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Abstract
Background: Speech analysis data are promising digital biomarkers for the early detection of Alzheimer disease. However,
despite its importance, very few studies in this area have examined whether older adults produce spontaneous speech with
characteristics that are sufficiently consistent to be used as proxy markers of cognitive status.
Objective: This preliminary study seeks to investigate consistency across lexical characteristics of speech in older adults with
and without cognitive impairment.
Methods: A total of 39 older adults from a larger, ongoing study (age: mean 81.1, SD 5.9 years) were included. Participants
completed neuropsychological testing and both picture description tasks and expository tasks to elicit speech. Participants with
T-scores of ≤40 on ≥2 cognitive tests were categorized as having mild cognitive impairment (MCI). Speech features were
computed automatically by using Python and the Natural Language Toolkit.
Results: Reliability indices based on mean correlations for picture description tasks and expository tasks were similar in
persons with and without MCI (with r ranging from 0.49 to 0.65 within tasks). Intraindividual variability was generally
preserved across lexical speech features. Speech rate and filler rate were the most consistent indices for the cognitively intact
group, and speech rate was the most consistent for the MCI group.
Conclusions: Our findings suggest that automatically calculated lexical properties of speech are consistent in older adults with
varying levels of cognitive impairment. These findings encourage further investigation of the utility of speech analysis and
other digital biomarkers for monitoring cognitive status over time.
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Introduction
Use of Digital Biomarkers as a Method
for Cognitive Monitoring
Much like monitoring cardiac rhythm through smart-
watches, the integration of smart technology into the
daily lives of older adults creates new opportunities for
the remote monitoring of cognitive function. Researchers

have started to use digital biomarkers, which are defined
as “objective, quantifiable, physiological, and behavioral
data that are collected and measured by means of
digital devices, such as embedded environmental sensors,
portables, wearables, implantables, or digestibles,” to help
identify and track symptoms in persons with dementia [1].
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Speech Analysis Data as Digital
Biomarkers
A growing number of digital biomarkers have been exam-
ined in persons with Alzheimer disease and related demen-
tias (ADRD), such as home-based motion sensors and
systems that monitor driving performance. Spontaneous
speech appears particularly promising, presumably because
the declarative memory system that supports some aspects of
language [2] changes dramatically in persons with ADRD.
Technological advances now allow commonly observed
language changes in persons with ADRD (eg, wording-
finding problems and empty speech) to be automatically
computed from transcripts of spontaneous speech, and the
resulting indices appear sensitive to early cognitive dysfunc-
tion. For example, lexical frequency, which quantifies an
individual’s ability to access more versus fewer common
words, has been shown to predict current and future cognitive
status [3,4]. Other studies suggest that indices from sponta-
neous speech may be even more sensitive to ADRD than
traditional neuropsychological language tests of confrontation
naming or semantic fluency [5].
Study Aims
Though such findings are encouraging, many practical
questions remain regarding the feasibility of using sponta-
neous speech analysis to monitor cognitive function. A
key concern is the limited investigation of the psycho-
metric properties of speech features. Put simply, whether
an individual’s spontaneous speech is internally consistent
enough to be used as a marker of cognitive function has
yet to be determined. Many person- and environment-based
factors are known to influence spontaneous speech production
(including age, sex, task demands, nativeness, and profi-
ciency, among others [6,7]), and the degree to which a short
sample of spontaneous speech reflects an individual’s general

speech has not been previously examined. This study aims to
provide a preliminary examination of the reliability of lexical
features calculated from the spontaneous speech produced
by older adults. That is, we were interested in determining
how much variability or consistency was exhibited within and
across these features. In effect, our analysis is analogous to
examining the test-retest reliability of a traditional neuropsy-
chological test. We hypothesized that speech features would
be consistent both between multiple instances of a similar
speech elicitation task and across different types of speech
elicitation tasks in persons with and without mild cognitive
impairment (MCI). In combination, these analyses provide
critical insight into the appropriateness of using spontaneous
speech indices to predict cognitive status in older adults.

