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Abstract

Background: Sensor-based remote health monitoring can be used for the timely detection of health deterioration in people
living with dementia with minimal impact on their day-to-day living. Anomaly detection approaches have been widely applied
in various domains, including remote health monitoring. However, current approaches are challenged by noisy, multivariate data
and low generalizability.

Objective: This study aims to develop an online, lightweight unsupervised learning–based approach to detect anomalies
representing adverse health conditions using activity changes in people living with dementia. We demonstrated its effectiveness
over state-of-the-art methods on a real-world data set of 9363 days collected from 15 participant households by the UK Dementia
Research Institute between August 2019 and July 2021. Our approach was applied to household movement data to detect urinary
tract infections (UTIs) and hospitalizations.

Methods: We propose and evaluate a solution based on Contextual Matrix Profile (CMP), an exact, ultrafast distance-based
anomaly detection algorithm. Using daily aggregated household movement data collected via passive infrared sensors, we generated
CMPs for location-wise sensor counts, duration, and change in hourly movement patterns for each patient. We computed a
normalized anomaly score in 2 ways: by combining univariate CMPs and by developing a multidimensional CMP. The performance
of our method was evaluated relative to Angle-Based Outlier Detection, Copula-Based Outlier Detection, and Lightweight Online
Detector of Anomalies. We used the multidimensional CMP to discover and present the important features associated with adverse
health conditions in people living with dementia.

Results: The multidimensional CMP yielded, on average, 84.3% recall with 32.1 alerts, or a 5.1% alert rate, offering the best
balance of recall and relative precision compared with Copula-Based and Angle-Based Outlier Detection and Lightweight Online
Detector of Anomalies when evaluated for UTI and hospitalization. Midnight to 6 AM bathroom activity was shown to be the
most important cross-patient digital biomarker of anomalies indicative of UTI, contributing approximately 30% to the anomaly
score. We also demonstrated how CMP-based anomaly scoring can be used for a cross-patient view of anomaly patterns.

Conclusions: To the best of our knowledge, this is the first real-world study to adapt the CMP to continuous anomaly detection
in a health care scenario. The CMP inherits the speed, accuracy, and simplicity of the Matrix Profile, providing configurability,
the ability to denoise and detect patterns, and explainability to clinical practitioners. We addressed the need for anomaly scoring
in multivariate time series health care data by developing the multidimensional CMP. With high sensitivity, a low alert rate, better
overall performance than state-of-the-art methods, and the ability to discover digital biomarkers of anomalies, the CMP is a
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clinically meaningful unsupervised anomaly detection technique extensible to multimodal data for dementia and other health care
scenarios.

(JMIR Aging 2022;5(3):e38211) doi: 10.2196/38211
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Introduction

Background
Dementia is a progressive and irreversible decline in a wide
range of brain activities, including impaired memory, thinking,
orientation, comprehension, calculation, learning capacity,
language, and judgment, beyond what might be expected from
natural biological aging. The World Health Organization
estimates that approximately 55 million people have dementia
worldwide, which is set to rise to 78 million in 2030 and 139
million in 2050 [1]. Managing the care of this growing
population incurs significant costs. The Alzheimer’s Society
puts the cost of care for people with dementia in the United
Kingdom at GBP 34.7 billion (US $40 billion), rising sharply
to GBP 94.1 billion (US $108.6 billion) by 2040 [2]. The
hospitalization of people living with dementia because of
potentially preventable conditions such as fall injuries, sepsis,
pneumonia, and urinary tract infection (UTI) puts huge pressure
on health systems. To minimize preventable hospitalizations,
there is a significant investment in artificial intelligence–driven
technologies that enable the health of people living with
dementia to be remotely monitored and assisted while they live
in the comfort of their own homes.

The UK Dementia Research Institute Care Research and
Technology Centre has made a significant effort in this direction
with its vision to “use patient-centered technology to help people
affected by dementia to live better and longer in their own
homes” [3]. The team at the UK Dementia Research Institute
Care Research and Technology Centre has developed a
sensor-based remote health monitoring platform that enables
clinicians to intervene early and allows researchers to improve
their understanding of dementia onset and progression [4]. The
cohort currently covers 102 people with dementia living with
their caregivers in their own homes. Data collection commenced
in 2019 and will continue until at least 2025, with more
participants being onboarded each year, making it one of the
largest, longest-running, and most diverse and unique dementia
data collection programs worldwide. The sensors, framework,
models, clinical monitoring workflows, app for participants,
and monitoring dashboard together form a digital platform called
Minder (please see the website of the UK Dementia Research
Institute [4] for more information).

Occasionally, people with dementia present with behavioral
and psychological symptoms such as agitation, aggression, sleep
disturbances, urinary system disorders, dehydration, and falls.
UTI is the most diagnosed infection in older adults, and early
identification is key to preventing further complications [5,6].
The diagnosis of UTI remains problematic because of the
presence of a range of nonspecific symptoms, a high prevalence

of asymptomatic bacteriuria, and reduced help-seeking behavior
[7-9].

An “anomaly” in the context of home health monitoring can be
simply understood as an unexpected but significant irregularity
in otherwise normal data, which is indicative of an adverse
condition. Anomalies are difficult to detect within overwhelming
volumes of normal data. The cost of missing or misclassifying
anomalies can be high (eg, failing to detect a UTI could be
catastrophic). Current methods for health care anomaly detection
are challenged by one or more real-world issues:
high-dimensional and multivariate data; little to no information
on the distinction between normal and abnormal data; time
course data and the need to make predictions with low latency;
patient-to-patient variability; noise and lack of periodicity
because of social visits, pets, sensor issues, and noisy labels;
high false alert rate; high tuning needs; and low explainability
to clinical monitoring teams and caregivers [10].

The aim of our work was to develop a clinically useful,
domain-agnostic, fast, lightweight, unsupervised anomaly
detection approach for real-world noisy health care data. We
accounted for individual variability, generalizability across
individuals and domains, and explainability to clinicians and
carers in the form of digital biomarker discovery. Our work
makes the following contributions: (1) it offers the first use case
for the Contextual Matrix Profile (CMP) for adaptive anomaly
detection in health care, specifically in a real-world remote
health monitoring scenario; (2) it develops the multidimensional
CMP and uses it to identify and score anomalous patient days;
(3) it demonstrates the effectiveness of CMP-based anomaly
scoring over state-of-the-art methods; and (4) it uses the CMP
to discover biomarkers of anomalies using household movement
data.

