F) Italian&Spanish data sets, respectively. (A,C,E): The dotted pink line corresponds to the microaveraged receiver
operating characteristic curve, while the dotted blue curve corresponds to the macroaveraged one. (B,E,F): Labels 1, 2, and 3 on the x and y axes
correspond to the group number.
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Figure 2. Feature ranking for (A) Italian, (B) Spanish, and (C) Italian&Spanish data sets. Rank is represented from top to bottom from the most
contributing to the least important feature.

Binary Classification
Tables 5 and 6 report the performance achieved for the binary
classification, respectively, to distinguish group 1 (MMSE≥27)
and group 2 (20≤MMSE≤26) and group 1 and group 3
(11≤MMSE≤19). SVM achieved the best scores on the
validation sets compared to CAT and LR for the Italian&Spanish
data sets in the discrimination between group 1 and group 2.
However, the discrimination between group 1 and group 3
achieved a substantial equivalence among the 3 algorithms. As
expected, better performance was obtained in the discrimination
between healthy participants and those with severe impairment.
As for the multiclass scenario, the accuracy of the test sets
worsened in all data sets, with the Spanish data set experiencing
the largest decrease.

ROC curves, confusion matrices, and feature rankings for the
Italian&Spanish data set were shown for SVM, which achieved
the best performance, at least in distinguishing group 1 from

group 2. Regarding ROC curves, the results were poor for the
classification between healthy participants and those with mild
impairment, with an area under the curve score of 0.65 (Figure
3A), as it can be noticed also by the confusion matrix in Figure
3B. Fair results were obtained for the ROC curve concerning
the distinction between healthy participants and participants
with impairment, with an area under the curve score of 0.77
(Figure 4A). Moreover, the confusion matrix (Figure 4B) shows
a smaller number of misclassified participants. Feature rankings
showed that the most informing features were mainly spectral
features and features related to voice periodicity for the
classification between healthy participants and participants with
mild impairment (Figure 5A). In contrast, features related to
syllables and pauses (in blue) were more important for
classifying between healthy and older adults with severe
impairment (Figure 5B). ROC curves, confusion matrices, and
feature rankings related to binary classifications of the
Italian&Spanish data sets are reported in Multimedia Appendix
1.
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Table 5. Classification accuracies on the validation and test sets for the binary classification of group 1 (Mini-Mental State Examination score≥27)
versus group 2 (20≤Mini-Mental State Examination score≤26).

SVM vs
LR

CAT vs LRCAT vs
SVM

P valueLRcSVMbCATaData set

Italian, mean (SD)

.02.91.007<.0010.79 (0.02)0.84 (0.02)0.80 (0.02)Validation

N/AN/AN/AN/Ad0.76 (0.16)0.80 (0.14)0.71 (0.14)Test

Spanish, mean (SD)

.03.79.005.0040.76 (0.03)0.79 (0.02)0.74 (0.04)Validation

N/AN/AN/AN/A0.62 (0.17)0.59 (0.16)0.62 (0.15)Test

Italian & Spanish, mean (SD)

N/AN/AN/A.060.74 (0.02)0.76 (0.01)0.74 (0.02)Validation

N/AN/AN/AN/A0.65 (0.13)0.65 (0.11)0.64 (0.12)Test

aCAT: CatBoost classifier.
bSVM: support vector machine.
cLR: logistic regression.
dN/A: not applicable.

Table 6. Classification accuracies on the validation and test sets for the binary classification of group 1 (Mini-Mental State Examination score≥27)
versus group 3 (11≤Mini-Mental State Examination score≤19) for the 3 data sets.

SVM vs LRCAT vs LRCAT vs
SVM

P valueLRcSVMbCATaData set

Italian, mean (SD)

N/AN/AN/Ad.380.92 (0.02)0.93 (0.02)0.92 (0.02)Validation

N/AN/AN/AN/A0.89 (0.14)0.86 (0.18)0.82 (0.14)Test

Spanish, mean (SD)

N/AN/AN/A.170.82 (0.03)0.83 (0.02)0.84 (0.03)Validation

N/AN/AN/AN/A0.71 (0.15)0.73 (0.11)0.83 (0.12)Test

Italian&Spanish, mean (SD)

N/AN/AN/A.050.84 (0.01)0.85 (0.01)0.85 (0.02)Validation

N/AN/AN/AN/A0.81 (0.06)0.78 (0.05)0.79 (0.11)Test

aCAT: CatBoost classifier.
bSVM: support vector machine.
cLR: logistic regression.
dN/A: not applicable.
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Figure 3. (A) Receiver operating characteristic curve and (B) confusion matrix for the binary classification of group 1 (Mini-Mental Status Examination
score≥27) and group 2 (20≤Mini-Mental Status Examination score≤26) of the Italian&Spanish data set. AUC: area under the curve; ROC: receiver
operating characteristic.