Methods
Participants
Data from 39 participants (female: n=27; age: mean 81.1,
SD 5.9; range 69-90 years) with complete data were
extracted from a larger, ongoing project [3]. All partici-
pants’ demographic and medical data were obtained through
self-report, and no medical records or neuroimaging studies
were available. For inclusion, participants were required to
be English speakers and have no reported history of neu-
rological conditions or severe psychiatric conditions. MCI
status was determined by using criteria from past studies,
namely, scoring ≥1 SD below the normative mean on 2 or
more tasks within the same cognitive domain [8]. Follow-
ing this criterion, 26% (10/39) of the participant sample
were classified as having MCI; the remaining 29 partici-
pants were classified as cognitively intact. Table 1 presents
summary statistics of the demographic and neuropsychologi-
cal characteristics of the sample.

Table 1. Demographic characteristics and neuropsychological test performance of the study sample.

Full sample (N=39)
Cognitively intact participants
(n=29)

Participants with MCIa
(n=10)

Demographic characteristics
Age (years), mean (SD) 81.15 (5.95) 81.07 (5.84) 81.40 (6.59)
Women, n (%) 27 (69) 18 (62) 9 (90)
Men, n (%) 12 (31) 11 (38) 1 (10)
Racial and ethnic minority participantsb, n
(%)

17 (44) 12 (41) 5 (50)

Participants with depression, n (%) 3 (8) 3 (10) 0 (0)
Neuropsychological test performancec, mean (SD)

Mini-Mental State Exam (raw score) 28.85 (1.79) 29.17 (1.26) 27.90 (2.69)
Digit Span Forward (T-score) 51.10 (9.79) 52.69 (9.25) 46.50 (10.34)
Digit Span Backward (T-score) 52.51 (10.74) 54.55 (10.67) 46.60 (8.98)
Trail Making Test A (T-score) 52.49 (8.69) 54.17 (6.11) 47.60 (12.92)
Trail Making Test B (T-score) 51.72 (10.02) 52.96 (8.97) 48.50 (12.27)
Frontal Assessment Battery (T-score) 47.36 (14.76) 51.21 (13.27) 36.20 (13.63)
Controlled Oral Word Association Test
(T-score)

56.97 (10.73) 58.59 (9.31) 52.30 (13.65)
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Full sample (N=39)
Cognitively intact participants
(n=29)

Participants with MCIa
(n=10)

Animal Naming Test (T-score) 48.54 (11.27) 51.90 (7.83) 38.80 (14.28)
Boston Naming Test–Short Form (T-score) 55.67 (11.00) 58.69 (8.16) 46.90 (13.72)
Complex Figure Test–Copy (T-score) 41.67 (12.48) 43.55 (12.15) 36.20 (12.43)
Complex Figure Test–Delayed Recall
(T-score)

51.17 (18.76) 59.41 (12.81) 27.25 (10.94)

HVLTd (sum of trials 1-3; T-score) 52.18 (10.88) 55.79 (6.68) 41.70 (14.05)
HVLT–Delayed Recall (T-score) 49.18 (13.23) 52.76 (9.71) 38.80 (16.89)
HVLT Discrimination (T-score) 49.26 (12.03) 51.83 (9.61) 41.80 (15.53)

aMCI: mild cognitive impairment.
bThe participants were African American, Asian, or Hispanic or Latino.
cWith the exception of the Mini-Mental State Exam, of which the results are presented here as raw scores, all neuropsychological test scores were
transformed to T-scores based on normative data.
dHVLT: Hopkins Verbal Learning Test.