Prior Work

Overview
Approaches to anomaly detection can be broadly categorized
as statistical, distance-based, reconstruction-based, domain-
based or decision boundary–based, information-theoretic, and
graph-based [11]. Many approaches in the literature use
combinations of techniques such as visual, knowledge-based,
and machine learning approaches. We highlight how some of
these techniques have been applied to anomaly detection in
remote health monitoring scenarios.

Statistical Methods
Statistical thresholding is a popular approach to finding point
anomalies. A National Institutes of Health–funded pilot study
used statistical thresholding to generate alerts for UTI and
offered early interventions for 37 older adult participants, some
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with Alzheimer disease, residing in apartments equipped with
motion, pressure, and temperature sensors [12]. Clustering-based
techniques were used in the study by Mori et al [13] to detect
anomalies in the timing and duration of different activities.
Statistical methods typically ignore the multivariate nature of
anomalous events and can generate numerous false positives
[14].

Machine Learning Approaches
Using early data from our Minder study, Enshaeifar et al [15]
used a Markov chain to model activity sequences along with
an entropy rate to quantify the regularity of an individual’s
patterns in their day-to-day life. They used a training set to
construct the Markov model and a verification set to define a
confidence threshold for deviations [15]. Novák et al [16]
detected anomalies such as long periods of inactivity, unusual
presence, and changes in daily activity patterns using a
combination of self-organizing maps for activity classification
followed by a Markov model for next activity prediction. The
limitations of the Markov approach include the inability to
address parallel activities, activities that involve the same event
with different probabilities, and scalability issues [17,18].

Arifoglu and Bouchachia [5] explored convolutional neural
networks to capture temporal and spatial representations of
activity and detect abnormal behavior related to repeating
activities, sleep disruption, and confusion. Sensor data were
sliced into time windows, and activities were labeled via
sequence labeling to train convolutional neural networks that
could detect deviations from normal daily life sequences.
Supervised learning and interpretability are some limitations of
this approach.

Akl et al [19] used signal processing with machine learning
algorithms to detect mild cognitive impairments in older adults.
They used sensors to extract the average, probability density,
and trajectory of measures over sliding windows of sensor data
as input to support vector machines and random forest classifiers
to assess cognitive status. This approach requires training data
annotations for cognitive status and has missing data issues in
time windows.

Jakkula et al [20] considered the problem of anomaly detection
based on temporal relationships. They expressed relationships
between temporal events based on temporal logic, such as
before, after, meets, overlaps, and contains, and used these to
identify frequently occurring relationships between them.
Adopting a probability-based model based on prior evidence
from an inhabitant’s history, they reported low-probability
events as anomalies. The study acknowledges that hundreds of
sensors must be used to identify temporal relations at a granular
level. It also requires a large training data set that must be
updated to capture changing patterns.

Using data from our own remote monitoring study, Palermo et
al [21] developed a supervised long short-term memory network
to analyze the risk of agitation episodes in people with dementia
using environmental, physiological, and sleep data. They used
weak learning and label augmentation to address noise and class
imbalance. In another Minder study, Li et al [22] adopted a
semisupervised machine learning approach to predict the risk

of UTI in people with dementia using environmental and
physiological data. A convolutional autoencoder was used to
learn a representation of the unlabeled sensor data. The encoder
was used to extract the corresponding features from a smaller
set of positively labeled data, which were then used to train a
supervised classifier—a probabilistic neural network with a
fully connected layer. Although this model is robust and learns
continually, it approximates sensor data using Lagrangian
approximation, requires interpretability, and takes a generalized
versus patient-specific approach to detecting UTIs.

In the study by Paudel et al [23], the authors used unsupervised
graph-based anomaly detection to identify cognitive health
decline in older adult residents living in smart homes. They
transformed motion sensor data from raw sensor log files into
individual activity graphs and performed anomaly detection
based on the normative pattern derived from the minimum data
length principle [24]. This study used cohort-wide thresholds
instead of the users’ own thresholds.

Visual Approaches
Visualization of activity density is another intuitive way of
detecting anomalies in movement data. The study by Gupta et
al [25] describes how unsupervised learning can be used to
discover activity patterns in unlabeled data from passive infrared
(PIR) sensors. In this work, user activity data were visualized
and tracked through Uniform Manifold Approximation and
Projection, whereas kernel density estimation was used for
automatically extracting periods of dense sensor activity.
Although Uniform Manifold Approximation and Projection
plots are useful in informing daily patient-carer interactions,
they are not readily interpretable, and this approach does not
provide an anomaly score. Heat maps have also been used in
conjunction with deep learning techniques to determine the
probability of agitation- or UTI-related anomalies. In the study
by Li et al [26], hourly heat maps based on raw sensor data were
encoded via positional encoding to extract relevant time steps
that were then passed into a long short-term memory model to
extract relevant data and into an attention-based model to make
predictions. This method uses supervised learning and, as is
common with deep learning models, is computationally
expensive and requires sufficient training data for accurate risk
analysis and predictions.

Matrix Profile for Anomaly Detection
Research on real-world applications of Matrix Profile
(MP)–based anomaly detection is scarce. Lin et al [27] used an
early version of the MP to detect discords in electrocardiogram
time series. More recently, researchers have used MP for
web-based anomaly detection in IT operation time series [28].
In the study by Steenwinckel et al [29], researchers used an MP
with knowledge-driven algorithms to create an interpretable
system for sensor monitoring in the railway domain. Nieves
Avendano et al [30] used MP with clustering for web-based
anomaly detection and event prediction based on acoustic
emission sensors that relay information about the mechanical
conditions of a cold-forming manufacturing line. This method
is robust to noise, missing values, and irregular sampling.
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The CMP has been shown to be more flexible and effective than
the MP in 2 curated non–health care web-based data sets where
the authors showed how the CMP can be used to detect more
subtle anomalies in addition to those detected by the MP [31].

In Figure 1 [11,32], we summarize the effectiveness of each
technique framed in the context of remote health monitoring
by evaluating the pros and cons of each technique presented in
the survey literature. The CMP overcomes many of the
drawbacks identified for distance-based methods and is well
suited to remote health monitoring scenarios.

Figure 1. Suitability of anomaly detection techniques for remote health monitoring [11,32]. CMP: Contextual Matrix Profile.

