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Abstract

Background: Older adults who engage in physical activity can reduce their risk of mobility impairment and disability. Short
amounts of walking can improve quality of life, physical function, and cardiovascular health. Various programs have been
implemented to encourage older adults to engage in physical activity, but sustaining their motivation continues to be a challenge.
Ubiquitous devices, such as mobile phones and smartwatches, coupled with machine-learning algorithms, can potentially encourage
older adults to be more physically active. Current algorithms that are deployed in consumer devices (eg, Fitbit) are proprietary,
often are not tailored to the movements of older adults, and have been shown to be inaccurate in clinical settings. Step-counting
algorithms have been developed for smartwatches, but only using data from younger adults and, often, were only validated in
controlled laboratory settings.

Objective: We sought to develop and validate a smartwatch step-counting app for older adults and evaluate the algorithm in
free-living settings over a long period of time.

Methods: We developed and evaluated a step-counting app for older adults on an open-source wrist-worn device (Amulet).
The app includes algorithms to infer the level of physical activity and to count steps. We validated the step-counting algorithm
in the lab (counting steps from a video recording, n=20) and in free-living conditions—one 2-day field study (n=6) and two
12-week field studies (using the Fitbit as ground truth, n=16). During app system development, we evaluated 4 walking patterns:
normal, fast, up and down a staircase, and intermittent speed. For the field studies, we evaluated 5 different cut-off values for the
algorithm, using correlation and error rate as the evaluation metrics.

Results: The step-counting algorithm performed well. In the lab study, for normal walking (R2=0.5), there was a stronger
correlation between the Amulet steps and the video-validated steps; for all activities, the Amulet’s count was on average 3.2
(2.1%) steps lower (SD 25.9) than the video-validated count. For the 2-day field study, the best parameter settings led to an

association between Amulet and Fitbit (R2=0.989) and 3.1% (SD 25.1) steps lower than Fitbit, respectively. For the 12-week field

study, the best parameter setting led to an R2 value of 0.669.

Conclusions: Our findings demonstrate the importance of an iterative process in algorithm development before field-based
deployment. This work highlights various challenges and insights involved in developing and validating monitoring systems in
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real-world settings. Nonetheless, our step-counting app for older adults had good performance relative to the ground truth (a
commercial Fitbit step counter). Our app could potentially be used to help improve physical activity among older adults.

(JMIR Aging 2022;5(3):e33845) doi: 10.2196/33845
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Introduction

Older adults are faced with an increased risk of developing
multiple comorbid medical conditions, social isolation, and
reduced physical function, which can lead to an increased risk
of disability [1]. An inability to engage in activities of daily
living may increase mortality risk and premature nursing home
placement [2]. Hence, it is critical to encourage older adults
with multimorbidity to engage in interventions that improve
health, including physical activity. In fact, simple
community-based walking programs and resistance-based
programs [3] have effectively demonstrated reductions in the
long-term risk of disability [4]. Even short bouts of walking can
improve quality of life, physical function, and cardiovascular
fitness in older adults [5].

Traditional consumer-based health-promoting endeavors, such
as Silver Sneakers [6], have been scaled and widely
disseminated across the United States. Randomized control
trials have also shown the short- and long-term benefits of
physical activity. However, sustained motivation continues to
be a challenge for many individuals. Simple encouragement by
clinicians may enhance engagement [7]. Yet, a study of
accelerometry data demonstrated that only 7.6% of older adults
aged 65 years meet Physical Activity Guidelines for Americans
[8]. These pragmatic challenges demonstrate the need to
overcome the barriers of traditional health promotion to enhance
self-efficacy and behavioral change.

