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Abstract

Background: More than 6 million people in the United States have Alzheimer disease and related dementias, receiving help
from more than 11 million family or other informal caregivers. A range of traditional interventions has been developed to support
family caregivers; however, most of them have not been implemented in practice and remain largely inaccessible. While recent
studies have shown that family caregivers of people with dementia use Twitter to discuss their experiences, methods have not
been developed to enable the use of Twitter for interventions.

Objective: The objective of this study is to develop an annotated data set and benchmark classification models for automatically
identifying a cohort of Twitter users who have a family member with dementia.

Methods: Between May 4 and May 20, 2021, we collected 10,733 tweets, posted by 8846 users, that mention a dementia-related
keyword, a linguistic marker that potentially indicates a diagnosis, and a select familial relationship. Three annotators annotated
1 random tweet per user to distinguish those that indicate having a family member with dementia from those that do not.
Interannotator agreement was 0.82 (Fleiss kappa). We used the annotated tweets to train and evaluate support vector machine
and deep neural network classifiers. To assess the scalability of our approach, we then deployed automatic classification on
unlabeled tweets that were continuously collected between May 4, 2021, and March 9, 2022.

Results: A deep neural network classifier based on a BERT (bidirectional encoder representations from transformers) model
pretrained on tweets achieved the highest F1-score of 0.962 (precision=0.946 and recall=0.979) for the class of tweets indicating
that the user has a family member with dementia. The classifier detected 128,838 tweets that indicate having a family member
with dementia, posted by 74,290 users between May 4, 2021, and March 9, 2022—that is, approximately 7500 users per month.

Conclusions: Our annotated data set can be used to automatically identify Twitter users who have a family member with
dementia, enabling the use of Twitter on a large scale to not only explore family caregivers’ experiences but also directly target
interventions at these users.
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Introduction

More than 6 million people in the United States have Alzheimer
disease and related dementias, and the burden is projected to
double by 2060 [1]. Alzheimer disease is the sixth leading cause
of death in the United States [2], and only 8% of people with
dementia do not receive help from family members or other
informal care providers [3], amounting to more than 11 million
family or other unpaid caregivers in 2020 [4]. Caregivers of
people with dementia are impacted physically, cognitively,
socially, mentally, and financially. For instance, compared with
noncaregivers, they are more vulnerable to disease due to
chronic stress [5] and have lower durations and quality of sleep
[6]. Compared with non–dementia caregivers, they are more
likely to experience a decline in cognition [7] and social network
size [8]. They are also more likely to experience depression
compared with noncaregivers [9] and non–dementia caregivers
[10], and depressive symptoms in dementia caregivers are
associated with increased health care use and costs [11]. In
addition to the increased costs of their personal health care,
family caregivers of people with dementia pay for much of the
recipient’s total care costs, with the costs being significantly
higher for people with dementia than without dementia [12].

A range of traditional interventions has been developed to
support family caregivers of people with dementia [13];
however, most of them have not been implemented in practice
and remain largely inaccessible [14]. Recent systematic reviews
have concluded that internet-based interventions are valued by
family caregivers of people with dementia for their easy access
[15] and can have beneficial effects on caregivers’ health [16].
While recent studies [17-23] have shown that family caregivers
of people with dementia use Twitter to discuss their experiences,
to the best of our knowledge, methods have not been developed
to enable the use of Twitter as a platform for internet-based
interventions. Given that nearly 1 of every 4 adults in the United
States uses Twitter [24], Twitter may present a novel opportunity
to reach family caregivers on a large scale, such as through
user-targeted advertisements providing information about
dementia, caregiving, resources, or services. The objective of
this study was to develop an annotated data set and benchmark
classification models for automatically identifying a cohort of
Twitter users who have a family member with dementia.

Methods

Ethical Considerations
The data used in this study were collected in accordance with
the Twitter Terms of Service. The Institutional Review Board
of the University of Pennsylvania reviewed this study (protocol
number: 828972) and deemed it exempt human subjects research
under 45 CFR §46.101(b)(4) for publicly available data sources.