Methods

MP and CMP Preliminaries

MP Overview
The MP, detailed in the study by Yeh et al [33], is an
unsupervised, state-of-the-art time series analysis technique that
can be used for pattern detection, anomaly detection, time series
segmentation, and change point detection. Its fast performance
stems from the use of the fast Fourier transform for the
z-normalized Euclidean distance computation. The algorithm
is useful for both static data and incremental modeling of
streaming values with limited slowdown on even very large and
multivariate time series. In this section, we define the MP
preliminaries relevant to anomaly detection in our smart home
context.

MP Description
An MP P of time series t is a vector of the z-normalized
Euclidean distances between each subsequence in an
all-subsequence set A with its corresponding nearest neighbor

or closest match within A (trivial matches excluded). Trivial
matches are the set of subsequences around the query
subsequence, which are likely to have a very small Euclidean
distance from the query subsequence. This boundary is typically
set to m/2, where m is the length of the subsequence.

Multidimensional MP
A k-dimensional MP of a multidimensional time series t with
dimensionality d is a meta–time series that stores the
z-normalized Euclidean distance between each subsequence
and its nearest neighbor (the distance is computed using the
k-dimensional distance function) [34]. In simple terms, the
algorithm works as follows: (1) it stores the MP for each
dimension (time series channel) in the subsequent rows of a 2D
matrix, (2) the k-dimensional MP is computed by taking the
average of the k lowest values in the columns of the matrix, and
(3) the multidimensional MP is created such that row k (0≤ k<
m) contains the k-dimensional MP. For implementation, we
refer the reader to the STUMPY library tutorial [35].

The issues with the direct application of the MP are outlined in
Textbox 1.

Textbox 1. Issues with the direct application of the Matrix Profile (MP).

Direct application issues related to the MP

• The raw MP is noisy and does not give a clear indication of which discords are true anomalies.

• It is insensitive to amplitude variations and low in localization accuracy [28].

• The MP considers every subsequence for comparison with every other, which implies that the length of subsequence equals the level of granularity
at which an anomaly may be identified. The two must be decoupled.

• An anomaly could be masked when its subsequence is close to another anomalous subsequence [28].

• The MP is hardwired to compute Euclidean distance. Although this has great advantages—complexity linear to the length of the time series, easy
to implement, indexable, and parameter-free—it can also be sensitive to noise and exhibit misalignments in time [36].
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CMP Overview
The CMP is a new flexible time series analysis technique based
on the MP [31]. The CMP derives its motivation from the
distance matrix calculations that are used to compute the MP.
This section provides details on the CMP.

Context Window
It is the number of subsequences in a single time segment or
region of interest. Given a patient data set, using a context
window of 3 and a subsequence length of 3 (with no
subsequences omitted), the patient data will be grouped into the
time segments shown in Figure 2.

Figure 2. Contextual Matrix Profile contexts or time segments are blocks of time comprising a set of subsequences. Each context shown here is made
up of 3 subsequences (context window=3), each subsequence being 3 days in length. We assigned anomaly scores to contexts instead of days.

Context (or Time Segment)
It is a single time segment with a size equal to the context
window and containing subsequences of length defined by the
user. One cell in the CMP represents 1 “context” or time
segment.

CMP Description
It is a configurable, 2D version of the MP that tracks the
minimum distance between each context of subsequences in
user-defined regions of the time series. First, the user
(optionally) defines regions of interest for a given time series.
They then determine the subsequence length and context
window size. For instance, for a subsequence length of 3 days
and a context window size of 3 days, the time series is divided

into contexts, as shown in Figure 2. The CMP is formed by
comparing the z-normalized Euclidean distance between each
subsequence in one context and every subsequence in another
context and selecting the minimum distance, which forms 1 cell
in the CMP. Figure 3 highlights the difference between the MP
and CMP. The MP comprises the column-wise minimum values
in the distance matrix, whereas the CMP is created by taking
the minimum over rectangular areas.

The application of the MP idea to blocks of data instead of
individual subsequences serves to aggregate and denoise the
distance computation and extract useful patterns. Figure 4 shows
the CMP for the late-evening daily bathroom activity for one
of our patients. It serves as a visual overview of the consistency
of activity and any break points.

Figure 3. Matrix Profile versus Contextual Matrix Profile.
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Figure 4. Each cell color codes the minimum distance between the time segments on the x- and y-axes. Green bands indicate anomalous activity or
consistently large minimum distance from other time segments. The Contextual Matrix Profile is symmetric around the diagonal line.

Multidimensional CMP
We developed the multidimensional CMP based on the principle
of a multidimensional MP. A k-dimensional CMP of a
multidimensional time series t with dimensionality d is a
meta–time series that stores the minimum z-normalized
Euclidean distance between any subsequence in one context
and any subsequence in another context, with the distance
computed using the k-dimensional distance function, which is
explained in the study by Yeh et al [34]. The algorithm works
as follows. First, we stack the feature-specific 2D CMPs to
obtain a 3D array. We then sort the array in ascending order
using this feature dimension. This gives, for each context, the
minimum distance values sorted in increasing order by feature.
Now, we apply the method in the study by Yeh et al [34] to

obtain the k-dimensional CMP. For k=0 (ie, 1D CMP), we query
the first row of the k-dimensional CMP. This provides the lowest
nearest-neighbor distance for each context based on a single
feature. The lowest-scoring feature for a context may be
different from the lowest-scoring feature for a different context.
Similarly, for k=1 (or 2D CMP), we query the second row of
the k-dimensional CMP, which, for each context, provides the
lowest average distance based on 2 features. Again, the 2
lowest-scoring features for one context may be different from
those for another context. The maximum value of k is the
number of features minus 1 (k is zero-based).

The multidimensional CMP (Figure 5) is key to anomaly
detection in our multidimensional data. The CMP offers
advantages over the original MP (Textbox 2).

JMIR Aging 2022 | vol. 5 | iss. 3 | e38211 | p. 6https://aging.jmir.org/2022/3/e38211
(page number not for citation purposes)

Bijlani et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Multidimensional Contextual Matrix Profile (CMP) formation involves stacking feature-specific CMPs and then arranging each cell (time
segment) in order of distance. The final multidimensional CMP is formed so that each cell in row i contains the average of the i+1 lowest distances for
the cell.

Textbox 2. Advantages of the Contextual Matrix Profile (CMP).

CMP advantages

• It compares distance over a context instead of at a subsequence level, which is important for denoising the time series.

• The context size is configurable. In addition, the CMP allows for specific regions to be defined to detect patterns and anomalies, and the distance
matrix need not be covered in its entirety.

• Other distance measures in addition to Euclidean distance can be used.

• The CMP offers an intuitive way of visualizing time series window regions and detecting anomalies.

