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Abstract

Background: A commonly used method for measuring frailty is the accumulation of deficits expressed as a frailty index (FI).
FIs can be readily adapted to many databases, as the parameters to use are not prescribed but rather reflect a subset of extracted
features (variables). Unfortunately, the structure of many databases does not permit the direct extraction of a suitable subset,
requiring additional effort to determine and verify the value of features for each record and thus significantly increasing cost.

Objective: Our objective is to describe how an artificial intelligence (AI) optimization technique called partial genetic algorithms
can be used to refine the subset of features used to calculate an FI and favor features that have the least cost of acquisition.

Methods: This is a secondary analysis of a residential care database compiled from 10 facilities in Queensland, Australia. The
database is comprised of routinely collected administrative data and unstructured patient notes for 592 residents aged 75 years
and over. The primary study derived an electronic frailty index (eFI) calculated from 36 suitable features. We then structurally
modified a genetic algorithm to find an optimal predictor of the calculated eFI (0.21 threshold) from 2 sets of features. Partial
genetic algorithms were used to optimize 4 underlying classification models: logistic regression, decision trees, random forest,
and support vector machines.

Results: Among the underlying models, logistic regression was found to produce the best models in almost all scenarios and
feature set sizes. The best models were built using all the low-cost features and as few as 10 high-cost features, and they performed
well enough (sensitivity 89%, specificity 87%) to be considered candidates for a low-cost frailty screening test.

Conclusions: In this study, a systematic approach for selecting an optimal set of features with a low cost of acquisition and
performance comparable to the eFI for detecting frailty was demonstrated on an aged care database. Partial genetic algorithms
have proven useful in offering a trade-off between cost and accuracy to systematically identify frailty.
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Introduction

Genetic algorithms (GA) are a general-purpose computational
optimization method inspired by the evolution mechanism in
nature. They are one of the most popular metaheuristic search
algorithms and have been used for variety of applications,
including synthetic data generation, feature selection, and to
solve complex equations [1]. In this study, genetics algorithms
have been applied to identify features that offer a suitable
trade-off between cost and accuracy.

Within the context of global population aging, the number of
older people who will live a significant proportion of their lives
with frailty is growing rapidly [2]. Frailty is problematic for
older people and the societies in which they live due to the
elevated risks associated with the syndrome, including terms
poor health outcomes [3] and additional use of health and aged
care services [4-7], leading to inflated health care costs [8-10].
However, emerging research suggests that frailty is a highly
dynamic [11,12] and potentially modifiable state with
appropriate intervention [13,14]. Screening for early detection
is proposed to increase the likelihood that the worst impacts of
frailty can be lessened [4,15,16].

There are 2 main approaches to identifying frailty: the frailty
phenotype (FP) and the frailty index (FI) [17]. However, these
established approaches have known drawbacks, requiring
significant time investment, face-to-face interaction, and specific
data items to be collected [18]. Recently, an electronic frailty
index (eFI) was proposed [19] that has the potential to achieve
greater efficiencies over face-to-face models when applied to
administrative data sets, but the need to ensure a minimum set
of items adhering to prespecified criteria remains a barrier to
implementation. For example, previous research has shown that
although it is possible to calculate and construct an eFI based
on an aged care administrative data set, a significant proportion
of the items require manual calculation to ensure accuracy and
improve quality [20]. Clearly, it would be preferable to identify
automated techniques capable of delivering comparable accuracy
and quality but with greater efficiency. Consequently, this study
aimed to apply a sophisticated genetic algorithm technique to
identify an optimal predictor of the calculated eFI.

Methods

Study Design, Participants, and Setting
This retrospective study utilized a data set previously compiled
[21] from the administrative database of 10 residential aged
care facilities located in Queensland, Australia. Participants
were included in the study if they were aged 75 years or older
and had completed an Aged Care Funding Instrument (ACFI)
assessment within the previous 3 years.