Ethical Considerations
This study was approved by the Kent State University
Institutional Review Board (#20–300), and all procedures
were completed in accordance with the ethical standards
outlined in the Declaration of Helsinki. Upon entry into
the study, all participants completed an informed consent
process. Individuals demonstrating intact comprehension of
study activities provided written consent and those with
cognitive dysfunction provided assent and consent provided
by a trusted other. Participants were assigned a randomly
generated study identification number to protect confidential-
ity and privacy, and all materials were protected through
multiple security measures. At the completion of the study
assessment, participants were compensated with a gift card
for their time.
Neuropsychological Test Battery
To promote generalizability, participants completed a
collection of commonly used neuropsychological tests of
global functioning (Modified Mini-Mental State Exam [9]),
attention (Digit Span Longest String Forward and Back-
ward [10] and Trail Making Test A [11]), executive func-
tion (Trail Making Test B [11] and Frontal Assessment
Battery), language (Controlled Oral Word Association Test
[12], Animal Naming Test [12], and Boston Naming Test–
Short Form [13]), visuospatial skills (Complex Figure Test–
Copy [14,15]), and memory (Hopkins Verbal Learning Test–
Revised [16] and Complex Figure Test–Delayed Recall
[14,15]). Raw test scores were converted to T-scores using
normative data to facilitate comparison to past work.
Speech Tasks
Participants completed 3 picture description tasks and 2
expository tasks as part of the study protocol. Speech

from these tasks was audio-recorded and then transcribed
manually. Picture description tasks included the Cookie Theft
task from the Boston Diagnostic Aphasia Exam [17], which
depicts 2 children reaching into a cookie jar and a mother
washing dishes. The other two pictures were drawn in a
similar style, with one showing a man changing a lightbulb
[18] and the other showing a kitten in a tree [19]. Exposi-
tory tasks asked participants to describe an important person
in their life (expository task 1) and a meaningful location
or place (expository task 2). Importantly, the inclusion of
a multiple categories of speech prompts (picture description
tasks vs expository tasks) allowed us to examine whether
different speech features can be reliably elicited across
different types of tasks (eg, providing semantic structure in
the form of a picture versus requiring memory retrieval and
content generation).

A total of 16 lexical and semantic features were cal-
culated based on the spontaneous speech generated from
each task and were used as features in the analyses for
word count, filler words, empty words, lexical frequency,
the type-token ratio, the Honoré statistic, the Brunet index,
speech rate, filler rate, definite articles, indefinite articles,
pronouns, nouns, verbs, determiners, and content words.
These features were chosen based on prior studies and clinical
work that showed that these properties of speech production
are often affected in persons with dementia or MCI [3]. All
features were calculated automatically from transcripts of the
participants’ speech, using Python (version 2.7.17) and the
Natural Language Toolkit (version 3.2.1; Bird et al [20]).
Table 2 shows the list of speech features and how they
were defined; Table 3 shows the between-participant mean
values for each linguistic feature that was computed from
each speech sample.

Table 2. Operationalization of the speech features computed for each spontaneous speech task.
Speech feature Operational definition
Word count Total number of words spoken by the participant
Fillers Number of filler words (eg, um, uh, and hmm) spoken by the participant; scaled by total word count
Empty words Number of empty words (eg, thing, place, and stuff); scaled by total word count
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Speech feature Operational definition
Definite articles Number of definite articles (the); scaled by total word count
Indefinite articles Number of indefinite articles (a and an); scaled by total word count
Pronounsa Number of pronouns; scaled by total word count
Nounsa Number of nouns; scaled by total word count
Verbsa Number of verbs; scaled by total word count
Determinersa Number of determiners; scaled by total word count
Content words Number of content words (defined as the words not in Natural Language Toolkit’s list of stop words); scaled by total word

count
Frequency Mean of the log of the frequency of all the words spoken by the participant
Type-token ratio Ratio of unique words (types) to total words (tokens) spoken; used as a measure of lexical diversity
Honoré statistic A measure of lexical richness based on the number of words that are produced exactly once
Brunet index A measure of lexical diversity and richness that is less biased by the length of the text
Speech rate Speech rate was computed as words per second, counting all words, nonwords, and partial words the speaker produced

divided by the total elapsed time of the speech
Filler rate Filler rate was computed as words per second, counting all filler words (as defined above) divided by the total elapsed time of

the speech
aComputed using the Penn Treebank part of speech tags within the Python Natural Language Toolkit module (Bird et al [20]).