• Anomalies cannot be easily masked, even if another similar anomaly has occurred elsewhere in the time series.

Anomaly Scoring With the CMP
We used the anomaly detection pipeline (Figure 6) described
in Textbox 3.

Figure 6. Contextual Matrix Profile (CMP)–based anomaly detection pipeline. UTI: urinary tract infection.
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Textbox 3. Anomaly detection pipeline.

Pipeline for anomaly detection

1. We decided on a suitable context window. We used a context size of 3 and a subsequence length of 3 days taking into consideration the need for
maximum granularity, denoising, explainability, and time taken for the onset of an anomaly.

2. For each patient time series, we generated the z-normed Euclidean distance matrix for a self-join and then the Contextual Matrix Profile (MP)
based on our context window setting.

3. We used the CMPs directly or adapted them for visualization and monitoring purposes.

4. We computed the anomaly score for each context. This is the average distance between the current context and contexts in the past. This step
was repeated for every time series to obtain feature-specific anomaly scores.

5. The anomaly scores were used as inputs in different machine learning models trained for specific health events. This will be explored in future
work.

6. The models were prepared to obtain a single-valued score for each time segment. We evaluated the following methods:

• Combining feature-specific anomaly scores based on the sum of scores, median of scores, mean of scores, maximum of scores, and
entropy-based weighting (the scores were combined based on the entropy of the underlying time series using inverse weighting; greater
entropy implies lower weighting of the anomaly score obtained from using that time series). Two types of entropy measures were used:

• Approximate Entropy (ApEn): ApEn approximates the exact regularity statistic Kolmogorov-Sinai entropy and reflects the predictability
of a time series by exploring repetitive patterns in the data. It is applicable to noisy data sets [37]. It relies on the Heaviside function
to define the similarity between 2 patterns. ApEn generates a unitless number from 0 (perfectly periodic) to 2 (noisy) [38].

• Fuzzy Entropy (FuzzyEn): This also uses the Heaviside function, although similarity is evaluated by a fuzzy function that computes a
membership coefficient ranging from 0 to 1. Consequently, in addition to the selection of N (length over which to compute entropy),
m (subsequence length), and r (tolerance in terms of the number of SDs), FuzzyEn requires a fourth parameter, n, the gradient of the
boundary of the exponential function used to assess similarity [39]. FuzzyEn provides a graded similarity instead of binary similarity
between parts of the time series [37].

• Multidimensional CMP-based scoring: We used the multidimensional CMP to generate the multivariate anomaly score for each context
using 2 different settings for k:

• k=auto: Here, we considered the optimal value of k when predicting true likely anomalies for a patient (Figure 7). To do this, we used
the elbow method on each patient’s multidimensional CMP. Specifically, we computed the median distance in each of the k-dimensional
CMPs for the patient and used the “kneedle” algorithm to automatically find the optimal value of k at which the inflection point occurred
[40]. We then chose this optimal k row from the overall k-dimensional CMP to use this to extract the single-valued patient anomaly
scores for each context. Once the “optimal” CMP was obtained, we scored each context in 2 ways:

• Distance-weighted multidimensional CMP scoring: The anomaly score for a context was calculated as the inverse-weighted
average of its nearest-neighbor distance from previous contexts. Thus, if a context is 3 hops in the past from the current context
being scored, its distance is given one-third weight when calculating the anomaly score for the current context.

• Equal-weighted multidimensional CMP: The anomaly score for a context was calculated as the simple average of its nearest-neighbor
distance from previous contexts.

• k=1: We took the CMP that is based on the top 2 features for each context.

• We performed sliding window thresholding (7-, 14-, 21-, 30-, 60-, and 90-day windows) on the single context score using robust z, IQR,
and quantile-based methods to predict true likely anomalies and report the best results.

• The predicted anomalies were then “soft” validated against the anomaly labels available in the data set to compute recall.
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Figure 7. Multivariate anomaly scoring. Starting with the multidimensional Contextual Matrix Profile (CMP), we chose the optimal dimension for
each patient by taking the median of their scores in each dimension and then selected the dimension at the inflection point. This optimal dimensional
CMP was then used for distance-based anomaly scoring.

Data Set Description and Preprocessing

Data Set
The data for our study came from an ongoing real-world remote
health care monitoring study (the “Minder” study mentioned in
the Introduction section) of 102 people living with dementia at
home and supported by their carers in England, United
Kingdom. This includes 51% (52/102) men (mean age 81.94,
SD 6.34 years) and 49% (50/102) women (mean age 80.80, SD
15.76 years). Movement data are captured via PIR sensors
installed in different parts of the home—hallway, bathroom,
bedroom, lounge, and kitchen—that are triggered passively
based on movement throughout the day. There are door sensors,
smart plugs for appliances, light and temperature sensors, a
sleep mat, and physiological data recorders as well. We
considered only PIR data in this study as they are the least
missing, most reliable, and available with the finest granularity
across the cohort. Physiological data are currently self-reported
by the person living with dementia or their carer once or twice
a day and with greater missingness, which would require
imputation. Sleep data are sparse for this cohort.

In our study, we focused on the 15 patients with dementia who
had had at least one clinically validated incidence of UTI. This
included 53% (8/15) men (mean age 85.13, SD 5.57 years) and
47% (7/15) women (mean age 82.86, SD 6.79 years). Of these
15 patients, 7 (47%) had also experienced ≥1 hospitalization
event. Altogether, we had 31 UTI and 10 hospitalization labels
across a total of 9363 patient days, making up approximately
0.44% (41/9363) of the overall data set. The UTI labels were

manually annotated after validation by the clinical monitoring
team using urine samples from patients. However, it is worth
noting that older adult patients often present with atypical
symptoms, making the differentiation of asymptomatic
bacteriuria from symptomatic UTI challenging [6]. Moreover,
the start time of UTI and the duration of symptoms are not
clearly defined. The list of hospitalization events was collated
based on information from general practitioners. It included the
date of hospitalization and, in some but not all cases, the cause
of hospitalization.

Preprocessing

Daily Aggregation

Household movement data captured via PIR motion sensors
were first aggregated daily to reduce noise, as hourly counts
can vary widely from one day to the next, and the high
granularity and variation make anomalies less discernible. We
ignored consecutive firing events from the same sensor,
considering the first firing event to compute the duration at the
previous location and the last firing event to compute the
duration at the current location. Any consecutive sensor firings
from the same sensor between the first and last firing were
ignored, thus reducing redundancy and noise.