Older adults are the fastest-growing group of technology users;
one survey suggested that 61% of older adults use smartphones
[9], an increase from 23% in 2013 [10]. In fact, over 50% of
older adults use social media [9]. Remote monitoring using
fitness devices has now become ubiquitous in many countries
where technology is readily available. In both consumer-based
and academic-focused trials, it continues to be challenging to
find a balance between clinical accuracy and ease of use. Current
algorithms in consumer devices (such as Fitbit) are proprietary
and often are not tailored to the group being evaluated in a
clinical setting, such as older adults in free-living conditions,

and have been shown to have wide error rates in such contexts
[11,12]. A few smartwatch-based step-counting algorithms have
been developed using data from young adults and validated in
controlled settings only [13,14]. Matthies et al [15] developed
a smartwatch step-counting app for older adults who use a
walking frame equipped with wheels, which was evaluated
outdoors, but only in a controlled setting, with 5 older adults.
To the best of our knowledge, a smartwatch step-counting app
for older adults has not been developed and validated in
free-living settings over a long period of time with a large
sample.

We previously developed GeriActive, an app that measures the
daily activity levels (low, moderate, or vigorous) of older adults
[16]. We aimed to develop and validate a smartwatch-based
step-counting algorithm for older adults that runs as an app on
the Amulet device. The Amulet is an open-source wrist-worn
device that has been used for various mobile health studies,
such as stress and physical activity monitoring [17,18]. The
Amulet platform enables developers to write energy- and
memory-efficient apps.

Methods

Study Overview
We validated the step-counting algorithm with older adults in
the lab (using videorecordings as ground truth) and in 2
free-living studies (using the Fitbit as ground truth) lasting 2
and 12 days.

Overview of Step Counter App
Our step-counting Amulet app estimates the number of steps
taken over the course of a day and displays the information on
the Amulet screen, similar to the functionality of a pedometer
or of other wearable devices (Figure 1). The app continuously
estimates the number of steps for each 5-second window,
updating the count viewed by the user. It uses a 2-step process:
machine learning is used to determine if physical activity
occurred in the most recent 5 seconds of data, and then, the
number of steps is estimated by counting the number of peaks.
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Figure 1. The Step Counter App with the step count displayed at the bottom.

Activity-Detection Algorithm
We used a linear support vector machine that classifies each
5-second window of accelerometer data into low, moderate, or
vigorous activity [16]. We trained the algorithm on data
collected from older adults who performed various physical
activities: sitting, standing, lying down, walking, and running
[16,19]. Our evaluation of the algorithm produced an accuracy
of 91.7% using leave-one-subject-out cross-validation. If the
output of the algorithm is moderate or vigorous, the
step-detection algorithm is run to determine the number of steps
in the 5-second window. This 2-phase approach was necessary
to reduce false positives by preventing various actions such as
random hand motions from being counted as steps.

Step-Detection Algorithm
The step-detection algorithm estimates the number of steps in
5 seconds of acceleration data. The algorithm uses the magnitude
of the acceleration of the 3-axis accelerometer of the Amulet.
It is a 3-stage process consisting of zero-meaning, filtering, and
peak detection, using an approach similar to that described in
[13]. First, to ensure the data have a mean of zero, for each
sample, we subtract the average of the preceding 20 data
samples. Subsequently, a moving-average filter is applied, that
is, each sample is replaced with the average of the 3 preceding
samples. Finally, peaks in the filtered signal are identified by
checking for change of slope. If the slope changes from positive
to negative, and the peak value is above a certain threshold,
then the peak is counted as a step. The cut-off threshold was
initially empirically determined and then tuned.

Ethics
Studies were approved by the Committee for the Protection of
Human Subjects at Dartmouth College and the

Dartmouth-Hitchcock Institutional Review Board (28905). All
participants provided signed informed consent.

Participants
Participants were recruited through the Center for Health and
Aging at Dartmouth and primary care practices at
Dartmouth-Hitchcock using flyers, listservs, and posters. This
was a convenience sample; our results may not necessarily be
applicable to other groups.