Table 3. Mean values for the computed speech features across the five speech tasks for the full sample.
Speech feature Value, mean (SD)

Expository task 1
(person)

Expository task 2
(place)

Picture description task 1
(cookie theft)

Picture description task
2 (lightbulb)

Picture description
task 3 (cat in tree)

Word count 632.18 (316.32) 531.64 (412.87) 290.82 (172.77) 233.92 (117.47) 222.69 (106.25)
Number of fillers 1.23 (0.61) 0.98 (0.57) 0.63 (0.47) 0.54 (0.36) 0.43 (0.33)
Number of empty words 0.20 (0.16) 0.51 (0.36) 0.18 (0.12) 0.28 (0.18) 0.15 (0.14)
Number of definite articles 0.60 (0.36) 1.00 (0.51) 1.38 (0.45) 0.94 (0.3) 1.35 (0.33)
Number of indefinite
articles

0.79 (0.29) 0.69 (0.33) 0.86 (0.3) 1.19 (0.36) 0.84 (0.28)

Number of pronouns 3.29 (0.95) 2.19 (1.1) 1.18 (0.6) 1.15 (0.54) 0.94 (0.54)
Number of nouns 5.26 (1.49) 4.80 (1.66) 4.14 (1.2) 3.69 (0.92) 3.38 (0.79)
Number of verbs 5.15 (1.47) 4.18 (1.57) 3.42 (1.07) 3.22 (0.91) 3.03 (0.87)
Number of determiners 1.84 (0.69) 2.15 (0.87) 2.54 (0.7) 2.46 (0.56) 2.44 (0.43)
Number of content words 11.89 (3.04) 10.31 (3.53) 8.28 (2.55) 7.44 (1.97) 7.04 (1.84)
Frequencya 5.68 (0.41) 5.80 (0.49) 5.32 (0.43) 5.54 (0.46) 5.76 (0.55)
Type-token ratio 0.41 (0.08) 0.43 (0.09) 0.48 (0.09) 0.50 (0.08) 0.48 (0.05)
Honoré statistic 5.16 (3.15) 6.29 (3.78) 7.85 (2.42) 8.40 (2.49) 9.48 (3.16)
Brunet index 13.14 (1.13) 12.98 (1.4) 12.23 (1.22) 11.92 (1.15) 12.11 (0.79)
Speech rateb 2.20 (0.37) 2.35 (0.37) 2.31 (0.35) 2.31 (0.33) 2.53 (0.39)
Filler ratec 0.11 (0.05) 0.10 (0.06) 0.09 (0.06) 0.08 (0.05) 0.07 (0.06)

aMean of the log of the frequency of all the words spoken by the participant.
bWords per second, counting all words, nonwords, and partial words the speaker produced divided by the total elapsed time of the speech.
cWords per second, counting all filler words divided by the total elapsed time of the speech.

Procedures
Participants completed all neuropsychological tests and
speech elicitation tasks during a single study visit that lasted
approximately 75 minutes. After providing written informed
consent, participants were administered the neuropsycholog-
ical test battery in a fixed order, under the supervision of
a licensed clinical neuropsychologist. The aforementioned
spontaneous speech tasks were then completed. The session
concluded after participants were provided with a debriefing
statement and compensated for their time.

Data Analyses

Overview
As several of the speech features were measured on differ-
ent scales (eg, lexical frequency was computed as number
of words per million, parts of speech features were scaled
by the total word count, the total number of words was
a raw count, etc), the raw values for each speech feature
were converted to z-scores to enable interfeature comparisons.
The z-scoring of each participant’s speech feature values
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was performed separately for each speech feature, by task
(eg, picture description task 1, picture description task 2,
expository task 1, etc) and cognitive status group (ie, MCI
vs cognitively intact). The z-scored values for each speech
feature were then used in the following analyses.

Intraindividual Variability Across Instances of
the Same Speech Task
To assess the degree to which a given speech feature
remained consistent for each participant across multiple
instances of the same speech elicitation task, pairwise Pearson
r correlations were computed between each feature and itself
within each task type. Afterward, to examine the influence
of cognitive dysfunction on these indices, correlations were
computed separately for participants with MCI and cogni-
tively intact participants. For example, a paired correlation
was computed, for all participants in the MCI group, between
the z-scored word count values for expository task 1 and
the z-scored word count values for expository task 2. For
the picture description tasks, the correlations were averaged
over the three pairwise correlations of picture description
tasks (task 1–task 2, task 1–task 3, and task 2–task 3). All
averaging of correlation values was performed after the Fisher
z transformation of the Pearson r correlation coefficients
[21]. After averaging was completed, Fisher z values were
back-transformed to Pearson r values for reporting.