Feature Engineering

To capture different types of movement-related information,
we calculated the features outlined in Textbox 4 for the daily
activity data across the various locations—bathroom, bedroom,
kitchen, lounge, and hallway.
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Textbox 4. Movement-related features.

Feature and description

• Location count: this is the daily count of sensor firings for each location.

• Location early-morning count: this is the count of sensor firings between midnight and 6 AM on the current day.

• Location late-evening count: this is the count of sensor firings between 6 PM and midnight on the previous day.

• Location duration: this is the daily total number of minutes spent at each location.

• Location hourly movement change: this is the Wasserstein distance between the hourly sensor distribution at a location on the previous day with
that on the current day; a larger Wasserstein distance implies a greater change in hourly pattern from one day to the next; this measure is robust
to different motion densities across patient households. The Wasserstein distance or “earth mover” distance is a single explainable metric that
measures the approximate minimal work required to move between 2 probability distributions, where “work” can be loosely defined as the product
of how much of the distribution’s mass moves and the distance by which it must be moved [41]. Unlike other measurements such as L2,
Kullback-Leibler divergence, and Jensen-Shannon divergence, the Wasserstein distance is sensitive to geometry [42].

Feature Selection

Similar to the study by Skubic et al [43], we applied the methods
outlined in Textbox 5 to select the features for anomaly
detection.

The simplified list of features included bathroom Wasserstein
distance, hallway Wasserstein distance, lounge Wasserstein
distance, bathroom early-morning and late-evening activity,
kitchen early-morning and late-evening activity, bedroom
early-morning and late-evening activity, bedroom activity
duration, and bathroom activity duration.

Textbox 5. Methods for selecting features for anomaly detection.

Anomaly detection feature selection methods

• Domain knowledge: the study by Pevný [44] showed that detectors using only features that explain anomalies had equal or better performance
than detectors using all features. Erratic bathroom activity can strongly suggest urinary tract infection [45], and therefore, we captured daily
changes in bathroom activity. Similarly, disturbed sleep, agitation, and wandering are common characteristics in patients with dementia [46,47].
Hence, we included daily changes in the hourly distribution of bedroom, hallway, kitchen, and lounge activity. These features help capture unusual
daytime and night-time activity across locations and follow recommendations by clinical researchers in a similar study supporting the modeling
of health decline with behavioral biomarkers [43].

• The significant online discords technique was used to find the common features that are associated with the highest median recall value for
urinary tract infection and hospitalization using cross-validated data from our patient cohort [48].

• We eliminated redundant variables based on the correlation between the features.

• We also eliminated duration-related features for communal spaces such as hallways, living rooms, and kitchens, where distinguishing between
patient and carer activity is difficult as of yet.

• The variables that were robust to differences in activity levels across households were retained.

Experiments
We conducted our experiments on the household movement
data of 15 patients selected from the ongoing Minder study,
which had 31 UTI and 10 hospitalization labels across a total
of 9363 patient days. All experiments were run on a 64-bit Intel

i7-8700K central processing unit, 3.7 GHz Windows 10 machine
with 32 GB of RAM.

Our experimental settings are listed in Table 1. For each
anomaly-scoring model, we experimented with every
combination of window size, IQR threshold, robust z threshold,
and quantile threshold and reported the best results obtained.
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Table 1. Experimental parameters considered in this study.

ValuesSetting

3Context window

3Subsequence length (days)

7, 14, 21, 30, 60, and 90Window sizes for sliding window thresholding (days)

1.0 and 1.2IQR threshold

1.65, 1.8, 3, and 4Robust z threshold

0.95, 0.96, 0.97, and 0.98Quantile threshold

Entropy-based methods

500N (data size)

0.2r (SD tolerance)

7m (subsequence length)

−10 to +7Soft buffer for label validation (days around actual label)

Model Evaluation
We used the data from our 15 patients to evaluate
multidimensional CMP-based anomaly scoring relative to
univariate methods and 3 other popular modern, parameter-free,
and interpretable methods in the literature: Angle-Based Outlier
Detection (ABOD), Copula-Based Outlier Detection (COPOD),
and Lightweight Online Detector of Anomalies (LODA). To
be suitable for use in an unsupervised, streaming scenario, we
used only historical data at each time point.

ABOD measures the variance of the angle (cosine) spectrum
of the data points weighted by the corresponding distances.
ABOD works on the principle that if the spectrum of the
observed angles for a point is small, other points will be
positioned only in certain directions. This means that the point
is positioned outside of some sets of points that are grouped
together, implying that the point is an outlier [49]. COPOD is
inspired by copulas for modeling multivariate data distributions.
COPOD first constructs an empirical copula and then uses it to
predict the tail probabilities of each given data point to
determine its level of “extremeness.” The outlier scores
produced by COPOD measure the likelihood of a point relative
to the other points in the data set. The method outputs a
“dimensional outlier graph” that provides insights into outlier

subspaces or features for a given outlier point [50]. LODA
comprises a collection of k 1D histograms, each approximating
the probability density of the input data projected onto a single
projection vector. Projection vectors act to diversify individual
histograms, which enables the ensemble system to improve the
performance of a single detector. The complexity of LODA is
linear with respect to the number of training samples and the
dimension of the input space [44].

We used 3 thresholding criteria for scores (Textbox 6).

To determine how competitive CMP-based anomaly scoring is
in identifying anomalies in real-world remote monitoring data
for patients with dementia, we report the measures shown in
Textbox 7 for each model.

An anomaly is assumed to be correctly identified if the predicted
date is within the soft buffer of the labeled date of anomaly. For
transparency, we report both the average recall and patient-wise
recall. From a clinical perspective, this measure is a direct
indication of a model’s effectiveness.

When choosing between models, a clinician will likely choose
a model with a higher average recall, as the cost and
inconvenience of false alerts in our scenario are considerably
less than the cost of missing a real anomaly.

Textbox 6. Thresholding criteria for scores.

Criteria for thresholding of scores

• The robust z thresholding or Median Absolute Deviation method is less influenced by outliers and is used to calculate a modified z score that
quantifies the anomaly score in terms of SD units away from the median [51].

• Tukey or IQR thresholding uses the IQR of anomaly scores in the sliding window as the basis for thresholding. Any value greater than the third
quartile+ x times IQR is deemed anomalous, where x is the IQR threshold from Table 1.

• Quantile-based thresholding uses a fixed percentile of anomaly scores as the basis for thresholding taken from Table 1.
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Textbox 7. Model evaluation.