Figure 4. (A) Receiver operating characteristic curve and (B) confusion matrix for the binary classification between group 1 (Mini-Mental Status
Examination score≥27) and group 3 (11≤Mini-Mental Status Examination score≤19) of the Italian&Spanish data set. AUC: area under the curve; ROC:
receiver operating characteristic.

Figure 5. Feature ranking for the binary classifications of the Italian&Spanish data set. (A) Group 1 versus group 2; (B) group 1 versus group 3.
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Discussion

An artificial intelligence–based classification pipeline has been
implemented to evaluate the possibility of using voice analysis
as a prescreening tool for detecting the impairment of cognitive
function in a single and multilanguage approach. Multiclass
and binary classification were performed on 3 data sets (Italian,
Spanish, and a combination of Italian and Spanish data sets).
For the multiclass tasks, the models obtained an accuracy of
57%, 53%, and 54% on the test set with SVM on the Italian,
Spanish, and multilanguage data set, respectively. Regarding
the binary classification, an accuracy of 80%, 59%, and 65%
in the test set was achieved on the Italian, Spanish, and
multilanguage data set, respectively, when distinguishing
between healthy participants and those with the first symptoms
of cognitive decline and an accuracy of 86%, 73%, and 78%
for the classification between healthy participants and those
with an MMSE score≤19. The ROC curves in the multiclass
task underlined how the participants with mild symptoms of
cognitive decline are the most misclassified. This outcome aligns
with expectations since participants belonging to this group
exhibit mild impairment, indicated by an intermediate MMSE
score. When having a deeper look into the misclassifications
results (confusion matrices in Figure 1B and 1D), we observed
that for the Italian data set, the model mainly misclassified
participants from group 2 with those belonging to group 3, while
for the Spanish data set, participants from group 2 were mainly
misclassified with participants belonging to group 1. This result
is in line with the results of the statistical analysis for the 2 data
sets separately, which are reported in Multimedia Appendix 1
(Tables S1-S2): the statistical analysis highlighted a higher
number of significantly different acoustic features between
group 1 and group 2 for the Italian data set, while for the Spanish
data set, there was a higher prevalence of acoustic features,
which significantly differed between group 2 and group 3. A
possible confounding factor might be the different distributions
between the 2 data sets in terms of years of education, with a
difference of 5 years between group 1 and group 2 for the Italian
data set and a difference of only 1 year for the Spanish data set
(Table 2).

The overall differences in the performance between the 2
languages may be explained by the heterogeneous demographic
characteristics between the 2 data sets. Indeed, the distribution
of participants in terms of gender, which highly affects acoustic
features such as pitch [33], differed between the Italian and
Spanish data set. In the Italian one, the distribution was more
similar among the 3 groups, with a prevalence of females in
each group, whereas for the Spanish data set, there was a
prevalence of females in group 2 and group 3 compared to group
1, in which there was a balance between the 2 genders.
Furthermore, the overall lower performance obtained on the
Spanish data set may be related to the distribution of the MMSE
scores among the groups. Indeed, there was a sharper separation
among the 3 groups in the Italian data set, with a median MMSE
score of 30 in group 1 and a median MMSE score of 24 in group
2, whereas the distribution of the scores in the Spanish data set
was shrunk, with more participants being borderline among the
groups (see Table 2).

The results highlighted that different sets of features are relevant
depending on the considered language and the specific task.
Indeed, shimmer was shown to be more relevant in
Spanish-speaking participants, suggesting that an amplitude
variation is predictive of a decline in cognitive function, whereas
spectral features and those related to the voiced and unvoiced
parts of speech were more important for predicting cognitive
decline in Italian-speaking participants. The feature rankings
of the classification tasks obtained with the multilanguage data
set showed that the most informing features were a combination
of those achieved for the 2 languages, when considered
individually. This variability in the ranking of the features may
be due to the change in prosody and accents of the languages
themselves. Indeed, the Italian language is characterized by a
wider spectral range compared with Spanish [34], which might
explain why spectral features are predominant in the prediction
of cognitive decline for the Italian data set. Nevertheless, these
speculations need to be further explored in future studies.