In order to determine whether these mean correlations
were significantly larger than what would be expected for
any two given measurements of the same linguistic feature,
we used resampling methods. Null distributions of correla-
tions were created for each task type by randomly pairing
each participant’s speech feature values with values for the
same speech features from a different, randomly selected
participant within the same group (MCI or cognitively intact
group). These correlations show how much a participant’s
value for one feature correlates with a different person’s value
for the same feature and thus can be used as a baseline for
the expected size of within-feature correlations, if there is
no additional effect from within-participant reliability. This
resampling procedure was repeated 10,000 times for each
of the four null distributions, which were then used as the
distribution against which the true correlation values were
compared to compute their P value.

Intraindividual Variability Across Multiple
Speech Tasks
Intraindividual variability was calculated for each speech
feature by computing the SD of a participant’s z-scores
for a given speech feature across all 5 tasks (eg, the SD
of a participant’s z-transformed word count values across
expository task 1, expository task 2, picture description task
1, picture description task 2, and picture description task 3).
Weighted averages of the variance of these SDs were then
computed as an index of intraindividual variability. These SD
values were then averaged over participants for each of the
16 speech features, as shown in the following formula (larger
values reflected greater intraindividual variability):

SDET12   +  SDET22    + SDPDT12 +  SDPDT22 +  SDPDT32N
Results
Intraindividual Variability Across
Instances of the Same Speech Task
In the picture description tasks, the mean within-participant
correlation between the 16 speech features and themselves
across the three possible pairwise comparisons (task 1–task
2, task 1–task 3, and task 2–task 3) was high (MCI group
r: mean 0.6555, SD 0.2867; cognitively intact group r: mean
0.6440, SD 0.2997). The strength of the correlation was not
statistically different between the two cognitive status groups
(t30=0.4351; P=.66; 95% CI −0.17 to 0.26).

In the expository tasks, the mean within-participant
correlation between the speech features and themselves was
similarly high for the MCI group (r: mean 0.6101, SD
0.3679) but lower for the cognitively intact group (r: mean
0.4971, SD 0.3586), although this between-group difference
did not reach statistical significance (t30=1.363; P=.18; 95%
CI −0.09 to 0.45).

We then examined whether these correlations were
significantly different from what might be expected between
any two given linguistic measures, using the resampling
procedure described in the Methods section. The average
correlation for each of the null distributions was extremely
close to 0 (MCI group picture description task: r=0.0022;
cognitively intact group picture description task: r=−0.0002;
MCI group expository task: r=0.0004; cognitively intact
group expository task: r=0.0002), and all 4 true within-par-
ticipant correlations were significantly larger than what was
expected by chance based on these null distributions (all P
values were <.001).

Notably, mean correlations varied substantially across
different speech features (Table 4). Some speech features
showed consistently strong correlations, suggesting high
reliability (such as speech rate, Brunet index, and number
and rate of filler words), while others showed lower reliabil-
ity (such as empty words, definite and indefinite articles,
determiners, and pronouns).
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Intraindividual Variability Across Multiple
Speech Tasks
The amount of variability in each speech feature for each
participant additionally varied as a function of speech feature
and group (Table 4). The lowest amount of intraindividual
variability was exhibited by speech rate and filler rate for
the cognitively intact group and by speech rate for the
MCI group. The largest amount of intraindividual variability
differed somewhat between the MCI and cognitively intact
groups; for example, definite and indefinite articles showed
high between-participant variability for both groups, whereas
empty words showed numerically higher variability for the
cognitively intact group and pronouns showed numerically
higher variability for the MCI group.