Model evaluation measures

• Number of patients with >33% recall: given that the average patient had only 3 validated anomalies, we ranked the models based on how many
patients had greater than one-third of their anomalies correctly identified. This makes it transparent whether the model is just effective for a small
proportion of patients or across the cohort.

• Average recall: this is the average percentage recall across the 15 patients, where recall=true positives or all known anomalies in the data set.

• Average number of anomalies detected: to minimize false alerts made to the clinical monitoring team, lower is better.

• Average recall percentage versus anomalies raised: according to the study by Pimentel et al [11], effectiveness in novelty detection is based on
the detection rate and the false alarm rate. The best model will demonstrate high recall together with a low number of anomalies raised.

• Precision: here, precision has little meaning, as outliers may result from different types of health indicators, sensor failures, visitors, pet activity,
or rare unusual activities by the patient or carer, which are not labeled in our data set. Although we still report this metric, relative precision
across methods is more meaningful.

Digital Biomarkers
Digital biomarkers are consumer-generated physiological and
behavioral measures collected through connected digital tools
that can be used to explain, influence, or predict health outcomes
[52]. The Food and Drug Administration-National Institutes of
Health “Biomarkers, EndpointS, and other Tools” classification
for traditional biomarkers classifies their use into the following
categories: susceptibility or risk determination, diagnostic use
to detect and confirm the presence of a condition of interest,
monitoring of the status of a condition, prognostic use to identify
likelihood, recurrence or progression of a condition, predictive
use, and measurement of response through exposure to a medical
product or agent [53]. We envisage these biomarkers of
anomalies to be used for susceptibility determination and
assistance with diagnosis, prognosis, and prediction of UTI or
another adverse clinical event.

The creation of the multidimensional CMP involves the
intermediate step of combining feature-specific CMPs such that
each context is arranged in ascending order of the feature-wise
nearest-neighbor distance. This implies that if we simply keep
track of the ordered set of features for each context in the
ordered stacked CMP, we can discover the most common
contributing feature in each of its dimensions. The modal feature
in the 0th dimension will be the most important biomarker
associated with the patient’s anomaly score. The modal feature
in the first dimension will be the second most important
biomarker and so on. Subsequently, by looking across the
ordered stacked CMPs for the entire cohort, we can determine
the generalized top k important biomarkers.

Ethics Approval
This study received ethics approval from South East Coast
Surrey National Health Service Research Ethics Committee
(Health Research Authority); Technology Integrated Health
Management Research Ethics Committee Reference:
16/LO/1802; Integrated Research Application System ID:
211318.

Results

Model Evaluation
We report the best results for each type of univariate and
multivariate model (Table 2).

All models could correctly identify more than one-third of the
known anomalies for two-thirds of the patients in the study. Of
these, the multidimensional CMP with equal-weighted context
(at window size=7 days, robust z=1.65, and k=1) yielded >33%
recall for 100% (15/15) of the patients. Other CMP-based
methods showed similar recall for up to 93% (14/15) of the
patients. This highlights the strong support for multidimensional
CMP as an anomaly detection tool for this cohort.

We also measured how many anomalies were raised by each of
the models across the 624 average patient days in our study. As
shown, the maximum number of alerts raised by any of the
CMP-based models was only approximately 34 or 5.4% (34/624)
of patient days. Our best-performing CMP model raised
approximately 32 alerts, which is, on average, 5.1% (32/624)
of patient days. Note that there were, on average, 3 labeled
anomalies in our data set per patient; however, as emphasized
previously, the annotated anomalies covered only UTI and
hospitalization, and our models were designed to pick up on
any anomalous activity.

The average recall, when viewed together with the total detected
anomalies, provides a holistic view of performance, as it is
easily possible to obtain a top-performing model by identifying
an extraordinarily high number of anomalies. The overall best
model is one that demonstrates high recall but a low number of
raised anomalies. It is clear that the multidimensional CMP with
equal-weighted contexts at window size=7 days, robust z=1.65,
and k=1 offers the best-balanced performance, raising only 32
alerts over a 624-day patient journey on average. ABOD yields
relatively low recall, whereas LODA and COPOD yield high
recall but with a higher number of alerts raised than our
best-performing model.
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Table 2. Model performance (N=15).

Precision,

%a
Recall (%),
mean

Anomalies raised,
mean

Patients with >33%
recall, n (%)

Model

6.285.737.814 (93)LODAb (w=7; IQR 1.2)

7.084.733.114 (93)Sum of CMPc scores (w=7; quantile 0.97)

7.084.733.114 (93)Mean of CMP scores (w=7; quantile 0.97)

7.284.332.115 (100)Equal-weighted multidimensional CMP (w=7; k=1; robust z=1.65)

5.979.136.813 (87)COPODd (w=7; quantile 0.95)

7.177.730.013 (87)ABODe (w=21; quantile 0.95)

6.276.733.714 (93)Distance-weighted multidimensional CMP (w=14; k=0; robust z=1.65)

6.869.929.112 (80)ApEnf-weighted CMP scores (w=7; quantile 0.97)

6.168.430.812 (80)Median of CMP scores (w=7; quantile 0.97)

6.565.527.710 (67)Fuzzy entropy–weighted CMP scores (w=7; quantile 0.97)

6.457.924.810 (67)Maximum of CMP scores (w=7; quantile 0.97)

aWe have mentioned previously that it is more meaningful in this context to look at relative precision across methods and not at absolute precision.
bLODA: Lightweight Online Detector of Anomalies.
cCMP: Contextual Matrix Profile.
dCOPOD: Copula-Based Outlier Detection.
eABOD: Angle-Based Outlier Detection.
fApEn: Approximate Entropy.

Digital Biomarkers
As seen previously, the multidimensional CMP for a patient
can be used to discover the important digital biomarkers of
anomalies. In Figure 8, we show the magnitude of the
contribution of significant features toward the anomaly score
across the cohort.

We discovered that early-morning (midnight to 6 AM) bathroom
activity was the single largest contributor to the anomaly score
by a wide margin, with a median value of approximately 30%
for this cohort. This validates the findings in the literature that
unusual bathroom activity is a clinically significant feature of
UTIs [12,54], which comprises three-quarters of the anomalies
in our labeled data set. Patient-level investigation showed this
to be the top biomarker for 60% (9/15) of the patients.
Late-evening (6 PM to midnight) bathroom activity also had a
contribution of 12%. Both factors correlate with sleep disruption,
which is commonly seen in people living with dementia.
Unusual bedroom and kitchen activity in the early hours of the
morning are also among the significant contributors to anomaly
scores, pointing to wandering and disturbed sleep seen in
dementia.