Compared to that achieved by Calzà et al [2], we achieved
slightly higher performance in the binary classification for
distinguishing participants with mild cognitive decline from
healthy participants when only the Italian data set was
considered. Indeed, we achieved a test accuracy of 80%, while
Calzà and colleagues [2] obtained an F1-score of 75% on a
manually checked corpus. However, there are several differences
between these 2 studies. First, they considered not only acoustic
features extracted from free speech but also lexical and syntactic
features extracted with natural language processing as well as
the demographic characteristics of the participants, such as age
and years of education, which are considered important
indicators of cognitive decline [35]. Conversely, we exploited
only acoustic features automatically extracted from free speech,
without considering any demographic features, to evaluate the
possibility of exploiting this method for longitudinal monitoring.
Moreover, in their work, Calzà and colleagues [2] recruited
participants with a diagnosis of MCI based on a
neuropsychological assessment, while in our work, we focused
on the prescreening phase before an eventual diagnosis of MCI,
and indeed, our groups were discriminated only based on the
MMSE score. In another work [24], Bertini et al achieved
instead higher performances, that is, 93% after data
augmentation with a 20-fold cross-validation with acoustic
features extracted from spontaneous speech from a corpus of
English-speaking participants, that is, the Pitt Corpus, by
applying deep learning techniques on a graphics processing
unit. In their study, patients had a diagnosis of AD with the
mean MMSE scores of the healthy control group of
approximately 29 versus the AD group characterized by a mean
score of 18. The lower performances of our model (accuracy
of 86% to discriminate between group 1 and group 3 in the
Italian data set) may be due to the use of the MMSE score only
to distinguish between groups, which may have resulted in
misclassification problems. Toth et al [23] achieved 75%
accuracy from a binary classification task on
Hungarian-speaking participants to distinguish healthy controls
from those with MCI by using leave-one-out cross-validation
on a set of 88 participants. Our results slightly outperformed
their results on the Italian data set (accuracy of 80%), while we
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achieved lower performances on the Spanish and the
multilanguage data sets (accuracy of 62% and 65%,
respectively). However, as in the previous studies [2,24], but
differently from our study, Toth and colleagues [23] recruited
participants with a diagnosis of MCI based on a
neuropsychological assessment. Martínez-Sánchez et al [21]
classified dementia among Spanish-speaking participants with
an accuracy of 80%. The analysis was conducted to distinguish
between 35 patients with AD and 35 healthy participants. They
stated that fluency is an important aspect of cognitive decline
from spontaneous speech, which was confirmed in our work by
Figure 1D since the duration of syllables, phonation percentage,
and articulation rate are in the top 5 most important features for
the multiclass classification of the Spanish data set.

Our approach is based on acoustic features that can be
automatically extracted on-the-fly on short speech segments.
The satisfactory accuracy achieved with this approach to
distinguish healthy participants from those with mild impairment
(80% for the Italian data set) makes our results promising toward
the design of a mobile app. Leveraging on this tool, an
ecological and transparent mass screening of the early signs of
cognitive decline can be performed, for example by analyzing
free speech during phone calls. Moreover, since there is no need
to store raw data and the information content of the speech is
not exploited, this tool would preserve the speaker’s privacy.

This work has some limitations. The performance of the models
on unseen data, that is, on the test set, worsened overall,

probably due to the lack of the generalization power of the
model; therefore, there is the need for larger data sets to have
more robust classification models. Furthermore, regarding the
Spanish data set, another limitation was the lower number of
years of education of the recruited participants. Previous studies
recruited only participants with more than 6 years of primary
education to ensure that participants were fully literate [27].
Another limitation was the use of the MMSE score as the only
method to allocate participants into different groups, without
collecting information about an eventual diagnosis of MCI or
AD, which might have brought to misclassification issues.
Furthermore, as reported by Yancheva et al [36], MMSE is
affected by a within-participant interrater standard deviation of
3.9 [37,38], which may have resulted in a further wrong group
assignment for some participants. Finally, the MMSE test was
administered by 2 different professional roles in the 2
recruitment sites—a geriatrician in Italy and a neuropsychologist
in Spain, which may have introduced further differences between
the 2 data sets.

This work confirmed that it is possible to detect early symptoms
of cognitive function decline from the automatic analysis of
acoustic features, exploiting a multilanguage approach. Overall,
good performances by considering only acoustic features to
discriminate between participants with different MMSE scores
were achieved. The results obtained on the classification tasks
are promising for the development of a screening tool for
large-scale monitoring of cognitive function in
community-dwelling older adults.
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