Data Collection and Annotation
Between May 4 and May 20, 2021, we collected 67,060 publicly
available tweets from the Twitter streaming application
programming interface (API) that are in English, are not
retweets, and include both a dementia-related keyword (eg,
dementia, youngdementia, #yod, #ftd, alzheimer’s, alz,

alzheimersdisease, mild cognitive impairment) and a linguistic
marker that potentially indicates a diagnosis (eg, diagnosed,
diagnosis, has, got, developed, with, from). The full list of API
search terms is available in Multimedia Appendix 1. We then
searched these tweets for references to select familial
relationships (Multimedia Appendix 2), identifying 10,733
(16%) of the 67,060 tweets. We randomly sampled 1 tweet per
user—8846 (82%) of the 10,733 tweets—and developed
annotation guidelines (Multimedia Appendix 3) to help 3
annotators distinguish tweets that indicate having a family
member with dementia from those that do not. Among the 8846
annotated tweets, 8346 (94%) were dual annotated, and 500
(6%) were annotated by all 3 annotators. Interannotator
agreement, based on the 500 tweets annotated by all 3
annotators, was 0.82 (Fleiss kappa). Upon resolving the
disagreements, it was determined that 5946 (67%) of the tweets
indicate that the user has a family member with dementia, and
2900 (33%) of the tweets do not.

Automatic Classification
We performed benchmark supervised machine learning
experiments to assess the utility of the annotated data set for
automatically identifying Twitter users who have a family
member with dementia. For the classifiers, we used the LibSVM
[25] implementation of support vector machine (SVM) in Weka
and SVM and 6 deep neural network classifiers based on BERT
(bidirectional encoder representations from transformers): the
BERT-Base-Uncased [26], DistilBERT-Base-Uncased [27],
RoBERTa-Large [28], BioBERT-Large-Cased [29],
Bio+ClinicalBERT [30], and BERTweet-Large [31] pretrained
models in the Flair Python library. We split the 8846 tweets
into 80% (7077 tweets) and 20% (1769 tweets) random sets as
training data (Multimedia Appendix 4) and held-out test data,
respectively, stratified based on the distribution of the binary
annotated classes. For the SVM classifier, we preprocessed the
tweets by normalizing URLs, usernames, digits, and keywords
related to dementia (Multimedia Appendix 1) and familial
relationships (Multimedia Appendix 2), removing
nonalphanumeric characters and extra spaces, and lowercasing
and stemming [32] the text. We used the Weka NGram
Tokenizer to extract n-grams (n=1-3) as features in a
bag-of-words representation. We used the radial basis function
kernel and set the cost at c=32. For the BERT-based classifiers,
we preprocessed the tweets by normalizing URLs and usernames
and lowercasing the text. For training, we used stochastic
gradient descent optimization, a batch size of 8, 15 epochs, and
a learning rate of 0.001. During training, we fine-tuned all layers
of the transformer model with our annotated tweets. To optimize
performance, the model was evaluated after each epoch on a
5% split of the training set. To assess the scalability of our
approach, we then deployed automatic classification on 198,674
unlabeled tweets, posted by 119,640 users, that were
continuously collected from the Twitter streaming API
(Multimedia Appendix 1) between May 4, 2021, and March 9,
2022, and mentioned a select familial relationship (Multimedia
Appendix 2).
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Results

Table 1 presents the precision, recall, and F1-scores of SVM
and 6 deep neural network classifiers for the class of tweets
indicating that the user has a family member with dementia,
evaluated on a held-out test set of 1769 (20%) of the 8846
manually annotated tweets. The classifier based on a model
pretrained on tweets (BERTweet-Large) achieved the highest
F1-score: 0.962 (precision=0.946 and recall=0.979). When
deployed on 198,674 unlabeled tweets, posted by 119,640 users,
between May 4, 2021, and March 9, 2022, the BERTweet
classifier detected 128,838 tweets indicating that the user has
a family member with dementia, posted by 74,290 users—that
is, approximately 7500 users per month.