The multidimensional CMP also provides intuitive insights into
patient-specific anomalies. Figure 9 shows the anomaly scores
associated with 2 patients, ordered by the median anomaly score.

For patient JYN9, unusual early-morning kitchen activity was
the prime biomarker of anomalous activity, where we also see
the largest variance in anomaly scores. For patient SFAV,
unusual bedroom activity was the largest contributor to their
anomaly score. These figures indicate different anomaly patterns
in the 2 patients, presumably agitation and wandering in the
first patient and sleep disruption and shifting bedroom activity
over time in the second patient. We can envisage an anomaly
detection dashboard to provide such insight to clinicians to
enable them to target interventions as needed.

We can also use the standardized anomaly scores to look at a
cross-patient view (Figure 10), where we see the cross-cohort
variation in multivariate anomaly scores using the patients’own
optimal k-dimensional scores. It would be interesting to
investigate patient differences in relation to their cognitive
scores.
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Figure 8. Top contributing digital biomarkers of anomalies. Early-morning bathroom activity had the largest median contribution of approximately
30% to the overall anomaly score.

Figure 9. Univariate anomaly score distribution for 2 patients.
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Figure 10. Multivariate anomaly score distribution for all patients.

Discussion

Principal Findings
Early identification of anomalies in patients living with dementia
provides a window of opportunity for early intervention before
a major health event occurs. This implies improved health
outcomes, reduced health care costs, continued independence,
and better quality of life [43]. In this study, we developed an
MP-driven approach for anomaly detection and evaluated its
use in a real-world study of sensor-based remote monitoring of
people with dementia. We developed the multidimensional CMP
to model patient household activity from sensor data and used
the average Euclidean distance between activities in time
segments as the basis for generating a single anomaly score.
The CMP-based approach overcomes the issues with traditional
distance-based anomaly detection techniques, namely,
degradation because of noise, high alert rate, and identification
of local novelty. Our experiments show that multidimensional
CMP-based anomaly detection performs better than other
comparable fast, modern, exact, and parameter-free unsupervised
techniques for anomaly detection. It is well suited to real-world
remote monitoring data characterized by noise and incomplete
labeling and is additionally useful as a visual tool for operational
monitoring, also lending itself to the discovery of personalized
and cohort-wide digital biomarkers. The personalized model
for each resident comes uniquely from their own sensor data
patterns [43]. These aspects make CMP-based anomaly detection
clinically significant, interpretable, and immediately usable,
freeing up clinicians’ valuable time from having to annotate
patient activity. The CMP is domain agnostic and can be easily
extended to different types of health care data and domains. To
the best of our knowledge, our work is the first real-world use
case of CMP in health care anomaly detection.

Our experimental parameters were selected to be clinically
relevant. A context window of 3 and a subsequence length of

3 were selected for maximum granularity, noise resistance, and
suitability for anomalies such as UTI, where a 3-day pattern is
more likely to throw up anomalous behavior than a more
granular daily analysis; it typically takes 3 to 8 days for a UTI
to present [55]. The context window and subsequence length
can be easily configured to investigate anomalies at different
levels of granularity, such as 7 days, 2 weeks, or 1 month.
Similarly, we used 7-, 14-, 21-, 30-, 60-, and 90-day windows
to threshold anomaly scores. Time segments such as these follow
typical human patterns of behavior and are easily understood
by clinicians. Threshold values for IQR, robust z and
quantile-based thresholding, and entropy parameters were
chosen to mirror values widely used in the literature. The soft
buffer for label validation (−10 days to +7 days of actual
anomaly label) reflects the issue of weak labeling because of
noise and inaccuracy because of manual labeling, the time it
takes for a UTI to develop and be clinically diagnosed, and the
need to catch anomalies early. Dau and Keogh [56] used a
similar evaluation technique for weakly labeled data. We chose
ABOD, COPOD, and LODA for comparison with CMP-based
methods as they are similarly high-performing, parameter-free,
interpretable, unsupervised anomaly detection techniques
relevant to a streaming data scenario such as remote health
monitoring.

Our evaluation methods were also designed to be simple,
transparent, and clinically meaningful. A good method must
demonstrate high cross-cohort average sensitivity but also high
sensitivity for individual patients while raising minimal alerts.
Therefore, we report the overall sensitivity, patient-wise
sensitivity, average number of anomalies raised, and recall
versus anomalies raised, which provides a rounded measure of
performance. Although we report the precision for each model,
it must be noted that we only considered 2 types of labels—UTI
and hospitalization—whereas our models identify all types of
anomalies in household movement data, many of which cannot
be validated using existing labeled data. For this reason, a low
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absolute precision is to be expected, and the relative precision
offers a better indication of the cross-model performance in our
study. Moreover, the 5% alert rate is an acceptably low rate as
these alerts may have critical implications for the health of
people with dementia. This was also the approach taken by
Rantz et al [12], and our clinical care teams already conduct
weekly check-ins with the patients.

Our results show that for our top-performing models, the optimal
sliding window size for thresholding is 7 to 14 days (ie, 1-2
weeks). This makes intuitive sense as an “anomaly” regarding
human behavior can be perceived as a break in their recent
routine. This was also clinically validated in the study by Skubic
et al [43], where clinicians recommended a 2-week moving
baseline for sensor data comparison and thresholding to balance
capturing sudden and gradual health changes. A short sliding
window has the added advantage of being robust to variations
in patient characteristics and environmental conditions.
However, the ABOD technique is highly sensitive, requires
sufficient data to capture true outliers, and performs best with
a minimum look-back of 21 days. This behavior of increasing
the sample for better performance of ABOD was also validated
in the study by Domingues et al [57].

We make 3 striking observations. First, the top-performing
model in terms of balancing cohort-wide sensitivity and raised
anomalies was based on k=1 (ie, it considers only the top 2
contributing features for a patient). This implies that a reliable
anomaly detection model based on patient activity can be simple,
lightweight, easily interpretable, and generalizable. Second,
univariate models derived from combining feature-specific
CMPs via simple aggregation (ie, sum and mean of
feature-specific anomaly scores) achieve both high recall and
low volume of alerts. They are, in fact, closer in performance
to the best-performing multivariate CMP model than more
established high-performing models such as LODA, ABOD,
and COPOD and other complex ways of combining univariate
scores such as entropy-weighted scores. This shows once again
that simple, interpretable models can generalize and perform
competitively. Third, it is surprising that an equal-weighted
time segment–scoring approach achieves considerably better
recall than distance-weighted time segment scoring. We would
expect that by emphasizing more recent time segments over
past time segments, we might obtain an anomaly score that is
reflective of a true anomaly in the current time segment.
However, this appears to not be the case in this study. We aim
to explore different ways of weighting previous time segments
to confirm whether this behavior was because of the specific
distance-weighting logic used or a more general finding.

