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Abstract

Background: Digital neuropsychological tools for diagnosing neurodegenerative diseases in the older population are becoming
more relevant and widely adopted because of their diagnostic capabilities. In this context, explicit memory is mainly examined.
The assessment of implicit memory occurs to a lesser extent. A common measure for this assessment is the serial reaction time
task (SRTT).

Objective: This study aims to develop and empirically test a digital tablet–based SRTT in older participants with cognitive
impairment (CoI) and healthy control (HC) participants. On the basis of the parameters of response accuracy, reaction time, and
learning curve, we measure implicit learning and compare the HC and CoI groups.

Methods: A total of 45 individuals (n=27, 60% HCs and n=18, 40% participants with CoI—diagnosed by an interdisciplinary
team) completed a tablet-based SRTT. They were presented with 4 blocks of stimuli in sequence and a fifth block that consisted
of stimuli appearing in random order. Statistical and machine learning modeling approaches were used to investigate how healthy
individuals and individuals with CoI differed in their task performance and implicit learning.

Results: Linear mixed-effects models showed that individuals with CoI had significantly higher error rates (b=−3.64, SE 0.86;
z=−4.25; P<.001); higher reaction times (F1,41=22.32; P<.001); and lower implicit learning, measured via the response increase
between sequence blocks and the random block (β=−0.34; SE 0.12; t=−2.81; P=.007). Furthermore, machine learning models
based on these findings were able to reliably and accurately predict whether an individual was in the HC or CoI group, with an
average prediction accuracy of 77.13% (95% CI 74.67%-81.33%).

Conclusions: Our results showed that the HC and CoI groups differed substantially in their performance in the SRTT. This
highlights the promising potential of implicit learning paradigms in the detection of CoI. The short testing paradigm based on
these results is easy to use in clinical practice.

(JMIR Aging 2024;7:e48265) doi: 10.2196/48265
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Introduction

Memory, Neurodegeneration, and Aging

Overview
In an aging society, the number of individuals with
neurodegenerative diseases is increasing. Alzheimer disease
(AD) and Parkinson disease rank among the most prevalent
neurodegenerative disorders. One of the most apparent cognitive
symptoms of neurodegenerative diseases is a change in memory
impairment, which can affect different cognitive and memory
functions in different ways.

Memory functions differ in concepts and models [1-5]. When
comparing different memory models, memory can be
categorized into specific subsystems: intentional learning leads
to explicit memory, and unintentional and incidental learning
creates implicit memory [3-6]. Most studies on
neuropsychological changes in neurodegenerative diseases focus
on explicit memory, whereas studies examining the decline of
implicit memory remain scarce [7-13]. Accordingly, many
assessments for explicit memory are available, but only a few
assessments are available for implicit memory, and most
assessments are paper based. Paper-based examination of
implicit memory is effortful and limited in its possibilities and
test quality, although there are some digital tools available
[8,14]. Still, solely examining explicit memory seems to be
insufficient, as neurodegenerative disorders such as AD show
changes in different cognitive domains, not just explicit memory
but also implicit memory [14-19], among others. Thus, implicit
memory paradigms are promising tools in addition to common
explicit memory tasks in early diagnostics to assess memory
dysfunctions more precisely and to determine the different
causes of neuropsychological dysfunction. Reasons for reduced
performance in implicit memory tasks can be independent of
the reasons for deficits in regular tasks such as word lists used
for explicit learning.

We introduce a digital tablet–based version of the serial reaction
time task (SRTT) aimed at assessing implicit memory. We then
use data gathered by this tool to develop machine learning (ML)
models for predicting cognitive impairment without relying on

diagnoses from comprehensive assessments such as the Montreal
Cognitive Assessment or the Consortium to Establish a Registry
for Alzheimer’s Disease. On the basis of computer-based
studies, we developed an app for clinical application, aiming
to provide results comparable with previous findings on the
SRTT. This study examines a mobile touch–based SRTT on a
tablet in healthy older participants and older participants with
cognitive impairment (CoI).

Implicit Learning
Researchers use various terms for implicit memory, referring
to different concepts and processes inconsistently. Sometimes,
these terms can refer to subtypes of a form of memory [8,14].
Although implicit learning is an umbrella term for the absence
of awareness and intention, which means “a collection of
abilities that are expressed through performance without
requiring conscious memory content” [2], statistical learning
“refers to the ability to detect and learn regularities in the
environment” [13]. Sequence learning “describes the ability to
incidentally acquire knowledge of sequences of events and
actions” [20]. Motor skill learning “refers to the increasing
spatial and temporal accuracy of movements with practice”
[21]. Procedural learning is used as a synonym for sequence
learning, referring to the learning of sensory-motor skills
[10,13,22,23]. As we are focusing on a rather
application-oriented approach, we further refer to the more
general concept of implicit learning.

SRTT Paradigm
Different tasks have been used to assess implicit learning [8,14].
Among others, the SRTT was established as a widely used
assessment. In the original version of the SRTT [24], participants
react to stimuli presented in blocks with repeated sequences.
After several blocks of repeated sequences (“sequence blocks”),
a block with random sequences is presented (“random block”).
Although reaction times usually improve throughout the blocks
of repeated sequences, they decelerate in the blocks with a
random sequence [16,24]. Implicit learning is assumed when
there is a decrease in reaction time in blocks of repeated
sequences and an increase in reaction time in the random block.
Figure 1 shows an illustration based on the example of this
study.
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Figure 1. Illustration of the serial reaction task paradigm used in this study and the expected reaction times for healthy participants. (A) Touch-based
variant used in the study. The participants’ task was to respond with their finger to the target stimulus in the form of a ship’s wheel on the tablet. (B)
Expected reaction times for healthy participants. After the sequence is repeated in the first 4 blocks, leading to a decrease in participants’ reaction time,
a random sequence occurs in block 5, resulting in a significant increase in participants’ reaction time.

SRTT Variants
There are many variations in the SRTT paradigm and ambiguous
findings on the effects and results of different clinical
syndromes. Variations in paradigms can significantly influence
the patterns of results observed. Different versions of the SRTT
may vary in factors such as the quantity and length of stimuli;
number of trials and blocks; the arrangement, structure, and
display of stimuli on screen; the method of response; and even
the medium used. Stimuli are presented on a computer screen
in most studies [14,25]. Participants are asked to indicate the
position of the stimuli using buttons on a keyboard or button
box. Very few studies used a touchscreen- or tablet-based
presentation of the SRTT [9,26-31]. Thus, researchers have
many degrees of freedom in adjusting the paradigms of the
SRTT, especially when implementing a touch-based version
for older participants. In this setup, the participants use their
fingers to indicate the position of the stimuli directly on the
touchscreen. The most appropriate specifications may vary
based on the research question (RQ) and the sample under
investigation.