Ethical Considerations
A waiver of consent for the initial study was obtained from the
Human Research Ethics Committee of Torrens University

Australia (application H11/19), which declared the study exempt
under National Statement 5.1.22 (secondary use of deidentified
administrative data) due to the pragmatic nature of the study.
Because this is a secondary study of the same data, the approval
extends to this study. Moreover, this study adheres to the
Australian National Statement on Ethical Conduct in Human
Research.

Frailty Outcome Measure
An eFI was previously calculated for this data [21] based on a
formulation originally specified by Clegg et al [22]. Care was
taken to ensure the included deficits adhered to the criteria
recommended by Searle and colleagues [23], which resulted in
32 of the 35 deficits being extracted from unstructured patient
notes and only 3 being derived from the ACFI data. The binary
frailty classification was derived using a threshold of 0.21 (ie,
frailty defined as >0.21) [24].

Screening Test Construction
Genetic algorithms are an optimization technique [1] applied
in machine learning to filter a set of features that are used to
construct a classification model. During training, a classification
algorithm is tuned on a training set, and the success of attaining
a generalized predictive algorithm is then verified by measuring
the classification errors in the test set.

Genetic algorithms leverage the observation that classification
models often perform better when they are trained on a subset
of the available features. Which subset of features to use,
however, is not obvious. Genetic algorithms start with a
population of randomly generated subsets of features, or
chromosomes, that are all independently used to generate
classification models. The chromosomes from the population
that generated the best performing models are allowed to
combine, or breed, to form a new generation of the population,
while the worst performing ones are removed completely. The
process continues until either a predefined number of
generations have been trained or the performance of the models
has plateaued. Once training is complete, the best-performing
model is deployed using only the naturally selected subset of
the available features.

While genetic algorithms are good at selecting an optimal subset
of features, they select the features based on maximizing the
classification accuracy of a generated model. The cost of
acquiring the various features is not factored into the choice of
features, even if the performance of less expensive features is
close to that of their more expensive counterparts. In this study,
the cost of a feature is the combination of the effort, monetary
cost, and patient risk involved in capturing the values. We want
to minimize the number of expensive features chosen to form
the model but allow as many low-cost features to be used as is
necessary to gain acceptable performance of the model.

To achieve the inclusion of low-cost features in the classification
model, the standard genetic algorithm training configuration
illustrated in Figure 1 is modified as illustrated in Figure 2.
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Figure 1. Genetic algorithm configuration for training a single member of the population.

Figure 2. Partial genetic algorithm configuration for training a single member of the population.

This modification is performed every time a model is trained
for every member of the population trialed by the genetic
algorithm. When the genetic algorithm trains a model, it passes
a subset of the available training records to the classification
model’s training algorithm. The low-cost feature values for each
record need to be added to the selected training records before
commencing the training. The genetic algorithm trains the
classification model for each chromosome multiple time with
different subsets of the training records and determining the
performance of each model using records not used in training
that instance. As with the training records, the low-cost features
need to be added to the records used to determine a model’s
performance. The performance of the chromosome is calculated
as the average performance of all the models built from different
subsets of the training records. This process is called n-fold
cross validation, where n is the number of models built. In this
study, 3-fold cross validation was used because it ensured a

good balance between performance and the time it took to build
the models.