Laboratory Study
Data for the development and evaluation of the step-detection
algorithm were collected at our Dartmouth campus laboratory.
Older adults (n=20, age ≥65 years) were asked to perform
different types of walking (normal, fast, up and down a staircase,
and intermittent) while wearing an Amulet. The Amulet
collected raw acceleration data at a frequency of 20 Hz and
logged the magnitude, which we later used to develop the step
algorithm. The participants were videotaped. The video was
independently reviewed to count steps by 2 individuals
independently (JAB, RKM) and any differences were later
reconciled. We used these data for the preliminary development
of the step-detection algorithm and evaluated the algorithm
using the error rate (the percentage difference between the
algorithm’s estimated step count and the ground-truth step count
measured from the video).

2-Day Field Study
We conducted a 2-day field study in which older adults (n=7,
age ≥65 years) wore an Amulet device (running our step counter
app) and a Fitbit Flex 2 device (Fitbit Inc) on the same wrist
for 2 days. We compared each participant’s step count estimated
by their Amulet (exploring 5 different cut-off values) with their
step count reported by the Fitbit (downloaded from the
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individual’s research-based Fitbit account). The error rate
between Fitbit’s steps and Amulet’s steps for each of the 5 peak
cut-off values was computed.

12-Week Field Study
We conducted a field study (2 cohorts, 12 weeks each) to test
the step-detection algorithm with the target population—older
adults with obesity. This study was a subset of a larger study
that evaluated the impact of a combined weight loss and exercise
intervention in older adults with obesity [20]. The goal of this
analysis was to compare the Amulet’s step-count estimate with
the Fitbit’s step count over a long period in real-world settings.

Participants (Table 1) from both rounds wore an Amulet and
Fitbit on the same wrist for 12 weeks. The Amulet logged the
summary steps on an SD memory card hourly and at the end of
each day. A research assistant copied the data from each
participant’s SD card on a biweekly basis. The Fitbit logged a
summary of each day’s step count (computed by a proprietary
algorithm) to the Fitbit app on the participant’s Android tablet,
which uploaded the data to the Fitbit servers; we subsequently
used the Fitbit research API to download participants’ data.
After 10 weeks of monitoring data from the first cohort, we
modified the step-detection peak cut-off value to minimize the
error rate relative to ground-truth step count data from the Fitbit.

Table 1. Participant characteristics.

Value (n=16)Characteristic

Age (years)

74.1 (5.6)Mean (SD)

66-87Range

Sex, n (%)

4 (25)Male

12 (75)Female

Marital status, n (%)

7 (44)Married

8 (50)Divorced

1 (6)Widowed

Smoking history, n (%)

13 (81)None

3 (19)Formerly smoked

Education, n (%)

2 (12)High school

5 (31)Some college

3 (19)College degree

6 (38)Postcollege degree

97.06 (18.2)Weight (kg), mean (SD)

36.8 (4.9)Body mass index (kg/m2), mean (SD)

14 (87)Multimorbidity, n (%)

Comorbidities, n (%)

2 (12)Diabetes

1 (6)Fibromyalgia

6 (38)High cholesterol

9 (56)Hypertension

6 (38)Osteoarthritis

Statistical Analysis
We calculated the mean with standard deviation for continuous
measures and count with percentage for categorical measures.
Although participants were instructed to wear the Amulet and
Fitbit simultaneously, not all participants did so the entire time.

We thus limited the data to days for which it was safe to assume
that they were worn for nearly the same amount of time. The
Amulet was able to detect if it was worn each hour, so we
considered the Amulet to be worn if the Amulet was worn for
75% of a 15-hour day (675 minutes); the Fitbit only reported
daily step count, so we considered the Fitbit to be worn if the
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step count was greater than 100. We selected these parameters
from an understanding of the distribution of wear time over the
course of a 24-hour day and the distribution of steps expected
for this population per day [21]. Comparisons between Amulet
and Fitbit were limited to data from days for which both were
worn. We conducted bivariate linear regression to compare the
association between Amulet and video-counted steps during
various activities (laboratory study) and between Amulet and
Fitbit steps (2-day and 12-week field studies). We compared
Amulet steps to Fitbit steps using percentage difference
(difference between Amulet and Fitbit steps divided by Fitbit
steps).We used Bland-Altman plots to compare the agreement

between Amulet and Fitbit steps. For our analysis, we defined
significance as P<.05.