As described by Hong et al [16], an alternating design, that is,
a design with an alternating sequence and random blocks
[32-34], has advantages in distinguishing between motor and
cognitive learning, but progressions in sequence tasks cannot
be analyzed. Moreover, alternating sequences lead to a longer
overall assessment time. In contrast to laboratory studies, design
decisions are limited in a clinical approach. An SRTT version
suitable for clinical use with older participants should be as
short as possible to meet their stamina and motivation, especially
in the case of CoI. Although some researchers suggest the
superiority of alternating SRTT variants because of their
capacity to discriminate between sequence-specific and general
skill learning [35], we decided to use the SRTT in a tablet-based
version as a short SRTT version that only needs 5 blocks and
thus is much shorter and more usable in clinical contexts.

Possible Distinguishing Features
The patient and control groups differ for various outcome
measures. First, reaction times can differ between groups in

general, meaning that healthy controls (HC) are faster than
patient subgroups. Second, learning curves can vary between
groups, meaning that HC participants should learn sequences
faster. Third, the response increase between the groups may
deviate. That is, the contrast in reaction times between sequence
and random blocks becomes more pronounced after extensive
learning of sequences, rather than just motor skill leaning or
increased familiarity with the task. Finally, the number of correct
responses, that is, the response accuracy (and vice versa error
rates), is expected to differ between groups. That is, the CoI
group should show more false responses than the HC group. In
addition, when we combine these variables as features in a
statistical model, we may discover findings not only about
implicit memory but also about parameters such as limitations
in task comprehension or altered reaction times, which serve as
additional diagnostic information.

SRTT Findings
The SRTT and similar tasks to assess implicit learning have
been used in numerous studies in different fields [25], reporting
different variables, outcome measures, and results. Varying
patterns of results can be explained by different design variations
(eg, [32,33]) and experimental requirements and conditions
[8,14]. In healthy adults, differences in response increase were
found consistently between sequence and random blocks. There
was a slight tendency of age-related deterioration in
performance, learning, accuracy, and reaction times with higher
age [20,36,37]. Worse performance can be observed in patients
with strokes [38]. Numerous studies show a deterioration of
performance in neurodegenerative disorders affecting the basal
ganglia and the thalamus, such as Parkinson disease [25,39,40],
and other neurodegenerative and neuropsychiatric diseases,
such as Huntington disease [41-43] and Korsakoff syndrome
[24].

Some SRTT studies were conducted with patients with AD as
the clinical sample, whereas others were conducted with patients
with mild cognitive impairment (MCI; for reviews, refer to the
studies by de Wit et al [8] and van Halteren-van Tilborg et al
[14]). Overall, there are mixed findings on the association
between SRTT performance and cognitive impairment (such
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as AD, which can be a later stage of MCI). Comparing various
studies poses a challenge because of differences in sample
characteristics, such as the varying degrees of impairment
severity (eg, MCI vs AD at different levels of severity), and the
diverse inclusion criteria used for clinical samples (eg, specific
diagnostic criteria vs various screening scores) [8]. In addition,
inconsistent methodological approaches, including variations
in the quantity and duration of stimuli, sequences, and blocks,
further complicate comparisons between studies. Some studies
revealed no significant differences in learning concerning
response increase for participants with MCI compared with HC
participants. That is, participants with MCI and HC participants
showed similar response increases between sequence and
random blocks [9,16,44,45], whereas other studies found
differences [15,46]. Participants with AD, however, show less
response increase than HC participants in some studies [47-49]
and a comparable response increase in others [50-52].

Compared with learning curves, that is, the reduction in reaction
time over sequence blocks, patients with MCI seem to have
similar curves as HCs in most studies [9,15,16,44,45], whereas
some studies found differences [46,48]. Patients with AD show
more deficits than HCs, as indicated by a flatter learning curve
in some studies [49,53], but this was not clearly evident in most
studies [47,50-52].

When comparing accuracy or error rate, in some cases, no
differences are found between participants with AD [41,51,52]
and MCI [44,46]. In other cases, participants with AD [47,48,50]
and MCI [16,45] differ from the reference groups.

In most cases, patients with MCI [16,46] and AD [47,50-53]
had slower overall reaction time [54]. These differences can be
explained by motoric demands, the experimental design of the
tasks, and differences in sample selection. In addition, a large
number of dementia diseases may be mixed pictures of different
subtypes of dementia [55,56]. This phenomenon may further
contribute to the divergent findings. In a review and
meta-analysis, de Wit et al [8] discuss the difficulty of
participants with AD in understanding and remembering the
test instructions of SRTT paradigms. Most studies found
differences in response accuracy and reaction times (with
participants with CoI being slower than HC participants). These
differences suggest that the understanding and execution of the
task play a significant role in classifying differences between
healthy individuals and individuals with CoI.

This Study
We developed a mobile SRTT version suitable for testing
implicit memory in a clinical routine (in contrast to an extensive
laboratory assessment). Working with older patients in everyday
clinical routines, we recognized the need for a short,
understandable, and highly accepted digital assessment that
medical professionals can use in point-of-care or bedside tests
without requiring additional technical equipment. We also
expect a short and tablet-based variant to address the difficulties
in task understanding and remembering task instructions among
patients with CoI reported by de Wit et al [8]. Using a tablet in
neuropsychological testing has benefits in terms of the
availability of new data sources and its applicability outside the
laboratory [57,58]. Furthermore, digitalized testing enables

tasks and measures that are impossible in pen-and-paper testing
[57]. Using a touchscreen is a considerable relief for older
patients, and particularly patients with CoI, compared with using
a keyboard [59-62]. Furthermore, motivational effects must be
considered when designing tasks for older participants [57,63].
Not only the design of the task but also the task parameters are
essential: the length of the sequence and the frequency of
repetitions should capture implicit learning but should not be
unnecessarily prolonged. Using ML approaches that combine
various parameters, we may predict participants’cognitive status
more accurately with less data than a traditional approach, which
accommodates shorter assessments. Combining the SRTT with
ML represents a more recent development in this research
domain [9,10,16].