Four types of classification models were optimized using partial
genetic algorithms: logistic regression, support vector machines,
random forest, and decision trees. These algorithms are popular
choices for classification because they have proven successful
in generating generalized models for a wide range of
applications [20]. Logistic regression is a statistical modeling
technique whereby a linear combination of the input features is
found during training, which models the logarithm of the odds
that a binary outcome is in the true state. A support vector
machine (SVM) aims to learn a multidimensional hyperplane
that separates the set of records given to it for training.
Predictions are made by placing the candidate record in the
same multidimensional classification space and determining
which side of the hyperplane it maps to. SVM was developed
in the 1990s and has since enjoyed success in many real-world
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applications, including pattern recognition [25], text
classification [26], and bioinformatics. Decision trees employ
a divide and conquer strategy. A tree is formed of nodes, and
each node performs a comparison of a single input feature and
a threshold if the variable is continuous or a state if the feature
is discrete. The outcome of the comparison determines the
choice of the next node, which either performs a new
comparison or terminates the tree with a given classification.
During training, the set of training records are used to find
comparisons at each node that gain the most information by
reducing entropy in the outcomes by the greatest amount.
Subsequent training predictions are made by feeding records
into the root node and determining the classification of the
terminating node where the record exits the tree. Random forest
is a meta form of decision trees, where the output is determined
by a vote between many trees. The trees are built using different
methods to ensure they are not replicas of each other.

The software was written in Python and the models were built
using the sklearn module (version 1.0.2) and the
genetic_selection module from sklearn-genetic (version 0.5.1).

Results

Model Generation
Of the 69 features considered, 34 were extracted directly from
the ACFI assessment and 35 were the values used to calculate
the eFI. Two of the ACFI features, Psychogeriatric Assessment
Scales (PAS) score and Cornell Scale, were excluded as they
had a high percentage of missing values (PAS score 36%,
Cornell Scale 42%). The remaining 32 ACFI assessment features
had no missing values and were categorized as low cost of
acquisition features. Of the 35 features used to calculate the
eFI, 32 were extracted by an automated search for key words
in the unstructured patient notes, followed by manual inspection
and verification by a clinician. These were categorized as having
a high cost of acquisition. The remaining 3 features used to
calculate the eFI were direct combinations of ACFI features.
As the calculation of these features could be fully automated,
they were included with the low-cost features. A total of 4 sets
of low-cost features were considered: (1) ACFI features + the
low-cost eFI features; (2) the low-cost eFI features; (3) no
low-cost features; and (4) a set of features chosen from the
low-cost features using genetic algorithms. A different set was
found for each of the classification algorithms.

Sixteen scenarios were trialed, comprising each of the
aforementioned 4 sets of low-cost features for each of the 4

classification algorithms. For each scenario, the partial genetic
algorithm was used to optimize the classification algorithm with
different limits placed on the number of high-cost features. The
limits were varied sequentially from 1 to 32, which was the
number of candidate high-cost features. The performance of
each of the 32 algorithms generated for each scenario were
plotted on a single graph. The graphs for each scenario are
plotted in Figures 3-6.

When comparing the graphs for each classification model,
logistic regression outperformed decision trees in every scenario
and SVM and random forest in almost all scenarios. Tables 1-3
demonstrate the numeric comparison of the 16 scenarios when
5, 10, and 15 of the high cost of acquisition features were used.

The option of “No low-cost” features was provided to determine
how much predictive value the low-cost features were adding
to the classification. As expected, this option performed the
worst for all the classification algorithms, confirming that the
low-cost features were adding value. Next, models were built
using only the 3 low-cost eFI features as fixed features. This
improved the accuracy of the logistic regression algorithm to
97% when almost all the eFI features were included (Table 4).
Although this is a good outcome, a model built using so many
of the high-cost features was not the goal of this study.

A genetic algorithm works by selecting an optimal subset of all
the features made available to it. This characteristic was the
motivation behind building a version of the models in 2 stages.
In the first stage, a standard, nonpartial, genetic algorithm was
used on the low-cost features to find an optimal combination.
These models performed so poorly (Table 5) that they could
not be used without further improvement. The combination of
features used to generate these models (Multimedia Appendices
1-3) was then employed as the fixed features in the partial
genetic algorithm during the second stage. The models in the
second stage performed surprisingly poorly, showing no
difference from the models built without any low-cost features,
regardless of the classification model used.