Results

Laboratory Study
There was a strong linear association when participants walked
normally (Figure 2; Table 2). For normal walking, the Amulet
step-detection algorithm undermeasured the number of steps
taken by an average of 6.7 steps (SD 32.6). Across all activities,
the Amulet was on average 3.2 steps lower (SD 25.9) or 2.1%
(SD 31.9%) lower than video-validated steps (Figure 2). The
distribution was slightly positively skewed.

Figure 2. Association between Amulet-estimated steps and video-validated steps.

Table 2. Step count for different walking activities.

Percentage errorAmulet, n (%)Video-validated, n (%)Activity

8.53 (20.02)110.72 (22.7)102.62 (14.7)Fast

1.71 (33.28)99.48 (30.8)101.02 (18.7)Intermittent

–6.68 (32.55)77.14 (33.9)84.9 (31.9)Normal

–7.55 (36.97)45.52 (13.2)52.76 (13.4)Stairs
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2-Day Field Study
We discarded 1 participant’s data because the data indicated
the devices had not been worn much (step counts were less than
350 per day). The associations between each participant’s daily
step counts reported by the Amulet and Fitbit were high for all
cut-off thresholds (Figure 3). The third cut-off threshold had

the highest association between Amulet and Fitbit steps

(R2=0.989). Cut-off threshold number 2 had the smallest mean
percentage difference between Amulet and Fitbit (–3.1%, SD
25.1) of all cut-off thresholds (threshold 1: mean 15.27%, SD
33.19; threshold 3: mean –10.77, SD 23.43; threshold 4: mean
7.18, SD 29.28; threshold 5: mean –4.11, SD 24.94) (Figure 4).

Figure 3. Association between Amulet and Fitbit steps for different cut-off values: 2-day field study.

Figure 4. Distribution of percentage difference between Amulet and Fitbit steps by cut-off threshold.
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12-Week Field Study Results
Across both 12-day field studies, there were 297 participant-days
for which both the Fitbit and Amulet had been worn. Cohort 2
used the modified app. For the first cut-off threshold (version
1), we recorded 86 participant-days; the average Fitbit step
count was 5797 steps (SD 3296), and the average Amulet step
count was 9780 steps (SD 3719). For the second cut-off
threshold (version 2), we recorded 211 participant-days; the
average Fitbit step count was 6415 per day (SD 3751), and the
average Amulet step count was 7956 per day (SD 3324). The

association between Fitbit steps and Amulet steps improved

(first cut-off threshold: R2=0.386; second cut-off threshold:

R2=0.669) (Figure 5). There was improved agreement between
both measures with the second cut-off threshold (Figure 6).
There were 9 observations by 5 unique participants with
differences 2 standard deviations higher than the combined
difference mean. These observations had an average Fitbit and
Amulet step count of 1373 (SD 1988) and 10,689 (SD 1971),
which suggested that participants may have taken their Fitbits
off at some point during the day before removing their Amulet.

Figure 5. Association between Amulet and Fitbit steps by algorithm version. Each line is a linear regression for each participant, colored separately,
with the overall linear regression in black. Version 1 represents the app used during the first 10 weeks of cohort 1, and version 2 represents the app used
during the final 2 weeks of cohort 1 and all 12 weeks of cohort 2.
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Figure 6. Bland-Altman plots of Amulet and Fitbit step measures by algorithm version. The blue line represents the mean difference between Amulet
and Fitbit steps per day. Each red line represents 2 SD of the difference. Version 1 represents the app used during the first 10 weeks of cohort 1, and
version 2 represents the app used during the final 2 weeks of cohort 1 and all 12 weeks of cohort 2.