ML predictions based on these parameters can potentially lead
to accurate predictions using fewer repetitions, which facilitate
shorter assessments that are mandatory for acceptance in clinical
outpatient and inpatient practice.

Research Questions
This study focuses on the following RQs, which are centered
on the question of whether the findings for the computer-based
version of the SRTT can be replicated and transferred to the
tablet-based version of the SRTT used in this study.

We investigated the following RQs:

1. Do participants with CoI and HC participants differ
significantly in response accuracy?
• We expect participants with CoI to make more errors

than HC participants.

2. Do HC participants and participants with CoI differ in their
average reaction times during the learning phase?
• We expect that participants with CoI are systematically

slower than HC participants.

3. Do participants with CoI and HC participants differ in
implicit learning? That is, is the response increase in the
random block compared with the learning curve
significantly lower for participants with CoI?
• We expect that participants with CoI show less implicit

learning than HC.

4. Do participants with CoI show a different learning curve
during the learning phase than HC participants?
• We expect HC participants to show a steeper learning

curve than participants with CoI, which should show
a flatter learning curve.

5. Can we reliably predict participants’ groups using an ML
prediction model?
• We expect to classify participants with an accuracy

comparable with that of Hong et al [16]. That is, we
expect the 80.9% found by Hong et al [16] to be within
our 95 % CI of prediction accuracy.
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Methods

Participants
We recruited and tested 49 older participants at the Geriatric
Center at the University Clinic for Psychiatry and Psychotherapy
in Tübingen, Germany. A total of 2 participants discontinued
the experiment. One participant had to be excluded owing to a
low response accuracy of 40%, which indicates a failure to
understand and complete the task appropriately. We later
identified 1 participant with significantly prolonged reaction
times as an outlier and had to exclude this participant. Within
the scope of this project, we also collected data from 11
participants with depression, which we excluded from the

analysis of this study because of the focus on neurodegeneration.
The remaining 45 participants (26 female individuals), aged
between 52 and 87 (mean 68.4, SD 9.82) years, consisted of 27
HC participants and 18 participants with CoI. A list of inclusion
and exclusion criteria is presented in Textbox 1.

We based the allocation of groups on experienced physician
examinations, confirmed by an interdisciplinary team
(physicians, psychologists, specialized therapists, and nurses),
as most participants were known to us as patients of our (day)
hospital and their caregivers or relatives. We also recorded the
participants’ educational level. Subsequently, we converted the
educational levels into corresponding years representing the
time typically taken to achieve them. The descriptive statistics
of the demographics of the sample are provided in Table 1.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Adults aged ≥50 years

• Diagnosis of cognitive impairment (for patient group), confirmed by an interdisciplinary team

• Understanding and agreement of informed consent

• Participation on a voluntary basis

Exclusion criteria

• Unable to perform or a lack of understanding of the task requirements

• Visual impairment

• Refusal or inability to give informed consent

• Acute delirious or psychotic episode

• Acute medical or physical conditions

Table 1. Demographic data of the 2 groups (HCa and CoIb; N=45).

P valueTotal (N=45)CoI (n=18)HC (n=27)Characteristics

.002cAge (y)

68.40 (9.82)73.67 (7.62)64.89 (9.66)Mean (SD)

52-8755-8752-85Range

.52cEducation (y)

11.47 (3.43)11.06 (3.80)11.74 (3.21)Mean (SD)

8-198-198-17Range

.39dSex, n (%)

26 (58)9 (50)17 (63)Female

19 (42)9 (50)10 (37)Male

aHC: healthy controls.
bCoI: participants with cognitive impairment.
cLinear model ANOVA.
dPearson chi-square test.
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Materials

Overview
We used a tablet-based variant of the SRTT (described in the
subsequent sections) designed for this study to meet the needs
of older participants. The experiments were performed on a
“Samsung Galaxy Tab A (2016) with S Pen” tablet (model

SM-P580, Samsung Electronics) with a screen size of 10.1
inches, running on Android 7.0. Tablets were positioned on the
table horizontally and planar in front of the participants (Figure
2). Thus, the participants were able to rest their elbows on the
table. The participants’ task was to repeatedly respond as quickly
as possible to the target stimulus, whose position changed, with
their fingers.

Figure 2. View of the setup and task in the app used for the study. Participants were allowed to rest their hands on the table.

SRTT Design
The experimental design of the SRTT used in this study is based
on the study by Lum et al [64], as they used a shorter version
with fewer trials than previous studies, which was necessary in
working with older participants. Thus, following a 10-trial
practice phase, the SRTT used in this study consisted of 5 blocks
with 60 trials each. Blocks 1 to 4 are sequence blocks and
contain the 10-item sequence, repeated 6 times per block. The
repeated sequence 4-2-3-1-3-2-4-3-2-1 is based on the original
design of Nissen and Bullemer [24] and was also used by Lum
et al [64] and Lum and Kidd [65]. In the circular order we used,
the top position (north) corresponds to 1, 2 corresponds to the
right-hand position (east), 3 corresponds to the lowest position
(south), and 4 corresponds to the left position (west; Figure 3).

When we developed the tablet-based variant, a circular order
of stimuli [9,10,64,66-69] was chosen to ensure comparable
spatial distances between stimuli on the screen (Figure 3). A
horizontal arrangement of stimuli would lead to unequal
distances between stimuli. A touchscreen-based version of the
SRTT was used in only a few studies in general [26,29,31,70],
specifically in samples consisting of older individuals [27]. To
the best of our knowledge, apart from the study by Dominey et
al [27], no study with older participants that exclusively used
touchscreen versions of the SRTT on a larger sample was
published. The motor skills required for responding on a tablet
surface differ from those needed for pressing buttons on a
response panel [29,31].

In block 5, based on the study by Lum et al [64], the stimulus
appears in a pseudorandomized order. This order is based on 2
conditions: first, each stimulus appears as often as in the
antecedent (learning) sequence blocks, and second, the
probability of appearing at 1 of the 4 positions after its
antecedent stimulus is the same as in the learning sequence. We
precomputed 1 pseudorandomized sequence (Multimedia
Appendix 1) and used the same pseudorandomized sequence
for each participant. We did not inform participants about the
given configuration. Using the difference between sequential
and pseudorandomized trials yields a measure of skill acquisition
from the SRTT that is specific and sensitive, as measuring
implicit learning by only comparing improved reaction times
in sequenced blocks is confounded by visuomotor association
[71]. Multiple parameters captured through the app were used
for statistical modeling to assess their predictive value, via the
approach of Hong et al [16] using random forest classification.