Using all the low-cost features in a partial genetic algorithm
yielded the best overall results and matched the 97% accuracy
achieved by the models that used the low-cost eFI features when
the model was able to select most of the high-cost eFI features.
At 10 features, however, the extra low-cost features allowed
the algorithm to increase its sensitivity from 82.7% to 89.3%
and specificity from 81.7% to 86.7%.
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Figure 3. Logistic regression optimized with a partial genetic algorithm. ACFI: Aged Care Funding Instrument; EFI: electronic frailty index; GA:
Genetic algorithm; LR: logistic regression; npa: negative percent agreement; ppa: positive percent agreement.

JMIR Aging 2022 | vol. 5 | iss. 4 | e38464 | p. 5https://aging.jmir.org/2022/4/e38464
(page number not for citation purposes)

Oates et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Support vector machine optimized with a partial genetic algorithm. ACFI: Aged Care Funding Instrument; EFI: electronic frailty index; GA:
Genetic algorithm; npa: negative percent agreement; ppa: positive percent agreement; SVM: support vector machine.
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Figure 5. Decision tree optimized with a partial genetic algorithm. ACFI: Aged Care Funding Instrument; DT: decision tree; EFI: electronic frailty
index; GA: Genetic algorithm; npa: negative percent agreement; ppa: positive percent agreement.
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Figure 6. Random forest optimized with a partial genetic algorithm. ACFI: Aged Care Funding Instrument; EFI: electronic frailty index; GA: Genetic
algorithm; npa: negative percent agreement; ppa: positive percent agreement; RF: random forest.
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Table 1. Performance of the 12 scenarios with 5 high-cost features.

F1cAccuracyNPAbPPAaSpecificitySensitivityFeatures

ACFId + low-cost eFIe

73.275.679.271.47576Logistic regression

64.369.671.367.361.776Support vector machine

64.468.871.465.563.373.3Decision tree

72.976.377.974.171.780Random forest

Low-cost eFI

7980.784.576.681.780Logistic regression

67.271.173.767.866.774.7Support vector machine

58.265.967.164.053.376Decision tree

68.371.17566.77072Random forest

No low-cost features

6973.374.771.466.778.7Logistic regression

62.270.469.771.25582.6Support vector machine

62.971.17073.35584Decision tree

66.771.173.168.46576Random forest

Genetically selected low-cost features

69.674.17572.766.780Logistic regression

64.871.971.372.958.382.7Support vector machine

68.977.27569.568.376Decision tree

75.678.580.376.37581.3Random forest

aPPA: positive percent agreement.
bNPA: negative percent agreement.
cF1: F-score.
dACFI: Aged Care Funding Instrument.
eeFI: electronic frailty index.
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Table 2. Performance of the 12 scenarios with 10 high-cost features.

F1cAccuracyNPAbPPAaSpecificitySensitivityFeatures

ACFId + low-cost eFIe

86.788.189.386.786.789.3Logistic regression

80.78384.281.480.085.3Support vector machine

60.263.768.158.761.765.3Decision tree

71.875.676.973.97080Random forest

Low-cost eFI

80.382.284.97981.782.7Logistic regression

79.781.584.777.881.781.3Support vector machine

57.767.46768.25081.3Decision tree

69.174.874.17663.384Random forest

No low-cost features

78.278.587.171.286.772Logistic regression

75.877.881.773.478.377.3Support vector machine

72.476.377.2757081.3Decision tree

69.674.17572.766.780Random forest

Genetically selected low-cost features

79.381.583.878.68082.6Logistic regression

76.478.581.974.678.378.7Support vector machine

63.769.670.767.96077.3Decision tree

6973.374.771.466.778.7Random forest

aPPA: positive percent agreement.
bNPA: negative percent agreement.
cF1: F-score.
dACFI: Aged Care Funding Instrument.
eeFI: electronic frailty index.
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Table 3. Performance of the 12 scenarios with 15 high-cost features.