Discussion
Some evidence suggests that there is greater variability in
performance on traditional cognitive screening measures (eg,
Mini-Mental State Exam, Clock Drawing Test, etc) among
persons with MCI [22]. Although such variability itself can
be a useful marker of MCI [23], variability can also make
results harder to replicate and lower statistical power. Given
that spontaneous speech (1) is affected in MCI and (2) may
be useful for distinguishing healthy controls from individuals
with MCI and ADRD [3,4,24,25], it was therefore important
to establish the degree of variability (or stability) of spon-
taneous speech in individuals with and without MCI. The
results from this preliminary study demonstrate that spon-
taneous speech is generally consistent in both individuals
with MCI and cognitively intact older adults, as individuals
maintained their lexical-semantic characteristics of speech
across multiple tasks. Such findings provide initial evidence
that properties of an individual’s spontaneous speech are
sufficiently “reliable” to be viewed as trait-like features and
encourage continued investigation into the validity of speech
analysis data as digital biomarkers of cognitive status.

Given the importance of the early detection of cogni-
tive decline, future studies may be enhanced by examin-
ing the potential value in using a combination of indices
from spontaneous speech to predict cognitive status—not
just lexical-semantic features. For example, acoustic-phonetic
aspects of speech, such as prosodic measures, pause duration,
or loudness, are also impacted by ADRD and can distin-
guish healthy groups from clinical groups [26,27]. Changes
in the syntax and coherence of speech are found in persons
with advanced ADRD and can be reliably detected [28,29].
There is also evidence that subtle changes in extrapyramidal
function predict incipient MCI and Alzheimer disease [30],
and recent technological advances can automatically quantify
these changes in short video clips of an individual, suggest-
ing the possibility of extending this work into measuring
behavior in video calls or videoconferencing (eg, FaceTime
and Zoom) or via mobile apps [31]. It is possible that a
combination of multiple speech features and video analysis
may prove more sensitive to early cognitive decline than a

single category of linguistic features; thus, further work in
this area is needed. More research should also be directed at
determining the reliability of such features in other neurologi-
cal brain disorders for which some aspects of language have
been shown to be associated with decline, such as Parkinson
disease [32].

Despite encouraging findings, this study is limited in
several important ways. The sample size was modest, the
analysis was cross-sectional in nature, and we only assessed
speech and cognitive function during a single testing session.
Although several findings were statistically significant despite
the modest sample size, the nonsignificant group difference in
intraindividual variability across instances of the same speech
task type (expository tasks; P=.18) may have been underpow-
ered due to the small sample. Therefore, future research on
the consistency of speech tasks for assessing MCI should
ensure sufficient power. Furthermore, prospective studies
with larger and more diverse samples are needed to clarify the
feasibility of using automated speech analysis (Soroski et al
[33] used such analyses in research settings and for at-home
monitoring of cognitive function), though several studies on
automatic speech analysis have shown such analyses to be
promising [5,34,35]. Such findings will provide key insight
into the stability of spontaneous speech over longer intervals
(eg, weeks to months). It is also possible that the prospec-
tive monitoring of speech changes may help to overcome
some of the limitations (ie, higher rates of misclassification
of cognitive status) found in existing cognitive screening
instruments for diverse populations [36,37] and facilitate
early identification. This study is also limited in that effects
of depression were not able to be explored. Future studies
should examine the possible contributions of depression and
anxiety to spontaneous speech in older adults, given that
mental health conditions are common in older adults [38]
and that depression may also alter speech content [39] and
vocal features [40]. Finally, an important limitation of this
study is that participants’ cognitive status (MCI and cogni-
tively intact), as well as other potentially relevant medical
conditions (eg, depression), was based on a self-report of
their history of diagnosed neurological conditions. Detailed
information regarding specific etiology was not available
or objectively assessed, limiting the strength of our conclu-
sions (including the possibility that MCI was not due to
Alzheimer disease). Future studies on the reliability of speech
as a marker of MCI should incorporate more comprehen-
sive neurological evaluations to ensure that the assessment
of speech reliability is valid (eg, neuroimaging and other
biomarkers).

In summary, our findings suggest that lexical-semantic
aspects of spontaneous speech are similarly reliable in older
adults with and without MCI. This finding is an essential
first step toward the widespread use of speech biomarkers
as a low-burden method for cognitive monitoring and the
facilitation of the early detection of neurodegeneration in
persons at risk for ADRD.
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