After the stimulus appears at position 1, the probability that it
will appear at either position 3 or position 4 is 50%, respectively.
After appearing at position 2, it is equally likely that the stimulus
appears next at positions 1, 2, or 4, corresponding to 33% for
each position. After appearing at position 3, the probability for
the stimulus to appear next is 33.33% for position 1 and 66.66%
for position 2. After appearing at position 4, the probability for
the stimulus to appear next at position 2 or position 3 is 50%,
respectively. After a practice trial, the participants were advised
to react to the stimulus, changing their position as quickly as
possible throughout the blocks. The app recorded the reaction
times and the correctness of the reactions.
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Figure 3. Circular order of the serial reaction time task.

Task Implementation
We developed the mobile touch–based SRTT in Unity 3D,
version 2019.1.0f2 [72] as part of the TuCAN (Tübingen
Cognitive Assessment for Neuropsychiatric Disorders) Project,
which develops a tablet-based test battery app. In a first pilot
study with university students, we showed that different user
interface designs on the tablet are comparable and that no effects
are attributable to the design. Moreover, we examined the
usability and preferences of different designs with older
participants in a second pilot study. The usability study is

substantial for older participants to accommodate for possible
low computer and tablet literacy and to ensure that an app is
developed according to the needs of older participants
[60,73,74]. In the preceding user tests and pilot studies described
in this section, in which different designs were compared, we
identified a circular compass design as the preferred design
version for older participants (Figure 4). In this design, a
compass dial is placed in the center of the screen and is
surrounded by 4 circles. In the background, an ancient-looking
map is depicted. A ship’s wheel, as the target stimulus, changes
the positions between the 4 circles.

Figure 4. The compass design of the serial reaction time task developed to meet the needs of older participants.

Statistical Analysis

Overview
We performed analyses on the full sample of 45 participants.
In addition, because of significant differences in age between
the groups, all statistical analyses were rerun using an
age-matched subsample of 36 participants (18 HCs and 18
participants with CoI). The pattern of the results remained
identical, underlining the robustness of the findings to age
differences. Therefore, we only report the results from the full
sample in this study. The results of the matched samples are
reported in the web supplement [75]. Similarly, the assumptions
for all statistical models were checked. In case of assumption

violation, we reran the analyses with robust models to ensure
that the pattern of results remained identical. For the sake of
readability, the results of the robust models are only reported
in the web supplement [75].

Analyses Software
We conducted statistical analyses for RQs 1 to 4 using R
software (R version 4.3.2, R Foundation for Statistical
Computing) [76].

We used the lme4 package (version 1.1-35) to fit (generalized)
linear mixed-effect models [77]. The df and P values were
calculated with the lmerTest package (version 3.1-3) [78] using
Satterthwaite approximation for the denominator df. We
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calculated the CIs for logistic regressions with the broom.mixed
package (version 0.2.9.4) [79] using Wald approximation. We
used the ggplot2 package (version 3.4.4) [80] to create plots,
the stargazer (version 5.2.3) [81], the arsenal (version 3.6.3)
[82], and tab_model from the sjplot (version 2.8.15) [83,84]
packages to create tables.

The criterion of statistical significance was set at Cronbach
α=.05. The raw data and R scripts detailing all analyses can be
accessed in the web supplement [75].

Data Cleaning
For all analyses except for the accuracy analysis (RQ 1), we
removed trials within blocks according to the following criteria
in the following order: (1) the first trial of each block, as these
trials succeed the fixation cross; (2) erroneous trials; (3) trials
following erroneous trials; (4) trials with reaction times <200
ms; and (5) trials with reaction times deviating >2.5 SDs from
the mean within a block, within participants. In total, we
removed 5.36% (723/13,500) of trials.

General Modeling Approach (RQ 1+RQ 3+RQ 4)
Mixed-effect models will be hierarchically constructed from a
full model (containing all fixed and random effects, including
interactions) with a maximum random effects structure to the
model with the best fit according to the Bayesian information
criterion by removing the most complex fixed effects first (ie,
interaction terms). If the complexity of the random effect
structure is not supported by the data (ie, convergence issues),
the random effects structure is reduced, similar to the fixed
effects structure, by removing the most complex terms first.

Accuracy (RQ 1)
To contrast the difference in accuracy between the 2 groups,
we ran generalized linear mixed-effects models using the logistic
link function in all trials. Accuracy was computed as the
proportion of correct trials to the total number of trials per
participant per block. The models included group, block, their
interaction, and age as fixed effects and random intercepts for
the participant.

Average Reaction Time (RQ 2)
Analyses of covariance (ANCOVAs) were performed on the
cleaned data (ie, correct trials only) to contrast the difference
in the average reaction time across the learning phase, that is,
excluding the random block. The average reaction time was
computed per participant as the average of the median reaction
time of each block. The fixed effects were group, with age, sex,
and years of education as covariates.

On the basis of recommendations for good scientific practice
for reporting ANCOVAs [85], an ANOVA comparing the
average reaction times between groups was also performed,
showcasing the impact of the covariates on the results.

Implicit Learning (RQ 3) and Learning Curve (RQ 4)
Linear mixed effect (LME) spline models with the last sequence
block as the knot were performed on participants’ median
reaction times per block to contrast the influence of group,
block, response increase, sex, age, education, and the interaction
between block and group and response increase and group. The

model included random slopes for block and response increase
for the participants. The linear and quadratic effects of blocks
were tested for their contribution to the model fit. To this end,
orthogonal polynomials were computed to encode the linear
and quadratic effects of time. The response increase between
the expected reaction time in the random block, based on the
estimated learning curve during the learning phase in the
sequence blocks, and the measured reaction time in the random
block was coded as follows: We used dummy coding for the
response increase between the expected reaction time in the
random block, based on the estimated learning curve during the
learning phase in the sequence blocks and the measured reaction
time in the random block. That is, the dummy variable for
response increase is set to 0 for blocks 1 to 4, and to 1 for the
last and fifth block (“Response increase = 1 if random block,
else 0”).