Digital biomarkers are an incredibly useful artifact of our
method. They tell us what kind of household activity was
responsible for the anomaly at a specific period. Furthermore,
looking across a patient’s timeline, we can find the single most
common activity or feature that contributed most frequently to
the anomaly score in the time segments overall (ie, a digital
biomarker of their anomalous behavior). We discovered that
cohort-wide, early-morning (midnight to 6 AM) bathroom
activity was the most common digital biomarker of anomalous
behavior (9/15, 60% of the patients), followed by late-evening
bathroom activity and early-morning bedroom and kitchen

activity. These findings quantitatively validate observational
studies of patients with dementia, where agitation, wandering
at unusual hours, and unusual bathroom activity, particularly
early-morning and late-night bathroom activity, were observed,
especially in patients with dementia experiencing a UTI
[14,20,45,46]. Finally, our method can provide a ranking of
digital biomarkers for anomalies at the time segment, patient,
and cohort levels. This outcome makes CMP-based anomaly
scoring independently useful for clinical monitoring and for
querying and validating digital biomarkers.

There are a few notable differences between this work and
existing published research based on the Minder study. First,
published works have used a variety of supervised and
semisupervised machine learning methods to detect or predict
targeted health conditions such as agitation and UTI (one study
used unsupervised learning to isolate anomalous movement
patterns via clustering). As such, the models were trained with
data from the subset of patients clinically validated to have the
specific health condition in their trajectory. In contrast, our work
evaluated a lightweight, unsupervised, and parameter-free
approach to detect general anomalies based on household
activity data. It requires no training data but is validated on data
from patients who have experienced one or more UTIs and
hospitalization events. Second, existing studies incorporate
patient physiological data and household appliance use in
addition to household activity. We currently use only household
movement data. Third, existing studies rely on either fixed
training data or periodically refreshed training data, whereas
our approach was designed to work in a streaming environment,
implying that our daily detection and alerting algorithm uses
the information in the patient timeline up to the current day.
Fourth, our algorithm is patient data driven rather than cohort
data driven. This means that we evaluate the average recall by
considering the algorithm’s performance on individual patient
data. In contrast, published work takes a cohort-wide or
patient-blind approach to assess algorithm performance. These
factors should be collectively considered when comparing our
work with other Minder-based research.

The CMP-based approach is ideally suited to anomaly detection
applications where data and labels are characterized by
real-world noise and annotated training data required for
supervised learning may not be available because of resource
constraints or in a streaming data scenario, as well as where the
distinction between normal and anomalous data is not clear-cut.
This includes sensor-based remote health monitoring in a variety
of industrial, urban, and health care settings. The CMP-based
approach excels at zooming out and focusing on temporal
patterns at configurable time scales. It is also designed with
personalization in mind, which makes it especially relevant for
health care, where patterns of similar anomalies or the same
disease can present differently in different individuals. It is ideal
for situations in which explainability is key for operational
monitoring teams.

The CMP-based approach may not be ideal for applications that
prioritize sensitivity over interpretability. It is also not the best
tool for data that have a well-defined, well-understood pattern,
such as electrocardiogram data, or where noise levels are low
or the distinction between normal and abnormal data is clearly
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understood. Finally, the CMP pipeline would need to be
augmented with feature reduction methods for it to scale to
high-dimensional data.

Limitations
A limitation of the anomaly detection method presented in this
paper is that cross-sensor correlations were not considered. This
will be investigated in future studies using interpretable machine
learning. Second, our study ignored sensor data from the front
and back doors. This omission was intentional as we were
interested in detecting anomalies arising from significant
changes in indoor household activity instead of those arising
from out-of-home situations. In addition, front door and back
door opening and closing are as of yet difficult to attribute to
the person with dementia. Third, a system to distinguish the
patient from other household members is needed to improve
the robustness of anomaly detection models based on passive
sensing. Fourth, to achieve finer granularity and lower latency
than 1 “context,” the CMP-based anomaly detection model
should be configured to ingest data hourly or at a higher
resolution than 1 day. Fifth, we assume that an anomaly in a
single time window can be deterministic of a complex health
event. However, the presence of pets and visitors could also
contribute to anomalies. To address this, we require not only a
distinction between patient and carer but also a way of
monitoring anomalies in subsequent time windows to correlate
anomalies with health changes with high confidence. Finally,
we will require a larger sample size to further validate our
approach.

Conclusions and Future Work
In this study, we developed a novel lightweight unsupervised
anomaly detection pipeline based on the CMP and evaluated it
in sensor-based remote health monitoring of patients with

dementia. We combined univariate CMP scores in novel ways,
developed the multivariate CMP, and tested it for identifying
anomalous patient days via thresholding in sliding windows.
We demonstrated CMP-based anomaly scoring to be more
effective and generalizable than other comparable methods for
unsupervised anomaly detection. Specifically, the
multidimensional CMP based on a 7-day sliding window and
using the top 2 contributing patient-specific features exhibits
84.3% recall with only 32 alerts over the average patient timeline
of 624 days. In addition, we showed how the CMP can be used
to uncover and explain digital biomarkers of anomalies at the
time segment, patient, and cohort levels. Our study of 9363 days
collected from 15 people living with dementia who had UTI
and hospitalization events in their timeline showed that unusual
bathroom activity in the early and late hours of the day is a
prominent biomarker of anomalies across our cohort. This helps
quantitatively validate observational studies of similar behavior
in patients with dementia.

Our future work will focus on the following areas: adding
physiological data to the anomaly-scoring pipeline, developing
the CMP as a tool for effective visual monitoring of patterns
and anomalies in data and accommodating other distance metrics
in addition to Euclidean distance, validating the CMP on a larger
patient cohort and different kinds of anomalies, and using
machine learning methods to use CMP-based scores to classify
different types of anomalies. We will also investigate seasonal
effects and compare our method with other relevant anomaly
detection methods. We plan to integrate our model into the
Minder platform to raise alerts when anomalies are detected to
enable the monitoring team to investigate the underlying sensor
data and offer timely intervention to patients. Alerts that are
validated as true will be recorded in the patient timeline and
used to monitor the operational accuracy of our model.
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