Discussion

We found that an open-source platform and algorithm developed
for older adults can capture daily step counts with reasonable
accuracy. Our findings demonstrate the importance of an
iterative process in algorithm development before field
deployment. First, our lab-based data provided confidence in
the algorithm’s step estimates, making a case for a real-world
evaluation. We then tested the algorithm in a 2-day field study
before full-scale deployment. The step estimates from our
algorithm were highly correlated with the step counts from the
Fitbit for all peak cut-off thresholds, with low error rates. These
results provide evidence that the algorithm worked well in
free-living conditions, albeit for a short duration. We used the
cut-off threshold with the lowest error rate for the subsequent
field studies conducted over longer periods.

As with any user study, there are differences between field-based
conditions and those in laboratory settings or short-duration
studies. The poorer results in the 12-week study (cohort 1) may

have been a result of the differences between the populations
used for developing and evaluating the algorithm (older adults
vs older obese adults). Older adults with obesity have a higher
degree of comorbid conditions [22], along with differences in
stride length, cadence, and gait [23], which may impact either
algorithm. Additionally, the longer time period (12 weeks vs 2
days) could have allowed the occurrence of a greater number
of confounding situations, such as both devices not being worn
at all times or one device being off while the other was on.
These results make a strong case for developing and refining
algorithms with data from the target population and evaluating
algorithms in the conditions for which they were designed.

Based on our observations in the first 10 weeks of cohort 1, we
modified the peak cut-off threshold to minimize the error rate
and evaluated version 2 of the algorithm in a study of the same
duration with different participants from the same target
population (cohort 2). Version 2 exhibited better performance
in terms of correlations and error rates.
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One limitation of this work is that we used the Fitbit as ground
truth. Given that the Fitbit device (and its proprietary algorithm)
was not specifically developed for this population (older adults
with obesity), it is difficult to say whether our algorithm
performed better or worse than Fitbit’s algorithm relative to the
ground truth. The ideal ground truth would have been to use
video recording, as we did in the lab study, but videorecording
is not feasible for field studies due to privacy limitations. Hence,
a device such as the Fitbit was the best compromise.

Although Fitbit outputs have been shown to have high
correlations with those of other step-counting devices when
used with older adults in free-living settings, results have varied
depending on the specific Fitbit device used, device placement
(wrist vs waist), and the comparison device used [24-27]. We
hypothesized that the Fitbit would underestimate the steps of
older adults in comparison to the Amulet, because the Fitbit
was developed using data from younger adults, and older adults
move more slowly [28]. Thus, we expect the overall true step
count to be higher than Fitbit’s estimate. Hence, we settled for
the case where our algorithm overestimated the steps but was
highly correlated with Fitbit’s estimate. In addition, the Fitbit
data were captured daily, whereas Amulet data were captured
hourly. Had hourly data been available from both, we could
have performed a fine-grained comparison between the
algorithms. Finally, it was not possible to get a good sense of
wear time from the Fitbit as we did in the Amulet. We could
only use the Amulet’s wear time estimate and a minimum Fitbit
daily step count of 100 steps as the threshold for being worn.

Because we were evaluating predominantly intraperson
variability (ie, the purpose was not to evaluate the impact of
any intervention), we did not measure baseline characteristics
of the participants (eg, disease regarding walking behavior, such
as Parkinson disease, musculoskeletal disorders). Future studies
should determine whether such characteristics could have an
impact on our results.

The use of an open-source system, such as the Amulet,
highlights researchers’ ability to develop algorithms that are
tailored and trained for a target population such as older adults.
With the constant iteration of consumer devices and algorithms,
it is difficult to ensure precision and accuracy for groups that
need to be more physically active, such as older adults. Hence,
it is important to develop and examine products that can meet
their needs. Providing imprecise or inaccurate information on
physical activity could undermine the motivation of this
population to increase their physical activity. We recommend
that future work demonstrate validity of algorithms in these
populations and identify situations where data collection can
be the most clinically relevant and actionable.

Our step-count algorithm performed well in comparison with
Fitbit, with high correlations and low error rates. Overall, this
work highlights various challenges and insights involved in
developing and validating monitoring systems in real-world
settings.
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