Prediction Model: Classification of Group (RQ 5)
In an exploratory step, we trained random forests to investigate
how accurately the participants’ group (CoI vs HC) could be
predicted. The input features were participants’ mean accuracy
across blocks, participants’ mean reaction time across the
learning phase (refer to RQ 2), age, and participants’ estimated
learning curve and response increase. In addition, as features
for learning curves (linear and quadratic effect of block) and
implicit learning (response increase, coded as explained in the
Implicit Learning (RQ 3) and Learning Curve (RQ 4) section,
we extracted the predicted values of the LME model with the
median of the z-transformed reaction time per participant per
block as the response and learning curve and implicit learning
as fixed effects. The model included random slopes for the
learning curve and the response increase of the participants.

ML and Prediction Model (RQ 5)
ML approaches have shown promising results in predicting
potential diagnoses and outcomes. These predictive models
combine various parameters that were collected during the study.
However, only 1 study by Hong et al [16] used an ML approach
to predict participants’ cognitive status. Using a random forest
approach [86], they achieved a prediction accuracy of 80.9%.
Thus, using ML approaches to predict participants’ potential
diagnoses rather than only examining group differences may
improve the value of such tasks in cognitive assessments,
enabling their broader use in populations of older individuals.

As explained previously, we used the random forest classifier
to predict whether a participant belonged to the CoI group or
the HC group. Repeated nested leave-one-out cross-validations
were used to optimize hyperparameters and gain unbiased
estimates of the model performance (eg, [86]). Specifically,
each training data set from the initial leave-one-out
cross-validation (outer cross-validation) was further split using
a subsequent leave-one-out cross-validation (inner
cross-validation). In the inner cross-validation, the number of
trees per forest (range 10-100 in steps of 10), their maximum
depth (range 1-7), and the minimum number of samples in each
leaf (range 1-5) were optimized using grid search. Subsequently,
to obtain an unbiased measure of accuracy, the best model from
the inner cross-validation was used to predict the test set from
the corresponding outer cross-validation. Finally, this procedure
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was repeated 15 times (ie, the same cross-validation procedure
with varying random seeds) to account for random variations
in the modeling procedure. These ML analyses (RQ 5) were
conducted in Julia (version 1.9.3) [87] using the Machine
Learning in Julia (MLJ, version 0.19.2) library [88].

Ethical Considerations
The study was approved by the ethics committee of the
University Hospital of Tübingen (332/2016BO2). Participation
was on a voluntary basis and after written informed consent and
signature. Compliance with data protection and the
implementation and evaluation were based on relevant
regulations, guidelines, and protocols.

Results

Response Accuracy (RQ 1)
The descriptive statistics for the average response accuracy per
group are shown in Figure 5. The most suitable generalized
linear mixed-effects model using the logistic link function to
predict participants’accuracy was obtained through hierarchical
model comparisons, as outlined in the modeling approach in
the General Modeling Approach (RQ 1+RQ 3+RQ 4) section.
The final model contained block, group, and the interaction of
block and group as fixed effects and a random intercept for
participants. Hierarchical model analyses revealed that age did
not contribute significantly to the model fit. The model revealed
a significant main effect of group (b=−3.64, SE=0.86; z=−4.25;
P<.001). We further found a significant interaction effect
between block and group (b=0.53, SE=0.23; z=2.33; P=.02).
The main effect of block was not significant (b=−0.18, SE=0.11;
z=−1.54; P=.12). The models are listed in Table 2.

Figure 5. Average response accuracy by group and block. Bars represent the SE of the mean. CoI: participants with cognitive impairment; HC: healthy
controls.
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Table 2. Estimates for participants’ response accuracy for the generalized linear mixed-effects models obtained in the hierarchical modeling approach.
The final model is provided in the second column.

Dependent variable: response accuracyVariables

R2: model without age and the interaction

between group and blockc
R1: final model, without age as fixed

effectb
R0: full model containing all fixed and

random effects, including interactionsa

P valuez valueOdds ratio (CI)P valuez valueOdds ratio (CI)P valuez valueOdds ratio (CI)

<.00118.36332.65 (178.96-
618.33)

<.00114.73552.97 (238.66-
1281.22)

.032.24270.03 (2.02-
36181.50)

Intercept

<.001−4.100.09 (0.03-0.29)<.001−4.250.03 (0.005-0.14)<.001−4.020.02 (0.004-0.15)Group

.630.491.03 (0.91-1.16).12−1.540.84 (0.67-1.05).12−1.540.84 (0.67-1.05)Block

—d—d—d—d—d—d.770.291.01 (0.94-1.08)Age (y)

—d—d—d.022.331.70 (1.09-2.66).022.331.70 (1.09-2.66)Group×block

aObservations=225; Bayesian information criterion=420.48.
bObservations=225; Bayesian information criterion=415.16.
cObservations=225; Bayesian information criterion=416.91.
dVariables do not apply to a specific model.

Average Reaction Times During the Learning Phase
(RQ 2)
The ANCOVA comparing participants’ average reaction time
(computed as the average of the median reaction times per
block) during the learning phase between groups while
controlling for age and education revealed a significant
difference in the mean reaction times between participants with
CoI and HC participants (F1,41=22.32; P<.001), with a large

effect size of Cohen destimated=1.61 (ηp
2=0.35). Participants with

CoI were, on average, 198.57 (SE 42.03) ms slower than the
HCs (during the learning phase). Furthermore, an ANOVA
comparing mean reaction times between groups without
covariates was conducted to test the robustness of the findings.
The results showed a significant difference in reaction time
between the participants with CoI and the HC groups
(F1,43=37.02; P<.001), indicating a robust effect. Descriptive
statistics for the average reaction times during the learning phase
are presented in Figure 6, and the results of the statistical
analyses are provided in Table 3.

Figure 6. Descriptive statistics of the average reaction times per group and block. Bars represent the SE of the mean. (A) untransformed reaction times
and (B) z-transformed reaction times. CoI: participants with cognitive impairment; HC: healthy controls.
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Table 3. Estimates for participants’ average reaction time during the learning phase for the analysis of covariance (ANCOVA) and ANOVA models.

Dependent variable: average reaction timeVariables

ANOVAbANCOVAa

Pη p
2F testb (SE)Pη p

2F testb (SE)

<.001—c1440.53 (1,43)729.52 (19.22).003—c10.23 (1,41)526.71 (164.70)Intercept

<.0010.4637.02 (1,43)233.88 (38.44)<.0010.3522.32 (1,41)198.57 (42.03)Group

—d—d—d—d.090.072.99 (1,41)3.67 (2.12)Age (y)

—d—d—d—d.410.020.68 (1,41)-4.52 (5.48)Education (y)

aR2=0.51, Adjusted R2=0.47, F3,41=14.18; P<.001.
bR2=0.46, Adjusted R2=0.45, F1,43=37.02; P<.001.
cNot applicable.
dVariables do not apply to a specific model.