Table 2 presents examples of false positives and false negatives
of the BERTweet classifier in the test set. Among the 68 false
positives, 36 (47%) refer to people with dementia who are not
or may not be select family members (Tweet 1), 8 (12%) report
that a family member has a condition other than dementia
(Tweet 2), and 5 (7%) merely speculate that a family member
has dementia (Tweet 3). Another 8 (12%) of the 68 false
positives were a result of manual annotation errors. Among the
25 false negatives, 14 (56%) use deixis or anaphora, requiring
additional context in the tweet to understand that a non–first
person determiner (eg, “their” in Tweet 4) actually refers to the
user, or that a personal pronoun (eg, “she” in Tweet 5) refers
to a select family member with dementia. Furthermore, 12 (86%)
of these 14 tweets also include references to people who are not
family members or do not have dementia. Another 4 (16%) of
the 25 false negatives were a result of manual annotation errors.

Table 1. Precision, recall, and F1-scores of classifiers for detecting tweets indicating that the user has a family member with dementia.

F1-scoreRecallPrecisionClassifier

0.9100.9390.884SVMa

0.9380.9540.924BERTb-Base-Uncased

0.9360.9420.930DistilBERT-Base-Uncased

0.9490.9820.918RoBERTa-Large

0.9410.9780.907BioBERT-Large-Cased

0.9300.9580.903Bio+ClinicalBERT

0.9620.9790.946BERTweet-Large

aSVM: support vector machine.
bBERT: bidirectional encoder representations from transformers.

Table 2. Sample false positives and false negatives of a BERTweet classifier for detecting tweets indicating that the user has a select family member
with dementia.

PredictedActualTweetTweet
number

+–Evelyn has dementia, I know. But when she asked me today how my dad was doing... it still
hurt.

1

+–We really don't have a clue about what causes Alzheimer's. We don't have a clue about
Parkinson's, which is what got my dad, either.

2

+–I just listened to the Everywhere at The End of Time, by The Caretaker, and thought about my
grandmother. The songs are about dementia, something my grandma wasn't clearly diagnosed
with, but it hit hard.

3

–+If someone tells u their parent has Alzheimer's please don’t say your grandparent or great aunt
did too. I appreciate that u can relate to the experience but it is so different. Tell me a different
time.

4

–+I have a family member who is vulnerable and two children in their late 20s. I didn’t want to
risk passing virus to her or from her to my family member. My sister made a bubble with her
and her carers. She has dementia so she probably hasn’t missed me!

5

Discussion

Principal Findings
The benchmark performance of automatic classification
demonstrates that our annotated data set has utility for accurately
identifying Twitter users who have a family member with

dementia, and deploying automatic classification on unlabeled
tweets demonstrates that a large cohort of users can be identified.
Therefore, our annotated data set enables the use of Twitter to
scale up accessible, internet-based interventions directly targeted
at family caregivers of people with dementia. Because our
approach involves identifying tweets that mention a familial
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relationship, it would also enable interventions to be tailored to
the care recipient.

Limitations
Our approach to identifying family caregivers assumes that
having “close” relatives with dementia would likely imply the
users’ involvement in caregiving; however, the users identified
in this study may not necessarily be caregivers or may have
been caregivers but are no longer. We took this approach
because we believe that limiting our identification of caregivers
to users who explicitly state that they are providing ongoing

care would underutilize the potential of Twitter for reaching
caregivers on a large scale.

Conclusions
This paper presented an annotated data set and benchmark
classification models for automatically identifying Twitter users
who have a family member with dementia, enabling the use of
Twitter on a large scale to not only explore family caregivers’
experiences among their tweets but also directly target
interventions at these users.
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