F1cAccuracyNPAbPPAaSpecificitySensitivityFeatures

ACFId + low-cost eFIe

83.685.287.782.385.085.3Logistic regression

83.985.188.781.386.784.0Support vector machine

61.765.969.361.761.769.3Decision tree

71.476.375.976.966.784.0Random forest

Low-cost eFI

81.783.785.381.781.785.3Logistic regression

82.484.485.583.181.786.7Support vector machine

61.968.169.566.058.376.0Decision tree

71.677.075.679.665.086.7Random forest

No low-cost features

80.081.585.776.983.380.0Logistic regression

72.074.178.669.275.073.3Support vector machine

60.668.168.667.355.078.7Decision tree

74.877.080.673.076.677.3Random forest

Genetically selected low-cost features

78.780.783.577.480.081.3Logistic regression

76.078.581.175.476.780.0Support vector machine

61.765.969.361.761.769.3Decision tree

71.476.375.976.966.784.0Random forest

aPPA: positive percent agreement.
bNPA: negative percent agreement.
cF1: F-score.
dACFI: Aged Care Funding Instrument.
eeFI: electronic frailty index.

Table 4. Performance of models based on all features.

F1cAccuracyNPAbPPAaSpecificitySensitivityAlgorithm

96.797.097.396.796.797.3LRd

89.890.495.685.195.086.7SVMe

65.570.472.167.963.376.0DTf

78.982.281.583.375.088.0RFg

aPPA: positive percent agreement.
bNPA: negative percent agreement.
cF1: F-score.
dLR: logistic regression.
eSVM: support vector machine.
fDT: decision tree.
gRF: random forest.
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Table 5. Performance of models based only on low-cost features.

F1cAccuracyNPAbPPAaSpecificitySensitivityAlgorithm

66.171.172.569.163.377.3LRd

62.568.969.967.358.377.3SVMe

64.165.271.959.270.061.3DTf

62.568.969.967.358.377.3RFg

aPPA: positive percent agreement.
bNPA: negative percent agreement.
cF1: F-score.
dLR: logistic regression.
eSVM: support vector machine.
fDT: decision tree.
gRF: random forest.

Discussion

Principal Findings
With AI techniques, cost-effective screening tests for frailty are
possible for aged care databases that contain an ACFI
assessment and unstructured patient notes. This study has shown
that the ACFI assessment alone does not provide sufficient
information to determine if a patient is frail. However, when
ACFI data are augmented by as few as 10 additional features,
an AI model can be derived that performs well enough to be
used as a screening test. What this means in clinical practice is
that older people with frailty can be rapidly and accurately
identified in residential care using our novel AI-derived model
for frailty. A rapid identification of frailty is crucial to optimally
manage the condition [27]. Indeed, the recent Australian Royal
Commission to Aged Care highlighted the importance of early
identification of aged care residents with frailty, who require
additional support [28].

The value of any AI-derived model for frailty screening can be
judged by the amount it reduces the cost of acquisition of the
features required to determine the value of the deficits used to
construct a frailty index. Features that are routinely collected
and stored in a database in a format that can be directly fed into
a classification model have a low cost of acquisition.
Unfortunately, as shown in this study (Table 5) and others [20],
such models lack both the sensitivity and specificity to be useful
screening tests. At the other extreme, models that include all
the deficit features used to calculate the eFI perform extremely
well [20] (Table 4), but the value of such models is marginal.

To be useful for a screening test, a model must be acceptably
accurate and significantly reduce the cost of acquisition of the
features required to implement a frailty index. If a model cannot
be developed with acceptable accuracy without including at
least some high-cost features, it is desirable to determine the
optimal minimum set of high-cost features required to achieve
an acceptable performance. Genetic algorithms perform well at
determining the optimal subset of features required to maximize
the performance of a model. Furthermore, their choice of a
subset can be limited to any number of features, up to and
including all the available features. This allows the trade-off

between the number of features and the performance of the
derived models to be determined.