Implicit Learning and Learning Curve (RQ 3 and RQ
4)
The descriptive statistics of the average reaction times per group
are displayed in Figure 6. As the final model predicting the raw
reaction times obtained through the modeling approach outlined
in the Statistical Analysis section in the Methods section resulted
in nonnormally distributed residuals, we decided to use
z-transformation of reaction times over the complete experiment
per participant to reduce the effect of baseline differences in
reaction times between individuals, which reduced skewness
in the distribution of the residuals across participants. That is,
we entered the median of the z-transformed reaction times per
participant per block as the response into the LME. For models
predicting the z-transformed reaction time, the visual inspection
of the residual plot did not suggest a significant deviation from
a normal distribution.

The final LME predicting z-transformed reaction times contained
linear and quadratic terms of block, response increase, group,
and the interaction between response increase and block, age,
and education as fixed effects and random slopes for linear and
quadratic terms of block as well as response increase of
participants (formula: median reaction time [z-transformed] ~

time [linear]+ time [quadratic]+response
increase+group+age+education in years+response increase:
group+time [linear]+ time [quadratic]+response
increase|participant). The hierarchical model analyses revealed
that the interaction effect between the linear and quadratic
effects of block and group did not significantly improve the
model fit. The final model revealed a significant main effect of
the linear effect of the block (β=−0.44, SE 0.09; t=−4.74;
P<.001), a significant main effect of the quadratic effect of the
block (β=0.46, SE 0.07; t=6.59; P<.001), a significant main
effect of response increase (β=0.23, SE 0.11; t=2.21; P=.04),
and a significant interaction effect of response increase and
group (β=−0.34, SE 0.12; t=−2.81; P=.01). Regarding the
interaction effect, participants with CoI had a significantly lower
response increase between the random block and the last
sequence block compared with HC participants. That is, there
was a difference in response increase of z-transformed reaction
times, obtained from the final model (β=−0.34, SE 0.12), and
the difference in untransformed response increase between
participants with CoI (mean 26.83, SD 46.09 ms) and HCs
(mean 45.37, SD 35.59 ms) was 18.54 ms. The effects of group,
age, and education were not significant. The final model, along
with the models investigated using the hierarchical modeling
approach, is provided in Table 4.
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Table 4. Estimates for participants’ z-transformed response increase of the linear mixed-effects models of the hierarchical modeling approach. The
final model is listed in panel C.

Dependent variable: reaction time (z-transformed)Variables

P valuet testβ (SE)

Panel A: R0: full model containing all fixed and random effects, including interactionsa

.34-0.95270.03 (-0.12)Intercept

.241.180.07 (0.06)Group

<.001−4.57−0.43 (0.09)Time (linear)

<.0016.530.47 (0.07)Time (quadratic)

.061.970.22 (0.11)Response increase

.670.440.001 (0.002)Age (y)

.11−1.63−0.01 (0.004)Education (y)

.06−1.90−0.43 (0.23)Group × response increase

.900.120.02 (0.19)Group × time (linear)

.570.570.08 (0.14)Group × time (quadratic)

Panel B: R1: model without the interaction between group and quadratic timeb

.34−0.97−0.12 (0.12)Intercept

.291.080.05 (0.04)Group

<.001−4.65−0.44 (0.09)Time (linear)

<.0016.590.46 (0.07)Time (quadratic)

.042.090.23 (0.11)Response increase

.670.430.001 (0.002)Age (y)

.11−1.63−0.01 (0.004)Education (y)

.03−2.24−0.33 (0.15)Group × response increase

.890.15−0.03 (0.17)Group × time (linear)

Panel C: R2: final model without the interaction between group and quadratic and linear timec

.34−0.97−0.12 (0.12)Intercept

.251.160.05 (0.04)Group

<.001−4.74−0.44 (0.09)Time (linear)

<.0016.590.46 (0.07)Time (quadratic)

.042.090.23 (0.11)Response increase

.670.430.001 (0.002)Age (y)

.11−1.63−0.01 (0.004)Education (y)

.007−2.81−0.34 (0.12)Group × response increase

Panel D: R3: model without the interaction between group and quadratic and linear time, and without the interaction between response increase

and groupd

.30−1.04−0.13 (0.12)Intercept

.30−1.05−0.03 (0.03)Group

<.001−4.74−0.44 (0.09)Time (linear)

<.0016.590.46 (0.07)Time (quadratic)

.022.330.27 (0.11)Response increase

.660.440.001 (0.002)Age (y)

.11−1.63−0.01 (0.004)Education (y)

aObservations=225; Bayesian information criterion=150.74.
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bObservations=225; Bayesian information criterion=145.66.
cObservations=225; Bayesian information criterion=140.27.
dObservations=225; Bayesian information criterion=142.40.

Prediction Model: Classification of Group (HC vs CoI;
RQ 5)
Random forest classification predicting the group (CoI or HC)
was computed using (1) standardized ordinal linear, (2) quadratic
trends in reaction time for the sequence blocks, (3) standardized
response increase, (4) age (years), (5) education (years), (6)
response accuracy, and (7) average reaction time in milliseconds

as features. To extract features 1 to 3, we refitted the LME from
RQ 3 without the fixed effects of group, age, and education as
well as the corresponding interaction terms. These models
showed an average prediction accuracy of 77.13% (95% CI
74.67%-81.33%) across the repeated, nested leave-one-out
cross-validation. The receiver operating characteristics curve
is shown in Figure 7.

Figure 7. Receiver operating characteristic (ROC) curve for the prediction of cognitive impairment.

Discussion

Principal Findings

Overview
In this study, we presented and evaluated a digital tablet–based
app featuring a variant of the SRTT to facilitate the diagnosis
of implicit learning and memory and use it to predict the
assignment of the diagnosis of CoI using an ML modeling
approach. The app focuses on use in clinical routines and is
based on computer-based studies and the findings of the SRTT.
We evaluated our tablet-based SRTT with 27 HC participants
and 18 older participants with mild to moderate CoI. We
performed statistical analyses to evaluate the replicability and
transfer of the results of previous (computer-based) SRTT
studies with older participants with CoI to our tablet-based
version of the SRTT. In addition, we deployed an ML modeling
approach using a random forest classification to predict the
participants’ group assignments (HC vs CoI). On the basis of
the RQs outlined in the Introduction section, the results indicate
that we were able to transfer the findings of previous studies to
a tablet-based implementation of the SRTT in this study. We
found the same significant performance differences between
HC and CoI groups, and our ML modeling approach achieves
promising results in predicting participants’group assignments.
In summary, our results indicate that the SRTT paradigm is
transferable to (touch-based) tablet devices, and the results
obtained with our app are comparable with previously published
findings. The RQs and their findings are as follows:

1. Do participants with CoI and HC participants differ
significantly in response accuracy? That is, do participants
with CoI elicit more errors than HC participants?
• Participants with CoI conducted, on average,

significantly more errors per block than HC
participants. We found no interaction between the block
and the group.

2. Do participants with CoI and HC participants differ in
average reaction times during the learning phase? That is,
are participants with CoI systematically slower than HC
participants?
• Participants with CoI showed a significantly slower

reaction time—on average, approximately 200 ms
slower than HC participants (during the learning phase),
with a large effect size of Cohen destimated=1.61

(ηp
2=0.35).

3. Do participants with CoI and HC participants differ in
implicit learning? That is, is the response increase in the
random block compared with the learning curve
significantly lower?
• Participants with CoI showed a significantly lower

response increase than HC participants on
z-transformed reaction times.

4. Do participants with CoI show a different learning curve
during the learning phase than HC participants?
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• No significant differences were observed between
participants with CoI and HC participants in terms of
linear, quadratic, or cubic learning curves.

5. Can we reliably predict participants’ groups using an ML
prediction model?
• A random forest classification achieved an average

prediction accuracy of 77.13%.

In this study, we used a touchscreen-based version of the SRTT.
Thus, our results may differ from those of previous studies using
keyboard or button box input because of the change in medium.
We found the same effects in our tablet-based version previously
found in comparable SRTT setups [8,27]. Thus, changing the
medium does not significantly change the pattern of implicit
learning in older participants with little prior knowledge of
technology. The analysis of the parameters of the SRTT with
models predicting participants’ groups allows us to make
predictions about cognitive status and diagnoses with a relatively
high accuracy. Even if only limited statements about isolated
and pure implicit learning are possible [71,89], the app can be
applied in daily clinical routines with older participants to collect
diagnostic neuropsychological information.

Response Accuracy (RQ 1)
We found response accuracy to be lower in participants with
CoI, in line with previous findings [8,14]. A low response
accuracy may indicate difficulties in understanding and
memorizing the task instruction, considering the hypothesis of
difficulties with task comprehension [8,71,89]. In this study,
we altogether excluded 4 participants from the analysis owing
to difficulties with the task or attention and behavior difficulties
or discontinuation of the examination. Among them, we
excluded 2 participants who failed to complete the experiment,
1 participant because of low response accuracy, and 1 with
exceptionally prolonged reaction times. This number is
comparable with reported exclusions in other studies [8]. After
exclusion, participants from the CoI group still had a percentage
of correct trials of approximately 95%, compared with
approximately 99% to 100% in the HC group. However, both
numbers were still very high. Given the assumption of a strong
influence of understanding the task instruction as a foremost
parameter, as discussed in a recent review [8], we would suppose
a lower response accuracy. Thus, the exclusion we made was
in a manner that did not result in a systematic methodological
error [8]. In summary, we were able to replicate previously
published findings on a computer-based SRTT. At the same
time, the results indicate that differences in response accuracy
are not caused by task incomprehension or methodological
errors, indicating the ecological reliability and applicability of
our findings.

Reaction Time (RQ 2)
Similarly, we found differences in reaction times between the
CoI and HC groups in the learning phase (Cohen destimated=1.61;

ηp
2=0.35; participants with CoI were, on average, approximately

200 ms slower). This finding follows most previous studies on
reaction times in general [90] and in the SRTT in particular
[14,16,91]. This finding can be explained by general RT

differences in participants with mild and moderate CoI and AD
owing to vigilance, cognitive, and psychomotor impairments
[92], for example, caused by degeneration of the locus coeruleus
[90,93].

Response Increase (RQ 3)
As a third factor, we found a significant difference in the
response increase between the groups, represented by the
difference between the estimated reaction time of the fitted
learning curve and the measured reaction time in the random
block. As shown in Figure 6, we observed a response increase
for both groups. However, the CoI group showed a significantly
lower response increase than the HC group, which again is in
line with previous findings [8,14]. A lower response increase
indicates a less sustainable learning of the sequence. That is,
this indicates more than just motor learning and growing
familiarity with the task [71]. The response increase in the
classical SRTT paradigm has been used as a valuable and
verified measure for (differences in) implicit learning [8,24].
Although more basic research scholars recommend a more
complex paradigm, for example, with alternating sequences to
differentiate different forms of learning more precisely [71,89],
we opted for the straightforward approach of contrasting
sequenced blocks with a random block to gain a sensitive and
specific measure of skill learning for practical use in everyday
clinical practice through a short and easy-to-perform task.

Learning Curve (RQ 4)
According to RQ 4, all participants showed improved reaction
times across the 4 sequence blocks, indicating learning gains
in both groups. These findings align with those of previous
studies with comparable paradigms and samples [8,14]. With
a more differentiated group division, we may find differences
in the slope of the curve, which may indicate a more
distinguished learning gain in the HC group. Motor learning
and familiarity with such tasks certainly interfere with this
finding. To what extent motor learning and familiarity with the
task affect the learning curve cannot be differentiated at this
point.