This study found that if a genetic algorithm was permitted to
choose any number of features from all the available features,
regardless of their cost, it most frequently chose subsets that
only included high-cost features. This motivated the
development of the previously mentioned partial genetic
algorithm, which forced the algorithm to include low-cost
features as well. However, this raises the question of whether
the low-cost features add any value at all. To answer this
question, the results include both a fixed set that had no low-cost
features and a set that included only the low-cost features used
to calculate the eFI. Considering logistic regression models with
10 high-cost features, including all the low-cost features, yielded
an improvement of 17% in sensitivity (89% versus 72%). This
combination did not compromise specificity, which remained
stable (87%) and is comparable to the scenario with no low-cost
features. This improvement is significant and possibly represents
the difference between a clinically useful screening test and one
that is inadequate. Even if the comparison is made between
models built on all the low-cost features and those that include
only low-cost features used in the eFI calculation, there is a 6%
improvement in sensitivity (89% versus 83%) and 5% in
specificity (87% versus 82%).

Although the partial genetic algorithm–built models with 10
high-cost features use less than a third of all the high-cost
features, they still require those 10 features to be extracted by
screening patient notes. Recent advances in natural language
processing (NLP) show promise for automating this extraction
process. It is plausible that NLP could extract all the features
required to calculate the eFI, but this would require a much
larger data set than the one used in this study. In the meantime,
the cost of acquisition of at least 10 features from every patient
record remains the cost of implementing a screening test on any
database similar to ours that contains an ACFI assessment and
unstructured patient notes.

Partial genetic algorithms can be used to derive classification
models from any database where the cost of acquisition of some
parameters is higher than it is for others. Although they have
been demonstrated in this study on an aged care database to
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predict frailty, they could be used in any domain. They are well
suited to permit AI models to be trained to implement screening
tests in domains where costs are important and there is a
difference in the cost of acquisition of candidate features.

Limitations
Because this study reuses the data from a previous study [20],
it shares the limitations associated with the data from the first
study. In particular, the data were sourced from a single aged
care provider, and the data set was relatively small. This study
further filtered patients based on the availability of an ACFI
assessment. It is plausible that these criteria gave a skewed
representation of the population that a screening test would be
applied to, resulting in different model performance. The ability
to reproduce AI results continues to be controversial [29,30]
within medicine, so further studies should aim to reproduce
these results with different data sets. A further limitation is the
changing model of aged care in Australia, with a new model
set to replace ACFI in the next 2 years.

Conclusion
The value of screening tests lies in their cost-effective
application. The main cost of applying a model-based screening
test lies in acquiring the measures fed into the model. To derive
useful screening tests using AI techniques, algorithms must be

employed that favor the use of cheaper features over those that
require more effort or patient risk to acquire. What all aged care
providers and their clinical advisers need is a screening tool
that will allow the efficient planning of evidence-based
interventions to older frail people who will best benefit from
them. At a time where the aged care sector and all providers are
being asked by governments and national quality agencies to
focus on this vulnerable group, it is crucial that we employ an
efficient screening tool.

This paper has shown how partial genetic algorithms can be
used to determine an optimal subset of high-cost features to use
with cheap features to derive AI models to classify frailty, both
in terms of which parameters to use and how many to use. This
technique can be applied to any database. It does not guarantee
that an adequate model will be found from any database, but it
does give a good indication of whether there is sufficient
information in the data to derive a model.

Partial genetic algorithms were demonstrated in this paper to
derive a cost-effective screening test for frailty, but the method
can be applied to any screening tests where there is a disparity
in the cost of measuring the required features. The outcome of
this study will aid health care providers in screening for frailty
with better accuracy through the proposed cost-effective method,
which strikes a good balance between accuracy and cost.
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AI: artificial intelligence
eFI: electronic frailty index
FI: frailty index
FP: frailty phenotype
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