Prediction Model: Classification of Group (RQ 5)
The prediction model obtained through a random forest
classification showed an accuracy of 77.13% in predicting the
participants’ group (HC vs CoI) correctly. This performance is
comparable with that of the study by Hong et al [16], who
achieved an accuracy of 80.9% with a similar but lengthier
version of the SRTT containing 4 learning and 4 random blocks
of 48 trials each (384 trials total). In contrast, our version
consisted of 5 blocks of 60 trials each, for a total of 300 trials.
In addition, we achieved our results with a more robust ML
approach using repeated nested cross-validation. Taken together,
we achieved comparable accuracies using only the relatively
short and straightforward SRTT paradigm combined with a
robust random forest classification. This fact indicates the
acceptable accuracy of the diagnosis classifications, despite
only a coarse diagnosis classification. This insight is promising
for future practical use.
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Implicit Memory as a Part of Digital
Neuropsychological Diagnostics
The development of neuropsychological deficits in explicit
memory has been thoroughly researched and described and has
become an integral part of dementia diagnostics. The role of
implicit memory in the diagnosis and distinction of different
subtypes of dementia has been scarcely investigated so far. In
neuropsychological diagnostics and dementia research, implicit
memory can be seen as an additional important domain in the
entire pattern of deficits [94]. The use of digital assessment
tools [57] can simplify examinations of implicit memory in
clinical practice routines; even if overlaps in diseases exist,
different participants show different deficit patterns in the
process of neurodegeneration [95,96], partly also because of
mixed subtypes of dementia [55,56]. This heterogeneity in
neurodegeneration can also be seen as a relevant cause of
inconsistent research outcomes [8,14] and, of course, needs
further research on specific tasks such as the SRTT. On the
basis of further research, differential diagnoses can be simplified
using a tool similar to the one described in this study.

As different subtypes and mixed subtypes [55,56] have different
progression types, paradigms such as the SRTT used for this
study can help in the differential diagnosis of different dementia
subtypes. When diagnosing the neuropsychological profiles of
mixed dementia subtypes, a deeper and more differentiated
examination at the level of explicit and implicit memory may
be helpful. Using ML prediction can provide further benefit in
differentiating diagnostic information based on future clinical
studies that include more detailed and comprehensive
diagnostics. Even this methodologically broad approach to group
classification and the transdiagnostic and heterogeneous CoI
group yielded significant results. Therefore, a more sophisticated
approach to discriminate diagnosis groups will provide at least
comparable results.

One goal of this study was to develop an assessment tool usable
in clinical practice without exposing participants to unnecessary
strains because of the length and complexity of the task. In
developing a tablet-based tool relying on preceding user tests
with older participants, we provided a short and transportable
assessment instrument suitable even for older participants with
CoI.

Relevance of This Study
In this study, we investigated a touch-based version of the SRTT
in a sample of older participants. No control through hardware
devices such as keyboards or response boxes was necessary;
participants responded directly to the visual target stimuli with
their fingers. The response increase and overall high response
accuracy, even in participants with CoI, indicate that the
paradigm we used is manageable and appropriate for older
participants and that the original button-based paradigm is
transferrable to tablets.

In our study, exploring an undifferentiated and roughly divided
sample, significant differences between the groups were found.
The application of statistical models enables the inclusion of
features that exceed mere implicit memory, such as response
increase. Therefore, the random forest trained achieved a

prediction probability of the diagnosis groups of 77.13%. The
accuracy of group prediction in our study is comparable with
the accuracy reported by Hong et al [16].

Different definitions and concepts of learning are commonly
used, based on different memory models, partly as different
subtypes. We adhere to “implicit learning” as an umbrella term,
as our task is too unspecific to distinguish more sophisticated
terms and to differentiate which parts of the process can be
explained through motor learning or sequence learning. Our
essential objective was not to develop an experimental paradigm
for the laboratory to distinguish forms of learning clearly but
to provide a simple screening usable as part of a short battery
of tests in clinical practice. Such tests could help to distinguish
different diagnostic groups in real-life practice.

Limitations and Strengths
The study was initially part of a technical feasibility study for
tablet use that did not address the conventional quality criteria
of a clinical trial but had high ecological validity. Trained
professional teams made the diagnoses after an extensive
examination. Thus, classification into groups was based on the
judgments of trained specialists and confirmed by
interdisciplinary teams, as neuropsychological and depression
scores were not available for all participants.

Divergent paradigms that can distinguish implicit and motor
learning more sensitively are available. A more profound
distinction between learning processes is not possible with the
paradigm used in this study. We intended not to develop a tool
for laboratory purposes but a user-centric tool that is usable in
the clinic. Using statistical models, we are not limited to the
exact distinction.

Taken together, the specific properties of the task partly explain
the results found in our study. A pattern of stimuli alternating
between random and sequence trials, for example, ensures the
discrimination of explicit and implicit memory [32-34]. We
chose a more focused approach without alternating patterns, as
the use of statistical models for diagnostic information on
implicit memory does not depend solely on accurately
differentiated implicit memory processes in the experimental
paradigm but on a variety of parameters. We also included
parameters such as reaction times and learning gains in the
statistical model. The objective of the task is not to map implicit
learning as accurately as possible but to collect features that can
be used in a statistical model to predict diagnostic information.
The sequence length can be seen as a second factor. In this case,
the well-proven and original sequence by Nissen and Bullemer
[24] was used. Thus, we do not expect variations in the sequence
or sequence length used in this study to result in the differences
we found.

By contrast, a short tool that is easy to use in daily clinical
practice is available to assess implicit memory on a tablet, for
example, even at the bedside and not only in the laboratory.
Because of the nature and implementation of the task,
interruptions and early termination by participants who are
stressed are less likely. In addition, participants do not receive
negative feedback or feelings in the SRTT compared with
explicit memory tasks, where they may experience failure in
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repeating words, drawing figures, or calculating numbers. By
not only including pure reaction times but also response increase
and response accuracy in a ML model, reliable predictions
regarding diagnoses can be made with relatively little data and
within a short time. Comparable results, as in previous studies,
can be achieved with our app more quickly and simply.

Overall, a reliable assignment of the diagnoses and high
ecological validity are possible with the app’s relatively simple
and short execution because of the use of ML algorithms. This
assignment is preferable for a clinical setting, where brief
assessments are essential. The data show that the short procedure
is effective and yields results comparable with those obtained
with more extended tests.

Future Studies
In the future, larger samples are needed to test the ability to
discriminate similar conditions with heterogeneous cognitive

symptom patterns such as dementia and delirium and different
dementia subtypes. As implicit impairments are transdiagnostic,
the SRTT and similar tasks have been examined with different
samples [25]; however, only a few studies were performed with
a touchscreen. Shortened versions of the task may facilitate the
execution of the task to prevent cognitive overload in
participants considered more impaired.

On the basis of more differentiated neuropsychological
assessments, the parameters influencing test performance can
be identified, especially when implementing additional
information into statistical models. The SRTT can also be
combined with another short task as another promising way to
improve the accuracy of dementia diagnostics with the tablet.
For example, this task could be a verbal task addressing different
cognitive domains or a proven method such as the clock drawing
test.
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